organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1797-o1798

2-{4-Methyl-N-[(2,3,4,9-tetra­hydro-1H-carbazol-3-yl)meth­yl]benzene­sulfon­amido}­ethyl 4-methyl­benzene­sulfonate

aDokuz Eylül University, Faculty of Sciences, Department of Chemistry, Tınaztepe, 35160 Buca, İzmir, Turkey, bUniversité de Montréal, Département de Chimie, H3C 3J7, Montréal, Québec, Canada, cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and dHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 4 November 2013; accepted 12 November 2013; online 20 November 2013)

In the title compound, C29H32N2O5S2, the indole ring system is nearly planar, with a maximum deviation of 0.013 (2) Å, and the cyclo­hexenone ring has an envelope conformation with the methine C atom as the flap. The two methyl­benzene rings are approximately perpendicular to each other, making a dihedral angle of 89.09 (8)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into a chain running along the a-axis direction, and weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions are observed between the chains.

Related literature

For tetra­hydro­carbazole systems present in the framework of a number of indole-type alkaloids of biological inter­est, see: Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.]). For related structures, see: Hökelek et al. (2009[Hökelek, T., Dal, H., Tercan, B., Göçmentürk, M. & Ergün, Y. (2009). Acta Cryst. E65, o1702-o1703.]); Çaylak et al. (2007[Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913-o3914.]); Uludağ et al. (2009[Uludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595-o596.]); Gündoğdu et al. (2011[Gündoğdu, C., Göçmentürk, M., Ergün, Y., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1470-o1471.]). For the use of tetra­hydro­carbazolone in the synthesis of central-nervous-system-active drugs, see: Romeo et al. (2006[Romeo, G., Materia, L., Pittalá, V., Modica, M., Salerno, L., Siracusa, M., Russo, F. & Minneman, K. P. (2006). Bioorg. Med. Chem. 14, 5211-5219.]). For the syntheses of tetra­hydro­carbazolone-based anti­tumor-active compounds from tetra­hydro­carbazoles, see: Chen et al. (2009[Chen, J., Lou, J., Liu, T., Wu, R., Dong, X., He, Q., Yang, B. & Hu, Y. (2009). Arch. Pharm. 342, 165-172.]). For the syntheses of amino­tetra­hydro­carbazoles as central nervous system agents, see: Mooradian et al. (1977[Mooradian, A., Dupont, P. E., Hlavac, A. G., Aceto, M. D. & Pearl, J. (1977). J. Med. Chem. 20, 487-492.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C29H32N2O5S2

  • Mr = 552.69

  • Monoclinic, P 21 /c

  • a = 10.5719 (5) Å

  • b = 10.8783 (6) Å

  • c = 23.8868 (11) Å

  • β = 93.507 (2)°

  • V = 2741.9 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.11 mm−1

  • T = 150 K

  • 0.21 × 0.16 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.701, Tmax = 0.761

  • 168526 measured reflections

  • 5101 independent reflections

  • 4955 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.05

  • 5101 reflections

  • 349 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg5 are the centroids of the C4A/C5A/C8A/N9/C9A and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O5i 0.84 (2) 2.18 (2) 2.9561 (19) 154.1 (18)
C21—H21⋯O4ii 0.95 2.38 3.230 (2) 148
C8—H8⋯Cg5iii 0.95 2.81 3.5127 (18) 131
C10—H10BCg2iv 0.99 2.58 3.5538 (18) 168
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously. Tetrahydrocarbazoles have been increasingly important intermediates in the syntheses of indole or carbazole alkaloids and various biologically active heterocyclic compounds because of their unique structures. For instance, tetrahydrocarbazole was used in the syntheses of central nervous system active drugs (Romeo et al., 2006). Tetrahydrocarbazolone based antitumor active compounds were synthesized from tetrahydrocarbazoles (Chen et al., 2009). Aminotetrahydrocarbazoles were also synthesized as central nervous system agents (Mooradian et al., 1977). The present study was undertaken to ascertain the crystal structure of the title compound.

The molecule of the title compound contains a carbazole skeleton with methyl phenylsulfonamide and ethyl methyl benzenesulfonate groups, (Fig. 1), where the bond lengths are close to standard values (Allen et al., 1987) and generally agree with those in the previously reported compounds. In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings B (C4a/C5a/C8a/N9/C9a) and C (C5a/C5—C8/C8a) are nearly coplanar [with a maximum deviation of 0.013 (2) Å for atom C7] with dihedral angle of B/C = 0.85 (6)°. Ring A (C1—C4/C4a/C9a) adopts envelope conformation with atom C3 displaced by -0.605 (2) Å from the plane of the other rings atoms, as in 3a,4,10,10b-tetrahydro-2H-furo[2,3-a]carbazol-5(3H)-one (Çaylak et al., 2007), 3,3-ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole (Uludağ et al., 2009), ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate (Hökelek et al., 2009) and ethyl 4-oxo-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate (Gündoğdu et al., 2011). Ring A has a pseudo twofold axis running through the midpoints of C2–C3 and C4a–C9a bonds. Rings D (C13—C18) and E (C20—C25) are oriented at a dihedral angle of 89.09 (8)°.

In the crystal, intermolecular N—H···O and C—H···O hydrogen bonds link the molecules into infinite chains along the a-axis (Table 1 and Fig. 2). π···π contacts between the benzene rings, Cg4—Cg4i [symmetry code: (i) 1 - x, 1 - y, 1 - z, where Cg4 is the centroid of the ring D (C13—C18)] may further stabilize the structure, with centroid-centroid distance of 3.955 (1) Å. There also exist two weak C—H···π interactions (Table 1).

Related literature top

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Saxton (1983). For related structures, see: Hökelek et al. (2009)Çaylak et al. (2007); Uludağ et al. (2009); Gündoğdu et al. (2011). For the use of tetrahydrocarbazolone in the synthesis of central-nervous-system-active drugs, see: Romeo et al. (2006). For the syntheses of tetrahydrocarbazolone-based antitumor-active compounds from tetrahydrocarbazoles, see: Chen et al. (2009). For the syntheses of aminotetrahydrocarbazoles as central nervous system agents, see: Mooradian et al. (1977). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, (I), a solution of 2-((2,3,4,9 -tetrahydro-1H-carbazole-3-yl)methylamino)ethanol (1.0 g, 4.1 mmol) in pyridine (5 ml) was cooled to 273 K. Then, p-toluenesulphonyl chloride (1.7 g, 9.0 mmol) was added. The mixture was stirred for 18 h at room temperature, and then washed with hydrochloric acid (10%). The organic layer was extracted with chloroform and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane (1:1). The solvent was evaporated under reduced pressure and the residue was recrystallized from methanol (yield; 1.7 g, 75%, m.p. 425 K).

Refinement top

The H9 atom is located in a difference Fourier synthesis and refined isotropically. The remaining C-bound H-atoms were positioned geometrically with C—H = 0.95, 1.00, 0.99 and 0.98 Å, for aromatic, methine, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound. The N—H···O and C—H···O hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity].
2-{4-Methyl-N-[(2,3,4,9-tetrahydro-1H-carbazol-3-yl)methyl]benzenesulfonamido}ethyl 4-methylbenzenesulfonate top
Crystal data top
C29H32N2O5S2F(000) = 1168
Mr = 552.69Dx = 1.339 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9835 reflections
a = 10.5719 (5) Åθ = 3.7–69.1°
b = 10.8783 (6) ŵ = 2.11 mm1
c = 23.8868 (11) ÅT = 150 K
β = 93.507 (2)°Block, pink
V = 2741.9 (2) Å30.21 × 0.16 × 0.13 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5101 independent reflections
Radiation source: fine-focus sealed tube4955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 69.3°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.701, Tmax = 0.761k = 129
168526 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0702P)2 + 1.3803P]
where P = (Fo2 + 2Fc2)/3
5101 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C29H32N2O5S2V = 2741.9 (2) Å3
Mr = 552.69Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.5719 (5) ŵ = 2.11 mm1
b = 10.8783 (6) ÅT = 150 K
c = 23.8868 (11) Å0.21 × 0.16 × 0.13 mm
β = 93.507 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5101 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4955 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.761Rint = 0.048
168526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
5101 reflectionsΔρmin = 0.43 e Å3
349 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74839 (4)0.45706 (4)0.440644 (18)0.03720 (14)
S20.91673 (4)0.22863 (4)0.250089 (17)0.03013 (13)
O10.79745 (12)0.41437 (12)0.38233 (5)0.0376 (3)
O20.79715 (13)0.36599 (15)0.47877 (6)0.0483 (4)
O30.77959 (14)0.58320 (14)0.44931 (6)0.0477 (3)
O40.85386 (12)0.11380 (11)0.23933 (6)0.0414 (3)
O51.01947 (11)0.23485 (13)0.29196 (6)0.0401 (3)
N10.81003 (12)0.32611 (12)0.26881 (6)0.0279 (3)
N90.26066 (13)0.12277 (12)0.33533 (6)0.0274 (3)
H90.183 (2)0.1403 (18)0.3313 (8)0.029 (5)*
C10.33412 (15)0.27199 (16)0.26254 (7)0.0323 (4)
H1A0.26220.24880.23620.039*
H1B0.31340.35080.28060.039*
C20.45468 (16)0.28622 (18)0.23078 (8)0.0364 (4)
H2A0.46020.21730.20400.044*
H2B0.44970.36360.20900.044*
C30.57387 (15)0.28803 (15)0.26999 (7)0.0309 (4)
H30.56290.35360.29860.037*
C40.59305 (14)0.16623 (15)0.30117 (7)0.0289 (3)
H4A0.62250.10270.27530.035*
H4B0.65850.17610.33230.035*
C4A0.47025 (14)0.12658 (14)0.32400 (6)0.0256 (3)
C50.52340 (16)0.03680 (15)0.40220 (7)0.0297 (3)
H50.61270.03740.39960.036*
C5A0.44685 (15)0.04014 (13)0.36752 (6)0.0252 (3)
C60.46753 (17)0.11183 (16)0.44023 (7)0.0358 (4)
H60.51920.16390.46400.043*
C70.33587 (17)0.11239 (17)0.44440 (8)0.0365 (4)
H70.29960.16600.47040.044*
C80.25776 (16)0.03621 (15)0.41124 (7)0.0314 (4)
H80.16860.03590.41440.038*
C8A0.31414 (15)0.03974 (14)0.37326 (6)0.0258 (3)
C9A0.35577 (14)0.17487 (14)0.30590 (7)0.0268 (3)
C100.68646 (14)0.32474 (15)0.23591 (7)0.0292 (3)
H10A0.69180.26660.20430.035*
H10B0.67030.40760.21990.035*
C110.85600 (16)0.44698 (15)0.28894 (7)0.0308 (3)
H11A0.85170.50550.25710.037*
H11B0.94600.43940.30260.037*
C120.78106 (16)0.49826 (16)0.33539 (7)0.0324 (4)
H12A0.81260.58110.34630.039*
H12B0.69030.50480.32290.039*
C130.58318 (17)0.44288 (16)0.43154 (7)0.0321 (4)
C140.52784 (17)0.32846 (16)0.43769 (7)0.0328 (4)
H140.57890.25820.44620.039*
C150.39759 (17)0.31795 (16)0.43132 (7)0.0332 (4)
H150.35940.23990.43610.040*
C160.32127 (17)0.41895 (16)0.41813 (7)0.0344 (4)
C170.37962 (19)0.53315 (17)0.41211 (8)0.0411 (4)
H170.32880.60330.40320.049*
C180.50931 (19)0.54588 (16)0.41887 (8)0.0393 (4)
H180.54770.62410.41490.047*
C190.17940 (19)0.40483 (19)0.41047 (9)0.0445 (4)
H19A0.15320.40900.37040.067*
H19B0.15450.32520.42560.067*
H19C0.13830.47110.43040.067*
C200.97518 (15)0.27802 (14)0.18609 (7)0.0283 (3)
C211.05368 (15)0.38076 (15)0.18504 (7)0.0305 (3)
H211.07430.42610.21830.037*
C221.10105 (16)0.41571 (17)0.13478 (8)0.0346 (4)
H221.15390.48620.13380.041*
C231.07314 (16)0.34982 (18)0.08539 (7)0.0363 (4)
C240.99322 (17)0.24845 (17)0.08763 (8)0.0374 (4)
H240.97250.20280.05440.045*
C250.94355 (16)0.21302 (16)0.13735 (8)0.0338 (4)
H250.88800.14450.13810.041*
C261.1295 (2)0.3854 (2)0.03154 (9)0.0509 (5)
H26A1.06760.37030.00000.076*
H26B1.20580.33630.02670.076*
H26C1.15180.47280.03270.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0384 (2)0.0419 (3)0.0316 (2)0.00848 (18)0.00467 (17)0.00134 (17)
S20.0248 (2)0.0244 (2)0.0415 (2)0.00333 (14)0.00396 (16)0.00732 (15)
O10.0419 (7)0.0361 (7)0.0354 (6)0.0008 (5)0.0079 (5)0.0068 (5)
O20.0413 (7)0.0644 (9)0.0388 (7)0.0054 (6)0.0007 (6)0.0135 (6)
O30.0521 (8)0.0474 (8)0.0444 (7)0.0204 (7)0.0113 (6)0.0087 (6)
O40.0390 (7)0.0218 (6)0.0642 (8)0.0015 (5)0.0102 (6)0.0080 (5)
O50.0288 (6)0.0466 (8)0.0446 (7)0.0086 (5)0.0008 (5)0.0120 (6)
N10.0234 (6)0.0258 (7)0.0348 (7)0.0009 (5)0.0039 (5)0.0044 (5)
N90.0202 (6)0.0273 (7)0.0347 (7)0.0013 (5)0.0028 (5)0.0003 (5)
C10.0244 (8)0.0316 (9)0.0406 (9)0.0017 (6)0.0001 (7)0.0076 (7)
C20.0299 (9)0.0392 (10)0.0399 (9)0.0004 (7)0.0012 (7)0.0130 (7)
C30.0254 (8)0.0277 (8)0.0397 (9)0.0013 (6)0.0035 (6)0.0087 (7)
C40.0231 (7)0.0272 (8)0.0367 (8)0.0014 (6)0.0032 (6)0.0078 (6)
C4A0.0251 (7)0.0213 (7)0.0305 (8)0.0009 (6)0.0022 (6)0.0014 (6)
C50.0291 (8)0.0261 (8)0.0342 (8)0.0000 (6)0.0032 (6)0.0017 (6)
C5A0.0263 (8)0.0203 (7)0.0292 (8)0.0031 (6)0.0041 (6)0.0023 (6)
C60.0398 (9)0.0306 (9)0.0370 (9)0.0007 (7)0.0024 (7)0.0077 (7)
C70.0417 (10)0.0322 (9)0.0365 (9)0.0075 (7)0.0092 (7)0.0056 (7)
C80.0294 (8)0.0302 (8)0.0351 (9)0.0067 (6)0.0070 (7)0.0034 (6)
C8A0.0266 (8)0.0217 (7)0.0294 (8)0.0024 (6)0.0030 (6)0.0049 (6)
C9A0.0237 (7)0.0252 (8)0.0317 (8)0.0020 (6)0.0020 (6)0.0002 (6)
C100.0250 (8)0.0292 (8)0.0336 (8)0.0012 (6)0.0025 (6)0.0076 (6)
C110.0299 (8)0.0283 (8)0.0347 (8)0.0031 (6)0.0063 (6)0.0035 (6)
C120.0338 (8)0.0286 (8)0.0350 (8)0.0012 (7)0.0046 (7)0.0037 (7)
C130.0396 (9)0.0304 (8)0.0267 (8)0.0045 (7)0.0053 (7)0.0013 (6)
C140.0405 (9)0.0257 (8)0.0323 (8)0.0002 (7)0.0024 (7)0.0004 (6)
C150.0422 (9)0.0247 (8)0.0325 (8)0.0039 (7)0.0008 (7)0.0021 (6)
C160.0408 (9)0.0308 (9)0.0314 (8)0.0003 (7)0.0006 (7)0.0035 (7)
C170.0469 (11)0.0262 (9)0.0500 (11)0.0044 (7)0.0014 (8)0.0023 (7)
C180.0503 (11)0.0253 (9)0.0428 (10)0.0047 (7)0.0074 (8)0.0013 (7)
C190.0429 (10)0.0385 (10)0.0513 (11)0.0006 (8)0.0037 (8)0.0032 (8)
C200.0227 (7)0.0241 (8)0.0382 (9)0.0043 (6)0.0032 (6)0.0000 (6)
C210.0270 (8)0.0272 (8)0.0375 (9)0.0006 (6)0.0031 (6)0.0041 (6)
C220.0288 (8)0.0327 (9)0.0428 (9)0.0009 (7)0.0070 (7)0.0011 (7)
C230.0312 (8)0.0413 (10)0.0367 (9)0.0114 (7)0.0052 (7)0.0007 (7)
C240.0337 (9)0.0375 (9)0.0404 (9)0.0098 (7)0.0010 (7)0.0104 (8)
C250.0274 (8)0.0263 (8)0.0475 (10)0.0029 (6)0.0007 (7)0.0063 (7)
C260.0508 (12)0.0624 (14)0.0406 (10)0.0102 (10)0.0119 (9)0.0045 (9)
Geometric parameters (Å, º) top
S1—O11.5854 (13)C9A—C11.487 (2)
S1—O21.4209 (15)C9A—C4A1.365 (2)
S1—O31.4234 (15)C10—H10A0.9900
S1—C131.7536 (18)C10—H10B0.9900
S2—O41.4308 (13)C11—C121.509 (2)
S2—O51.4325 (13)C11—H11A0.9900
S2—N11.6305 (14)C11—H11B0.9900
S2—C201.7672 (17)C12—H12A0.9900
O1—C121.448 (2)C12—H12B0.9900
N1—C101.483 (2)C13—C141.387 (2)
N1—C111.472 (2)C13—C181.388 (3)
N9—C8A1.376 (2)C14—C151.381 (3)
N9—C9A1.383 (2)C14—H140.9500
N9—H90.84 (2)C15—C161.388 (3)
C1—C21.530 (2)C15—H150.9500
C1—H1A0.9900C16—C171.398 (3)
C1—H1B0.9900C16—C191.508 (3)
C2—C31.523 (2)C17—C181.378 (3)
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—H180.9500
C3—C41.527 (2)C19—H19A0.9800
C3—C101.536 (2)C19—H19B0.9800
C3—H31.0000C19—H19C0.9800
C4—C4A1.502 (2)C20—C211.393 (2)
C4—H4A0.9900C20—C251.385 (2)
C4—H4B0.9900C21—C221.382 (2)
C5—C61.381 (2)C21—H210.9500
C5—H50.9500C22—C231.396 (3)
C5A—C4A1.434 (2)C22—H220.9500
C5A—C51.400 (2)C23—C241.392 (3)
C6—C71.401 (3)C23—C261.501 (3)
C6—H60.9500C24—C251.382 (3)
C7—C81.384 (3)C24—H240.9500
C7—H70.9500C25—H250.9500
C8—H80.9500C26—H26A0.9800
C8A—C5A1.418 (2)C26—H26B0.9800
C8A—C81.388 (2)C26—H26C0.9800
O1—S1—C13104.01 (7)N1—C10—C3114.07 (13)
O2—S1—O1103.50 (8)N1—C10—H10A108.7
O2—S1—O3120.48 (9)N1—C10—H10B108.7
O2—S1—C13109.74 (8)C3—C10—H10A108.7
O3—S1—O1108.95 (8)C3—C10—H10B108.7
O3—S1—C13108.84 (9)H10A—C10—H10B107.6
O4—S2—O5119.39 (8)N1—C11—C12113.12 (13)
O4—S2—N1107.19 (7)N1—C11—H11A109.0
O4—S2—C20107.05 (8)N1—C11—H11B109.0
O5—S2—N1106.59 (8)C12—C11—H11A109.0
O5—S2—C20107.42 (8)C12—C11—H11B109.0
N1—S2—C20108.90 (7)H11A—C11—H11B107.8
C12—O1—S1117.76 (11)O1—C12—C11107.04 (14)
C10—N1—S2116.74 (11)O1—C12—H12A110.3
C11—N1—S2116.77 (10)O1—C12—H12B110.3
C11—N1—C10116.39 (13)C11—C12—H12A110.3
C8A—N9—C9A108.75 (13)C11—C12—H12B110.3
C8A—N9—H9125.7 (13)H12A—C12—H12B108.6
C9A—N9—H9125.5 (13)C14—C13—S1119.29 (14)
C2—C1—H1A110.0C14—C13—C18120.80 (17)
C2—C1—H1B110.0C18—C13—S1119.91 (14)
C9A—C1—C2108.65 (13)C13—C14—H14120.4
C9A—C1—H1A110.0C15—C14—C13119.13 (16)
C9A—C1—H1B110.0C15—C14—H14120.4
H1B—C1—H1A108.3C14—C15—C16121.43 (16)
C1—C2—H2A109.1C14—C15—H15119.3
C1—C2—H2B109.1C16—C15—H15119.3
C3—C2—C1112.28 (14)C15—C16—C17118.20 (17)
C3—C2—H2A109.1C15—C16—C19120.47 (16)
C3—C2—H2B109.1C17—C16—C19121.33 (17)
H2A—C2—H2B107.9C16—C17—H17119.4
C2—C3—C4111.63 (14)C18—C17—C16121.29 (17)
C2—C3—C10108.43 (14)C18—C17—H17119.4
C2—C3—H3107.7C13—C18—H18120.4
C4—C3—C10113.59 (13)C17—C18—C13119.14 (17)
C4—C3—H3107.7C17—C18—H18120.4
C10—C3—H3107.7C16—C19—H19C109.5
C3—C4—H4A109.8C16—C19—H19B109.5
C3—C4—H4B109.8C16—C19—H19A109.5
C4A—C4—C3109.53 (13)H19C—C19—H19B109.5
C4A—C4—H4A109.8H19C—C19—H19A109.5
C4A—C4—H4B109.8H19B—C19—H19A109.5
H4A—C4—H4B108.2C21—C20—S2119.98 (13)
C5A—C4A—C4129.99 (14)C25—C20—S2119.51 (13)
C9A—C4A—C4122.95 (14)C25—C20—C21120.51 (16)
C9A—C4A—C5A107.03 (13)C20—C21—H21120.5
C5A—C5—H5120.4C22—C21—C20118.96 (16)
C6—C5—C5A119.20 (15)C22—C21—H21120.5
C6—C5—H5120.4C21—C22—C23121.57 (17)
C5—C5A—C4A134.57 (14)C21—C22—H22119.2
C5—C5A—C8A118.71 (14)C23—C22—H22119.2
C8A—C5A—C4A106.72 (13)C22—C23—C26121.15 (18)
C5—C6—C7121.07 (16)C24—C23—C22118.13 (16)
C5—C6—H6119.5C24—C23—C26120.71 (18)
C7—C6—H6119.5C23—C24—H24119.4
C6—C7—H7119.4C25—C24—C23121.14 (16)
C8—C7—C6121.13 (15)C25—C24—H24119.4
C8—C7—H7119.4C20—C25—H25120.2
C7—C8—C8A117.73 (15)C24—C25—C20119.66 (16)
C7—C8—H8121.1C24—C25—H25120.2
C8A—C8—H8121.1C23—C26—H26B109.5
N9—C8A—C5A107.66 (13)C23—C26—H26C109.5
N9—C8A—C8130.19 (15)C23—C26—H26A109.5
C8—C8A—C5A122.14 (15)H26B—C26—H26A109.5
N9—C9A—C1124.01 (14)H26B—C26—H26C109.5
C4A—C9A—N9109.84 (14)H26C—C26—H26A109.5
C4A—C9A—C1126.12 (14)
O2—S1—O1—C12170.46 (12)C5—C5A—C4A—C9A179.36 (17)
O3—S1—O1—C1241.11 (15)C8A—C5A—C4A—C4178.54 (16)
C13—S1—O1—C1274.85 (13)C8A—C5A—C4A—C9A0.63 (17)
O1—S1—C13—C1481.47 (14)C4A—C5A—C5—C6179.06 (17)
O1—S1—C13—C1899.17 (15)C8A—C5A—C5—C61.0 (2)
O2—S1—C13—C1428.72 (16)C5—C6—C7—C81.2 (3)
O2—S1—C13—C18150.64 (15)C6—C7—C8—C8A0.7 (3)
O3—S1—C13—C14162.50 (13)N9—C8A—C5A—C4A0.49 (16)
O3—S1—C13—C1816.86 (17)N9—C8A—C5A—C5179.50 (14)
O4—S2—N1—C1043.26 (13)C8—C8A—C5A—C4A178.62 (14)
O4—S2—N1—C11172.49 (12)C8—C8A—C5A—C51.4 (2)
O5—S2—N1—C10172.17 (11)N9—C8A—C8—C7179.43 (16)
O5—S2—N1—C1143.58 (13)C5A—C8A—C8—C70.5 (2)
C20—S2—N1—C1072.23 (12)N9—C9A—C1—C2167.88 (15)
C20—S2—N1—C1172.03 (13)C4A—C9A—C1—C214.3 (2)
O4—S2—C20—C21172.61 (13)N9—C9A—C4A—C4178.63 (14)
O4—S2—C20—C256.62 (15)N9—C9A—C4A—C5A0.54 (18)
O5—S2—C20—C2143.26 (15)C1—C9A—C4A—C40.6 (3)
O5—S2—C20—C25135.98 (13)C1—C9A—C4A—C5A177.54 (15)
N1—S2—C20—C2171.81 (14)N1—C11—C12—O162.68 (17)
N1—S2—C20—C25108.95 (13)S1—C13—C14—C15179.03 (13)
S1—O1—C12—C11169.71 (11)C18—C13—C14—C150.3 (3)
S2—N1—C10—C3116.55 (14)S1—C13—C18—C17179.70 (14)
C11—N1—C10—C399.06 (16)C14—C13—C18—C170.4 (3)
S2—N1—C11—C12144.48 (12)C13—C14—C15—C161.0 (3)
C10—N1—C11—C1271.14 (18)C14—C15—C16—C170.9 (3)
C9A—N9—C8A—C5A0.17 (17)C14—C15—C16—C19179.01 (16)
C9A—N9—C8A—C8178.84 (16)C15—C16—C17—C180.2 (3)
C8A—N9—C9A—C1177.89 (15)C19—C16—C17—C18179.71 (18)
C8A—N9—C9A—C4A0.24 (18)C16—C17—C18—C130.4 (3)
C9A—C1—C2—C344.4 (2)S2—C20—C21—C22178.25 (13)
C1—C2—C3—C463.82 (19)C25—C20—C21—C221.0 (2)
C1—C2—C3—C10170.31 (14)S2—C20—C25—C24177.40 (13)
C2—C3—C4—C4A46.36 (19)C21—C20—C25—C241.8 (2)
C10—C3—C4—C4A169.34 (14)C20—C21—C22—C230.7 (3)
C2—C3—C10—N1178.08 (14)C21—C22—C23—C241.4 (3)
C4—C3—C10—N153.4 (2)C21—C22—C23—C26177.40 (17)
C3—C4—C4A—C5A161.21 (16)C22—C23—C24—C250.6 (3)
C3—C4—C4A—C9A16.4 (2)C26—C23—C24—C25178.28 (17)
C5A—C5—C6—C70.3 (3)C23—C24—C25—C201.1 (3)
C5—C5A—C4A—C41.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg5 are the centroids of the C4A/C5A/C8A/N9/C9A and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N9—H9···O5i0.84 (2)2.18 (2)2.9561 (19)154.1 (18)
C21—H21···O4ii0.952.383.230 (2)148
C8—H8···Cg5iii0.952.813.5127 (18)131
C10—H10B···Cg2iv0.992.583.5538 (18)168
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg5 are the centroids of the C4A/C5A/C8A/N9/C9A and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N9—H9···O5i0.84 (2)2.18 (2)2.9561 (19)154.1 (18)
C21—H21···O4ii0.952.383.230 (2)148
C8—H8···Cg5iii0.952.813.5127 (18)131
C10—H10B···Cg2iv0.992.583.5538 (18)168
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationÇaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, J., Lou, J., Liu, T., Wu, R., Dong, X., He, Q., Yang, B. & Hu, Y. (2009). Arch. Pharm. 342, 165–172.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGündoğdu, C., Göçmentürk, M., Ergün, Y., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1470–o1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Göçmentürk, M. & Ergün, Y. (2009). Acta Cryst. E65, o1702–o1703.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMooradian, A., Dupont, P. E., Hlavac, A. G., Aceto, M. D. & Pearl, J. (1977). J. Med. Chem. 20, 487–492.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRomeo, G., Materia, L., Pittalá, V., Modica, M., Salerno, L., Siracusa, M., Russo, F. & Minneman, K. P. (2006). Bioorg. Med. Chem. 14, 5211–5219.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUludağ, N., Öztürk, A., Hökelek, T. & Erdoğan, Ü. I. (2009). Acta Cryst. E65, o595–o596.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1797-o1798
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds