metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-aqua-μ5-[2-(2,3,6-tri­chloro­phenyl)acetato]-caesium]

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 22 October 2013; accepted 25 October 2013; online 6 November 2013)

In the structure of the title complex, [Cs(C8H4Cl3O2)(H2O)]n, the caesium salt of the commercial herbicide fenac [(2,3,6-tri­chloro­phen­yl)acetic acid], the irregular eight-coordination about Cs+ comprises a bidentate O:Cl-chelate inter­action involving a carboxyl­ate-O atom and an ortho-related ring-substituted Cl atom, which is also bridging, a triple-bridging carboxyl­ate-O atom and a bridging water mol­ecule. A two-dimensional polymer is generated, lying parallel to (100), within which there are water–carboxyl­ate O—H⋯O hy­dro­gen-bonding inter­actions.

Related literature

For background information on the herbicide fenac, see: O'Neil (2001[O'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 360. Whitehouse Station, NJ, USA: Merck & Co. Inc.]). For the structure of fenac, see: White et al. (1979[White, A. H., Raston, C. L., Kennard, C. H. L. & Smith, G. (1979). Cryst. Struct. Commun. 8, 63-67.]). For examples of caesium complexes involving coord­inating carbon-bound Cl, see: Levitskaia et al. (2000[Levitskaia, T. G., Bryan, J. C., Sachleben, R. A., Lamb, J. D. & Moyer, B. A. (2000). J. Am. Chem. Soc. 122, 554-562.]); Smith (2013[Smith, G. (2013). Acta Cryst. E69, m22-m23.]).

[Scheme 1]

Experimental

Crystal data
  • [Cs(C8H4Cl3O2)(H2O)]

  • Mr = 389.39

  • Monoclinic, P 21 /c

  • a = 17.0606 (12) Å

  • b = 4.9834 (3) Å

  • c = 13.9283 (10) Å

  • β = 98.127 (6)°

  • V = 1172.29 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.82 mm−1

  • T = 200 K

  • 0.20 × 0.15 × 0.07 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.]) Tmin = 0.582, Tmax = 0.980

  • 7585 measured reflections

  • 2284 independent reflections

  • 1873 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.111

  • S = 1.09

  • 2284 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 2.18 e Å−3

  • Δρmin = −1.86 e Å−3

Table 1
Selected bond lengths (Å)

Cs1—Cl6 3.711 (2)
Cs1—O1W 3.131 (6)
Cs1—O13 3.246 (7)
Cs1—Cl6i 3.646 (2)
Cs1—O1Wi 3.148 (6)
Cs1—O12ii 3.213 (5)
Cs1—O12iii 3.103 (6)
Cs1—O12iv 3.242 (6)
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+2, -z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O13ii 0.97 1.70 2.638 (8) 161
O1W—H12W⋯O12v 0.84 2.40 3.191 (8) 158
Symmetry codes: (ii) -x+2, -y+2, -z+1; (v) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

(2,3,6-Trichlorophenyl)acetic acid (fenac) is a commercial herbicide (O'Neil, 2001) and its crystal structure (White et al., 1979) represents the only entry for this compound in the crystallographic literature. My interest in aromatic carboxylic acid herbicides and in polymeric coordination structures of the alkali metal complexes led to the preparation of the title compound, [Cs(C8H4Cl3O2)(H2O)]n, from the reaction of fenac with caesium hydroxide in aqueous ethanol, and the structure is reported herein.

In this structure (Fig. 1), the irregular eight-coordinate CsClO7 polyhedron comprises a bidentate O:Cl-chelate interaction involving a carboxylate O-atom (O13) and an ortho-related ring substituted Cl-atom (Cl6) which is also bridging, a triple-bridging carboxylate O-atom (O12) and a bridging water molecule O1W (Table 1). A partial expansion of the asymmetric unit in the polymer structure is shown in Fig. 2, forming 4-, 7- and 8-membered cyclic associations linking Cs+ ions (a triple bridge involving Cl6, O1W and O12iii, extending down b). The minimum Cs···Csvi bridging distance in the structure is 4.4336 (9) Å [for symmetry code (i), see Table 1. For code (vi): -x + 2, y + 1/2, -z + 3/2]. In the Cl bridge, the Cs—Cl bond lengths [3.646 (2) and 3.711 (2) Å] are long compared to those commonly present in the few known examples of caesium complexes having coordinating carbon-bound Cl atoms, e.g. 3.46–3.56 Å for a complex in which 1,2-dichloroethane acts as a bidentate chelate ligand (Levitskaia et al., 2000). However, I have previously reported values similar to those in the title complex in the analogous polymeric structure of caesium 4-amino-3,5,6-trichloropyridine-2-carboxylate monohydrate [3.6052 (11)– 3.7151 (11) Å], in which all three ring-substituted Cl-atoms are coordinated (Smith, 2013).

In the crystal structure of the title complex, a polymer with a sheet structure is generated which lies parallel to (100) (Fig. 3), and within which there are waterO—H···Ocarboxylate hydrogen-bonding interactions (Table 2).

Related literature top

For background information on the herbicide fenac, see: O'Neil (2001). For the structure of fenac, see: White et al. (1979). For examples of caesium complexes involving coordinating carbon-bound Cl, see: Levitskaia et al. (2000); Smith (2013).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 0.5 mmol of (2,3,6-trichlorophenyl)acetic acid and 0.5 mmol of CsOH in 15 ml of 10% ethanol–water. Partial room temperature evaporation of the solution gave thin colourless crystal plates of the title complex from which a specimen was cleaved for the X-ray analysis.

Refinement top

Carbon-bound hydrogen atoms were placed in calculated positions [aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å] and allowed to ride in the refinement, with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the coordinating water molecule were located in a difference-Fourier synthesis but were subsequently allowed to ride, with Uiso(H) = 1.5Ueq(O). A large maximum residual electron density peak was present (2.176 e- Å-3) located at 0.82 Å from Cs1. A short O1W···O1Wii non-bonding contact [2.804 (8) Å] across an inversion centre was also found.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids. [For symmetry codes, see Table 1.]
[Figure 2] Fig. 2. A partial expansion of the Cs+ coordination in the polymer generated by cyclic links through carboxylate, chlorine and water bridges. Ligand H-atoms are omitted. [For symmetry code (vi): -x + 2, y + 1/2, -z + 3/2. For other codes, see Fig. 1 and Table 1.]
[Figure 3] Fig. 3. The packing of the sheet structure in the unit cell viewed down b.
Poly[µ-aqua-µ5-[2-(2,3,6-trichlorophenyl)acetato]-caesium] top
Crystal data top
[Cs(C8H4Cl3O2)(H2O)]F(000) = 736
Mr = 389.39Dx = 2.206 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2248 reflections
a = 17.0606 (12) Åθ = 3.3–28.0°
b = 4.9834 (3) ŵ = 3.82 mm1
c = 13.9283 (10) ÅT = 200 K
β = 98.127 (6)°Plate, colourless
V = 1172.29 (14) Å30.20 × 0.15 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2284 independent reflections
Radiation source: Enhance (Mo) X-ray source1873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 2021
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 66
Tmin = 0.582, Tmax = 0.980l = 1712
7585 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0285P)2 + 9.056P]
where P = (Fo2 + 2Fc2)/3
2284 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 2.18 e Å3
0 restraintsΔρmin = 1.86 e Å3
Crystal data top
[Cs(C8H4Cl3O2)(H2O)]V = 1172.29 (14) Å3
Mr = 389.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.0606 (12) ŵ = 3.82 mm1
b = 4.9834 (3) ÅT = 200 K
c = 13.9283 (10) Å0.20 × 0.15 × 0.07 mm
β = 98.127 (6)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2284 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1873 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 0.980Rint = 0.034
7585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.09Δρmax = 2.18 e Å3
2284 reflectionsΔρmin = 1.86 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.91683 (3)1.08611 (9)0.65098 (4)0.0524 (2)
Cl20.66412 (12)1.1809 (4)0.23490 (12)0.0501 (6)
Cl30.53476 (12)1.4225 (4)0.34892 (17)0.0616 (8)
Cl60.76993 (11)0.5765 (4)0.54801 (14)0.0508 (6)
O1W1.0140 (3)0.5882 (12)0.5977 (4)0.065 (2)
O120.8947 (3)0.8961 (12)0.2855 (4)0.0529 (19)
O130.8658 (3)1.0892 (13)0.4175 (5)0.072 (2)
C10.7124 (3)0.8850 (12)0.3931 (4)0.0274 (17)
C20.6586 (4)1.0773 (13)0.3521 (4)0.0326 (19)
C30.6013 (4)1.1852 (14)0.4022 (5)0.0367 (19)
C40.5961 (4)1.1051 (15)0.4948 (5)0.040 (2)
C50.6479 (4)0.9137 (15)0.5385 (5)0.039 (2)
C60.7052 (4)0.8101 (13)0.4877 (5)0.0322 (19)
C110.7748 (4)0.7685 (14)0.3401 (5)0.036 (2)
C120.8505 (4)0.9352 (12)0.3479 (4)0.0307 (19)
H40.557901.179000.528400.0480*
H50.644300.855200.601200.0470*
H11A0.753200.750000.272100.0430*
H11B0.788000.590300.365300.0430*
H11W1.064000.681800.602000.0970*
H12W1.025000.451000.632000.0970*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0581 (3)0.0302 (3)0.0667 (4)0.0028 (2)0.0012 (2)0.0010 (2)
Cl20.0655 (12)0.0500 (11)0.0322 (9)0.0108 (9)0.0020 (8)0.0071 (8)
Cl30.0487 (12)0.0503 (12)0.0787 (15)0.0179 (9)0.0157 (10)0.0073 (11)
Cl60.0477 (11)0.0492 (11)0.0530 (11)0.0041 (9)0.0016 (8)0.0152 (9)
O1W0.067 (4)0.073 (4)0.061 (3)0.041 (3)0.031 (3)0.027 (3)
O120.039 (3)0.075 (4)0.049 (3)0.016 (3)0.021 (2)0.026 (3)
O130.061 (4)0.081 (4)0.083 (4)0.042 (3)0.041 (3)0.050 (4)
C10.025 (3)0.026 (3)0.031 (3)0.006 (3)0.003 (2)0.004 (3)
C20.035 (4)0.032 (3)0.029 (3)0.011 (3)0.002 (3)0.004 (3)
C30.022 (3)0.034 (3)0.051 (4)0.003 (3)0.006 (3)0.011 (3)
C40.032 (4)0.051 (4)0.039 (4)0.001 (3)0.011 (3)0.017 (3)
C50.042 (4)0.047 (4)0.030 (3)0.009 (3)0.013 (3)0.005 (3)
C60.025 (3)0.030 (3)0.039 (4)0.002 (3)0.004 (3)0.003 (3)
C110.035 (4)0.035 (4)0.038 (4)0.003 (3)0.010 (3)0.010 (3)
C120.038 (4)0.026 (3)0.029 (3)0.001 (3)0.008 (3)0.005 (3)
Geometric parameters (Å, º) top
Cs1—Cl63.711 (2)O1W—H12W0.8400
Cs1—O1W3.131 (6)C1—C21.392 (9)
Cs1—O133.246 (7)C1—C111.496 (9)
Cs1—Cl6i3.646 (2)C1—C61.392 (9)
Cs1—O1Wi3.148 (6)C2—C31.387 (9)
Cs1—O12ii3.213 (5)C3—C41.365 (10)
Cs1—O12iii3.103 (6)C4—C51.382 (10)
Cs1—O12iv3.242 (6)C5—C61.385 (10)
Cl2—C21.727 (6)C11—C121.527 (10)
Cl3—C31.732 (7)C4—H40.9300
Cl6—C61.737 (7)C5—H50.9300
O12—C121.244 (8)C11—H11A0.9700
O13—C121.235 (9)C11—H11B0.9700
O1W—H11W0.9700
Cl6—Cs1—O1W73.58 (10)Cs1ii—O12—Cs1vi89.15 (14)
Cl6—Cs1—O1362.95 (11)Cs1ii—O12—Cs1vii86.76 (13)
Cl6—Cs1—Cl6i85.27 (4)Cs1vi—O12—Cs1vii103.50 (16)
Cl6—Cs1—O1Wi143.35 (11)Cs1—O13—C12141.3 (5)
Cl6—Cs1—O12ii136.07 (11)Cs1—O1W—H12W126.00
Cl6—Cs1—O12iii64.54 (11)H11W—O1W—H12W103.00
Cl6—Cs1—O12iv129.83 (10)Cs1—O1W—H11W95.00
O1W—Cs1—O1380.93 (15)Cs1v—O1W—H11W149.00
Cl6i—Cs1—O1W142.70 (11)C2—C1—C11122.6 (5)
O1W—Cs1—O1Wi105.07 (14)C6—C1—C11121.8 (5)
O1W—Cs1—O12ii62.90 (14)C2—C1—C6115.6 (5)
O1W—Cs1—O12iii69.09 (14)Cl2—C2—C1118.2 (5)
O1W—Cs1—O12iv151.22 (14)Cl2—C2—C3119.7 (5)
Cl6i—Cs1—O1362.00 (11)C1—C2—C3122.1 (5)
O1Wi—Cs1—O1380.54 (15)C2—C3—C4120.4 (6)
O12ii—Cs1—O13113.08 (14)Cl3—C3—C4118.6 (5)
O12iii—Cs1—O13124.78 (15)Cl3—C3—C2121.0 (5)
O12iv—Cs1—O13122.59 (15)C3—C4—C5119.7 (6)
Cl6i—Cs1—O1Wi74.34 (10)C4—C5—C6119.1 (6)
Cl6i—Cs1—O12ii134.05 (11)Cl6—C6—C5116.7 (5)
Cl6i—Cs1—O12iii128.39 (10)C1—C6—C5123.2 (6)
Cl6i—Cs1—O12iv64.16 (10)Cl6—C6—C1120.2 (5)
O1Wi—Cs1—O12ii60.21 (14)C1—C11—C12114.1 (5)
O1Wi—Cs1—O12iii150.59 (14)O12—C12—C11117.1 (6)
O1Wi—Cs1—O12iv67.16 (14)O13—C12—C11118.5 (6)
O12ii—Cs1—O12iii93.30 (14)O12—C12—O13124.3 (7)
O12ii—Cs1—O12iv90.73 (14)C3—C4—H4120.00
O12iii—Cs1—O12iv103.50 (15)C5—C4—H4120.00
Cs1—Cl6—C694.4 (2)C4—C5—H5120.00
Cs1—Cl6—Cs1v85.27 (4)C6—C5—H5120.00
Cs1v—Cl6—C6173.7 (2)C1—C11—H11A109.00
Cs1—O1W—Cs1v105.07 (15)C1—C11—H11B109.00
Cs1ii—O12—C12119.0 (4)C12—C11—H11A109.00
Cs1vi—O12—C12132.9 (4)C12—C11—H11B109.00
Cs1vii—O12—C12114.3 (4)H11A—C11—H11B108.00
O1W—Cs1—Cl6—C6142.6 (3)O1W—Cs1—O12iii—C12iii172.3 (6)
O1W—Cs1—Cl6—Cs1v31.08 (11)O13—Cs1—O12iii—Cs1v32.8 (2)
O13—Cs1—Cl6—C654.6 (3)O13—Cs1—O12iii—C12iii110.4 (6)
O13—Cs1—Cl6—Cs1v119.12 (12)Cl6—Cs1—O12iv—Cs1i112.05 (13)
Cl6i—Cs1—Cl6—C66.3 (2)Cl6—Cs1—O12iv—Cs1viii159.60 (5)
Cl6i—Cs1—Cl6—Cs1v180.00 (5)Cl6—Cs1—O12iv—C12iv39.1 (5)
O1Wi—Cs1—Cl6—C649.3 (3)O1W—Cs1—O12iv—Cs1i109.0 (3)
O1Wi—Cs1—Cl6—Cs1v124.40 (17)O1W—Cs1—O12iv—Cs1viii20.7 (3)
O12ii—Cs1—Cl6—C6150.5 (3)O1W—Cs1—O12iv—C12iv99.8 (5)
O12ii—Cs1—Cl6—Cs1v23.13 (16)O13—Cs1—O12iv—Cs1i31.8 (2)
O12iii—Cs1—Cl6—C6143.2 (3)O13—Cs1—O12iv—Cs1viii120.17 (14)
O12iii—Cs1—Cl6—Cs1v43.15 (11)O13—Cs1—O12iv—C12iv119.3 (4)
O12iv—Cs1—Cl6—C656.6 (3)Cs1—Cl6—C6—C189.9 (5)
O12iv—Cs1—Cl6—Cs1v129.68 (13)Cs1—Cl6—C6—C590.0 (5)
Cl6—Cs1—O1W—Cs1v38.11 (11)Cs1vi—O12—C12—O13153.4 (5)
O13—Cs1—O1W—Cs1v102.44 (17)Cs1vii—O12—C12—O1366.4 (8)
Cl6i—Cs1—O1W—Cs1v96.19 (19)Cs1ii—O12—C12—C11142.5 (5)
O1Wi—Cs1—O1W—Cs1v180.00 (15)Cs1vi—O12—C12—C1123.0 (9)
O12ii—Cs1—O1W—Cs1v135.7 (2)Cs1vii—O12—C12—C11117.2 (5)
O12iii—Cs1—O1W—Cs1v30.36 (15)Cs1ii—O12—C12—O1333.9 (9)
O12iv—Cs1—O1W—Cs1v110.2 (3)Cs1—O13—C12—O12107.6 (8)
Cl6—Cs1—O13—C1239.5 (7)Cs1—O13—C12—C1168.8 (9)
O1W—Cs1—O13—C1236.7 (7)C6—C1—C2—C30.5 (9)
Cl6i—Cs1—O13—C12139.1 (7)C11—C1—C2—Cl20.7 (8)
O1Wi—Cs1—O13—C12143.7 (7)C6—C1—C2—Cl2179.8 (5)
O12ii—Cs1—O13—C1292.0 (7)C2—C1—C6—Cl6178.8 (5)
O12iii—Cs1—O13—C1219.9 (8)C2—C1—C6—C51.1 (9)
O12iv—Cs1—O13—C12161.3 (7)C11—C1—C2—C3179.6 (6)
Cl6—Cs1—Cl6i—Cs1i180.00 (4)C11—C1—C6—Cl60.3 (9)
O1W—Cs1—Cl6i—Cs1i125.21 (17)C11—C1—C6—C5179.8 (6)
O13—Cs1—Cl6i—Cs1i118.22 (12)C2—C1—C11—C1285.3 (7)
Cl6—Cs1—O1Wi—Cs1i97.39 (19)C6—C1—C11—C1293.7 (7)
O1W—Cs1—O1Wi—Cs1i179.98 (16)Cl2—C2—C3—Cl30.2 (8)
O13—Cs1—O1Wi—Cs1i102.15 (17)Cl2—C2—C3—C4179.9 (6)
Cl6—Cs1—O12ii—Cs1viii157.48 (7)C1—C2—C3—Cl3179.6 (5)
Cl6—Cs1—O12ii—C12ii62.1 (5)C1—C2—C3—C40.2 (10)
O1W—Cs1—O12ii—Cs1viii166.04 (19)C2—C3—C4—C50.5 (11)
O1W—Cs1—O12ii—C12ii53.6 (5)Cl3—C3—C4—C5179.2 (6)
O13—Cs1—O12ii—Cs1viii128.20 (15)C3—C4—C5—C61.1 (11)
O13—Cs1—O12ii—C12ii12.2 (5)C4—C5—C6—Cl6178.4 (6)
Cl6—Cs1—O12iii—Cs1v52.02 (11)C4—C5—C6—C11.5 (11)
Cl6—Cs1—O12iii—C12iii91.1 (6)C1—C11—C12—O12160.0 (6)
O1W—Cs1—O12iii—Cs1v29.16 (14)C1—C11—C12—O1323.4 (9)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z+1; (iii) x, y+3/2, z+1/2; (iv) x, y+5/2, z+1/2; (v) x, y1, z; (vi) x, y+3/2, z1/2; (vii) x, y+5/2, z1/2; (viii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O13ii0.971.702.638 (8)161
O1W—H12W···O12ix0.842.403.191 (8)158
C11—H11A···Cl20.972.643.026 (7)104
C11—H11B···Cl60.972.613.062 (7)109
Symmetry codes: (ii) x+2, y+2, z+1; (ix) x+2, y+1, z+1.
Selected bond lengths (Å) top
Cs1—Cl63.711 (2)Cs1—O1Wi3.148 (6)
Cs1—O1W3.131 (6)Cs1—O12ii3.213 (5)
Cs1—O133.246 (7)Cs1—O12iii3.103 (6)
Cs1—Cl6i3.646 (2)Cs1—O12iv3.242 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+2, z+1; (iii) x, y+3/2, z+1/2; (iv) x, y+5/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O13ii0.971.702.638 (8)161
O1W—H12W···O12v0.842.403.191 (8)158
Symmetry codes: (ii) x+2, y+2, z+1; (v) x+2, y+1, z+1.
 

Acknowledgements

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLevitskaia, T. G., Bryan, J. C., Sachleben, R. A., Lamb, J. D. & Moyer, B. A. (2000). J. Am. Chem. Soc. 122, 554–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Neil, M. J. (2001). Editor. The Merck Index, 13th ed., p. 360. Whitehouse Station, NJ, USA: Merck & Co. Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2013). Acta Cryst. E69, m22–m23.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, A. H., Raston, C. L., Kennard, C. H. L. & Smith, G. (1979). Cryst. Struct. Commun. 8, 63–67.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds