organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl­phenyl­sulfon­yl)-2-{[3-methyl-4-(2,2,2-tri­fluoro­eth­­oxy)pyridin-2-yl]methyl­sulfan­yl}-1H-1,3-benzimidazole

aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 5 November 2013; accepted 22 November 2013; online 30 November 2013)

In the title compound, C23H20F3N3O3S2, the benzo­imidazole unit makes dihedral angles of 5.02 (1) and 76.42 (1)°, respectively, with the pyridine and methyl­benzene rings; the dihedral angle between the pyridine and methyl­benzene rings is 72.19 (1)°. In the crystal, mol­ecules are connected by weak C—H⋯F, C—H⋯O and C—H⋯N hydrogen bonds. Weak C—H⋯π inter­actions and ππ stacking [centroid–centroid distance = 3.6485 (14) Å] are also observed. The overall packing shows a three-dimensional architecture. The crystal structure contains a void of 51 Å3, but no solvent mol­ecule (hexane or ethyl acetate) is located within it.

Related literature

For the biological activity of benzo­imidazole derivatives, see: Bansal & Silakari (2012[Bansal, Y. & Silakari, O. (2012). Bioorg. Med. Chem. 20, 6208-6236.]); Ates-Alagoz et al. (2004[Ates-Alagoz, Z., Can-Eke, B., Coban, T., Iscan, M. & Buyukbingol, E. (2004). Arch. Pharm. 337 188-192.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20F3N3O3S2

  • Mr = 507.56

  • Triclinic, [P \overline 1]

  • a = 9.1129 (6) Å

  • b = 9.5116 (6) Å

  • c = 13.7914 (8) Å

  • α = 90.978 (3)°

  • β = 101.749 (2)°

  • γ = 93.449 (3)°

  • V = 1167.72 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.56 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.20 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.615, Tmax = 0.628

  • 13085 measured reflections

  • 3779 independent reflections

  • 3301 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.144

  • S = 1.08

  • 3779 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the imidazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F2i 0.93 2.49 3.363 (4) 156
C15—H15B⋯O3ii 0.97 2.52 3.420 (3) 155
C18—H18⋯N3iii 0.93 2.60 3.336 (3) 136
C18—H18⋯Cg1 0.93 2.83 3.463 (3) 126
Symmetry codes: (i) x-1, y-1, z-1; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: Mercury.

Supporting information


Comment top

The benzimidazole derivatives acts as antioxidant (Ates-Alagoz et al., 2004) and show biological activities (Bansal & Silakari, 2012).

The ORTEP of the title molecules is shown in figure 1. the benzoimidazole moiety (N2-N3/C1-C7) makes a dihedral angle of 5.02 (1)° and 76.42 (1)° with pyridin ring (N1/C9-C13) and phenyl ring (C17-C22), respectively. The dihedral angle betwen the pyridin ring and phenyl moiety is 72.19 (1)°.

The molecules in the crystal structure are connected with C—H···F, C—H···O, C—H···N and C—H···O intermolecular hydrogen bonds (Fig. 2 & Table 1). The C2—H2···F2 forms infinite chains along b-axis. C15—H15B···O3 shows R22(26) ring motif while C18—H18···N3 shows R22(14) ring motif (Bernstein et al., 1995). Also, short contacts C—H···π and π···π [centroid-centroid distance of 3.6485 (14) Å] is observed. Overall packing of molecules depicts three dimesional architecture. All the above interactions of the molecule generates three-dimensional architecture (Fig. 2).

Related literature top

For the biological activity of benzoimidazole derivatives, see: Bansal & Silakari (2012); Ates-Alagoz et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 2-(((3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl)methyl)thio)-1H-benzo[d] imidazole (10 mmol) and tetrabutyl ammonium bromide (1 mmol) in toluene (20 ml), a solution of 50% KOH (25 ml) was added at 0°C followed by the addition of toluenesulfonyl chloride (12 mmol). The reaction mixture was allowed for vigorous stirring at room temperature for 6 h and the reaction progress was monitored by TLC. After the completion of the reaction, organic phase was separated from the aqueous phase and the organic phase was washed with water (20 mL) and brine (20 mL), dried over anhydrous sodium sulfate and concentrated to give crude product 2-(3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-ylthio)-1-tosyl-1H-benzo[d] imidazole which was purified by column chromatography over silica gel using hexane-EtOAc (6:4) mixture as eluent.

Refinement top

All the H atoms were fixed geometrically (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for mehtyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecule, viewed along the crystallographic c axis. Dotted lines indicate hydrogen bonds and short contacts involved.
1-(4-Methylphenylsulfonyl)-2-{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methylsulfanyl}-1H-1,3-benzimidazole top
Crystal data top
C23H20F3N3O3S2Z = 2
Mr = 507.56F(000) = 524
Triclinic, P1Dx = 1.444 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 9.1129 (6) ÅCell parameters from 3779 reflections
b = 9.5116 (6) Åθ = 3.3–64.3°
c = 13.7914 (8) ŵ = 2.56 mm1
α = 90.978 (3)°T = 296 K
β = 101.749 (2)°Block, colorless
γ = 93.449 (3)°0.21 × 0.20 × 0.20 mm
V = 1167.72 (13) Å3
Data collection top
Bruker X8 Proteum
diffractometer
3779 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode3301 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.049
Detector resolution: 10.7 pixels mm-1θmax = 64.3°, θmin = 3.3°
\ϕ and \ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 109
Tmin = 0.615, Tmax = 0.628l = 1516
13085 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0866P)2 + 0.3269P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3779 reflectionsΔρmax = 0.32 e Å3
310 parametersΔρmin = 0.44 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (2)
Crystal data top
C23H20F3N3O3S2γ = 93.449 (3)°
Mr = 507.56V = 1167.72 (13) Å3
Triclinic, P1Z = 2
a = 9.1129 (6) ÅCu Kα radiation
b = 9.5116 (6) ŵ = 2.56 mm1
c = 13.7914 (8) ÅT = 296 K
α = 90.978 (3)°0.21 × 0.20 × 0.20 mm
β = 101.749 (2)°
Data collection top
Bruker X8 Proteum
diffractometer
3779 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3301 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.628Rint = 0.049
13085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
3779 reflectionsΔρmin = 0.44 e Å3
310 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12891 (6)0.82368 (6)0.42720 (4)0.0417 (2)
S20.02074 (7)0.62948 (6)0.21001 (4)0.0407 (2)
F10.4537 (4)1.3138 (6)1.0004 (3)0.187 (2)
F20.6843 (3)1.3482 (4)1.00123 (18)0.1404 (13)
F30.5875 (6)1.1445 (5)1.0016 (2)0.197 (2)
O10.4077 (2)1.1690 (2)0.82128 (13)0.0587 (7)
O20.0894 (2)0.6391 (2)0.12112 (12)0.0574 (6)
O30.1428 (2)0.7333 (2)0.23364 (15)0.0602 (7)
N10.3136 (2)1.0313 (2)0.52852 (15)0.0472 (7)
N20.0682 (2)0.6339 (2)0.30437 (14)0.0397 (6)
N30.1048 (2)0.6528 (2)0.46116 (14)0.0396 (6)
C10.1932 (2)0.5419 (2)0.30940 (17)0.0377 (7)
C20.2849 (3)0.4533 (3)0.23902 (19)0.0510 (8)
C30.4006 (3)0.3771 (3)0.2697 (2)0.0596 (9)
C40.4223 (3)0.3906 (3)0.3663 (2)0.0565 (9)
C50.3293 (3)0.4789 (3)0.4361 (2)0.0500 (9)
C60.2124 (2)0.5556 (3)0.40671 (17)0.0381 (7)
C70.0205 (2)0.6966 (2)0.40053 (16)0.0360 (7)
C80.1196 (3)0.8619 (3)0.55503 (17)0.0412 (7)
C90.2372 (2)0.9781 (2)0.59468 (17)0.0388 (7)
C100.2641 (2)1.0241 (3)0.69378 (17)0.0403 (7)
C110.3797 (3)1.1290 (3)0.72328 (18)0.0417 (7)
C120.4595 (3)1.1839 (3)0.65641 (19)0.0464 (8)
C130.4215 (3)1.1312 (3)0.5606 (2)0.0498 (8)
C140.1751 (3)0.9647 (4)0.7657 (2)0.0601 (10)
C150.5340 (3)1.2630 (3)0.8564 (2)0.0569 (9)
C160.5639 (5)1.2654 (5)0.9644 (3)0.0892 (14)
C170.0890 (2)0.4606 (3)0.21438 (16)0.0382 (7)
C180.1245 (3)0.3915 (3)0.30229 (18)0.0453 (8)
C190.1859 (3)0.2627 (3)0.3023 (2)0.0546 (9)
C200.2126 (3)0.2022 (3)0.2166 (3)0.0589 (10)
C210.1750 (4)0.2735 (3)0.1284 (2)0.0635 (11)
C220.1128 (3)0.4017 (3)0.12668 (19)0.0535 (9)
C230.2827 (5)0.0626 (4)0.2177 (4)0.0963 (18)
H20.269800.445300.174500.0610*
H30.465000.315700.225000.0710*
H40.501700.338600.384400.0680*
H50.344500.486700.500600.0600*
H8A0.020800.891300.558700.0490*
H8B0.138100.778500.594000.0490*
H120.536201.254000.675400.0560*
H130.475001.168000.515100.0600*
H14A0.202901.017200.827500.0900*
H14B0.195700.867700.776400.0900*
H14C0.069900.971200.739300.0900*
H15A0.514201.356600.832300.0680*
H15B0.620401.232000.832800.0680*
H180.107400.431300.360700.0540*
H190.209800.215500.361300.0650*
H210.192400.233900.070000.0760*
H220.086900.448300.067500.0640*
H23A0.293400.024500.282600.1440*
H23B0.379700.075800.200900.1440*
H23C0.219600.001500.170200.1440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0434 (4)0.0409 (4)0.0391 (4)0.0068 (2)0.0078 (2)0.0072 (2)
S20.0505 (4)0.0388 (4)0.0338 (3)0.0013 (3)0.0122 (2)0.0017 (2)
F10.139 (3)0.308 (6)0.117 (2)0.066 (3)0.069 (2)0.115 (3)
F20.122 (2)0.206 (3)0.0717 (15)0.084 (2)0.0018 (13)0.0583 (17)
F30.259 (5)0.185 (4)0.094 (2)0.070 (3)0.066 (3)0.061 (2)
O10.0533 (10)0.0744 (14)0.0421 (10)0.0183 (9)0.0034 (8)0.0186 (9)
O20.0747 (12)0.0635 (12)0.0331 (9)0.0219 (10)0.0038 (8)0.0065 (8)
O30.0721 (12)0.0507 (11)0.0633 (12)0.0208 (9)0.0352 (10)0.0118 (9)
N10.0501 (11)0.0462 (12)0.0438 (11)0.0070 (9)0.0098 (9)0.0036 (9)
N20.0426 (10)0.0418 (11)0.0339 (10)0.0063 (8)0.0092 (8)0.0078 (8)
N30.0418 (10)0.0427 (11)0.0338 (10)0.0023 (8)0.0087 (8)0.0032 (8)
C10.0346 (11)0.0383 (13)0.0386 (12)0.0019 (9)0.0054 (9)0.0037 (9)
C20.0505 (14)0.0557 (16)0.0422 (13)0.0100 (12)0.0037 (11)0.0098 (11)
C30.0480 (14)0.0624 (18)0.0596 (17)0.0157 (13)0.0031 (12)0.0074 (13)
C40.0434 (14)0.0596 (18)0.0630 (17)0.0142 (12)0.0072 (12)0.0062 (13)
C50.0453 (13)0.0576 (17)0.0474 (14)0.0037 (12)0.0122 (11)0.0035 (12)
C60.0349 (11)0.0380 (13)0.0402 (12)0.0012 (9)0.0051 (9)0.0012 (9)
C70.0382 (11)0.0345 (12)0.0337 (11)0.0033 (9)0.0041 (9)0.0052 (9)
C80.0421 (12)0.0397 (13)0.0391 (12)0.0046 (10)0.0050 (10)0.0058 (10)
C90.0373 (11)0.0373 (13)0.0393 (12)0.0038 (10)0.0018 (9)0.0032 (9)
C100.0354 (11)0.0415 (13)0.0414 (13)0.0004 (10)0.0025 (9)0.0026 (10)
C110.0372 (12)0.0434 (14)0.0399 (12)0.0016 (10)0.0017 (9)0.0068 (10)
C120.0426 (13)0.0429 (14)0.0496 (14)0.0042 (10)0.0022 (11)0.0040 (11)
C130.0526 (14)0.0480 (15)0.0482 (14)0.0080 (12)0.0125 (11)0.0008 (11)
C140.0582 (16)0.074 (2)0.0444 (15)0.0148 (14)0.0081 (12)0.0046 (13)
C150.0489 (14)0.0590 (18)0.0558 (16)0.0104 (13)0.0002 (12)0.0147 (13)
C160.084 (2)0.116 (3)0.057 (2)0.039 (2)0.0053 (18)0.025 (2)
C170.0359 (11)0.0426 (13)0.0349 (11)0.0001 (9)0.0051 (9)0.0004 (9)
C180.0425 (12)0.0534 (16)0.0389 (13)0.0009 (11)0.0068 (10)0.0041 (11)
C190.0399 (13)0.0563 (17)0.0666 (18)0.0007 (12)0.0081 (12)0.0198 (14)
C200.0427 (14)0.0437 (16)0.093 (2)0.0019 (11)0.0202 (14)0.0095 (15)
C210.0745 (19)0.0541 (18)0.0675 (19)0.0144 (15)0.0257 (15)0.0066 (14)
C220.0694 (17)0.0555 (17)0.0374 (13)0.0129 (14)0.0126 (12)0.0010 (11)
C230.093 (3)0.050 (2)0.160 (4)0.0240 (19)0.052 (3)0.022 (2)
Geometric parameters (Å, º) top
S1—C71.742 (2)C15—C161.458 (5)
S1—C81.814 (2)C17—C181.378 (3)
S2—O21.4256 (18)C17—C221.386 (3)
S2—O31.424 (2)C18—C191.377 (4)
S2—N21.669 (2)C19—C201.378 (5)
S2—C171.755 (3)C20—C211.394 (5)
F1—C161.311 (6)C20—C231.507 (5)
F2—C161.318 (6)C21—C221.374 (4)
F3—C161.279 (6)C2—H20.9300
O1—C111.366 (3)C3—H30.9300
O1—C151.412 (3)C4—H40.9300
N1—C91.344 (3)C5—H50.9300
N1—C131.327 (3)C8—H8A0.9700
N2—C11.408 (3)C8—H8B0.9700
N2—C71.418 (3)C12—H120.9300
N3—C61.396 (3)C13—H130.9300
N3—C71.303 (3)C14—H14A0.9600
C1—C21.381 (3)C14—H14B0.9600
C1—C61.393 (3)C14—H14C0.9600
C2—C31.384 (4)C15—H15A0.9700
C3—C41.391 (4)C15—H15B0.9700
C4—C51.380 (4)C18—H180.9300
C5—C61.387 (4)C19—H190.9300
C8—C91.506 (3)C21—H210.9300
C9—C101.396 (3)C22—H220.9300
C10—C111.399 (4)C23—H23A0.9600
C10—C141.501 (4)C23—H23B0.9600
C11—C121.377 (4)C23—H23C0.9600
C12—C131.374 (4)
C7—S1—C897.78 (12)C18—C19—C20121.4 (3)
O2—S2—O3119.76 (12)C19—C20—C21118.7 (3)
O2—S2—N2107.33 (10)C19—C20—C23121.0 (4)
O2—S2—C17108.93 (11)C21—C20—C23120.3 (4)
O3—S2—N2105.97 (11)C20—C21—C22120.8 (3)
O3—S2—C17109.92 (11)C17—C22—C21119.1 (2)
N2—S2—C17103.68 (10)C1—C2—H2122.00
C11—O1—C15117.2 (2)C3—C2—H2122.00
C9—N1—C13117.5 (2)C2—C3—H3119.00
S2—N2—C1122.71 (16)C4—C3—H3119.00
S2—N2—C7129.85 (15)C3—C4—H4119.00
C1—N2—C7105.71 (17)C5—C4—H4119.00
C6—N3—C7105.98 (18)C4—C5—H5121.00
N2—C1—C2131.7 (2)C6—C5—H5121.00
N2—C1—C6105.12 (19)S1—C8—H8A110.00
C2—C1—C6123.2 (2)S1—C8—H8B110.00
C1—C2—C3116.4 (2)C9—C8—H8A110.00
C2—C3—C4121.2 (3)C9—C8—H8B110.00
C3—C4—C5121.9 (3)H8A—C8—H8B108.00
C4—C5—C6117.7 (2)C11—C12—H12121.00
N3—C6—C1110.94 (19)C13—C12—H12121.00
N3—C6—C5129.4 (2)N1—C13—H13118.00
C1—C6—C5119.7 (2)C12—C13—H13118.00
S1—C7—N2121.46 (15)C10—C14—H14A109.00
S1—C7—N3126.22 (17)C10—C14—H14B109.00
N2—C7—N3112.24 (18)C10—C14—H14C109.00
S1—C8—C9108.03 (17)H14A—C14—H14B109.00
N1—C9—C8115.2 (2)H14A—C14—H14C109.00
N1—C9—C10123.44 (19)H14B—C14—H14C110.00
C8—C9—C10121.35 (19)O1—C15—H15A110.00
C9—C10—C11116.4 (2)O1—C15—H15B110.00
C9—C10—C14122.4 (2)C16—C15—H15A110.00
C11—C10—C14121.2 (2)C16—C15—H15B110.00
O1—C11—C10115.5 (2)H15A—C15—H15B108.00
O1—C11—C12123.8 (2)C17—C18—H18121.00
C10—C11—C12120.8 (2)C19—C18—H18121.00
C11—C12—C13117.5 (3)C18—C19—H19119.00
N1—C13—C12124.4 (3)C20—C19—H19119.00
O1—C15—C16108.1 (3)C20—C21—H21120.00
F1—C16—F2106.4 (4)C22—C21—H21120.00
F1—C16—F3106.5 (4)C17—C22—H22120.00
F1—C16—C15112.6 (4)C21—C22—H22120.00
F2—C16—F3106.4 (4)C20—C23—H23A109.00
F2—C16—C15110.7 (3)C20—C23—H23B109.00
F3—C16—C15113.7 (4)C20—C23—H23C109.00
S2—C17—C18121.46 (19)H23A—C23—H23B110.00
S2—C17—C22117.46 (19)H23A—C23—H23C109.00
C18—C17—C22121.0 (3)H23B—C23—H23C109.00
C17—C18—C19119.0 (2)
C8—S1—C7—N2176.89 (17)N2—C1—C6—N30.4 (2)
C8—S1—C7—N30.4 (2)N2—C1—C6—C5179.2 (2)
C7—S1—C8—C9177.25 (16)C2—C1—C6—N3179.6 (2)
O2—S2—N2—C153.2 (2)C2—C1—C6—C50.7 (4)
O2—S2—N2—C7143.98 (19)C1—C2—C3—C40.3 (4)
O3—S2—N2—C1177.76 (17)C2—C3—C4—C50.7 (4)
O3—S2—N2—C714.9 (2)C3—C4—C5—C60.4 (4)
C17—S2—N2—C162.02 (19)C4—C5—C6—N3178.9 (3)
C17—S2—N2—C7100.8 (2)C4—C5—C6—C10.3 (4)
O2—S2—C17—C18143.1 (2)S1—C8—C9—N13.6 (2)
O2—S2—C17—C2240.0 (2)S1—C8—C9—C10175.61 (17)
O3—S2—C17—C1883.9 (2)N1—C9—C10—C111.4 (3)
O3—S2—C17—C2293.1 (2)N1—C9—C10—C14178.8 (2)
N2—S2—C17—C1829.0 (2)C8—C9—C10—C11177.7 (2)
N2—S2—C17—C22154.01 (19)C8—C9—C10—C142.0 (4)
C15—O1—C11—C10173.1 (2)C9—C10—C11—O1177.8 (2)
C15—O1—C11—C125.6 (4)C9—C10—C11—C121.0 (4)
C11—O1—C15—C16166.7 (3)C14—C10—C11—O12.0 (4)
C13—N1—C9—C8178.1 (2)C14—C10—C11—C12179.3 (3)
C13—N1—C9—C101.1 (3)O1—C11—C12—C13178.4 (3)
C9—N1—C13—C120.3 (4)C10—C11—C12—C130.3 (4)
S2—N2—C1—C213.5 (3)C11—C12—C13—N10.1 (4)
S2—N2—C1—C6166.61 (16)O1—C15—C16—F163.2 (5)
C7—N2—C1—C2179.9 (2)O1—C15—C16—F2177.9 (3)
C7—N2—C1—C60.2 (2)O1—C15—C16—F358.1 (5)
S2—N2—C7—S117.2 (3)S2—C17—C18—C19176.2 (2)
S2—N2—C7—N3165.81 (16)C22—C17—C18—C190.7 (4)
C1—N2—C7—S1177.72 (14)S2—C17—C22—C21176.0 (2)
C1—N2—C7—N30.8 (2)C18—C17—C22—C211.1 (4)
C7—N3—C6—C10.8 (3)C17—C18—C19—C200.1 (4)
C7—N3—C6—C5179.5 (3)C18—C19—C20—C210.5 (4)
C6—N3—C7—S1177.75 (17)C18—C19—C20—C23178.8 (3)
C6—N3—C7—N21.0 (2)C19—C20—C21—C220.1 (5)
N2—C1—C2—C3179.5 (2)C23—C20—C21—C22179.2 (3)
C6—C1—C2—C30.4 (4)C20—C21—C22—C170.7 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the imidazole ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···F2i0.932.493.363 (4)156
C15—H15B···O3ii0.972.523.420 (3)155
C18—H18···N3iii0.932.603.336 (3)136
C18—H18···Cg10.932.833.463 (3)126
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the imidazole ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···F2i0.932.493.363 (4)156
C15—H15B···O3ii0.972.523.420 (3)155
C18—H18···N3iii0.932.603.336 (3)136
C18—H18···Cg10.932.833.463 (3)126
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors are thankful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility.

References

First citationAtes-Alagoz, Z., Can-Eke, B., Coban, T., Iscan, M. & Buyukbingol, E. (2004). Arch. Pharm. 337 188–192.  CAS Google Scholar
First citationBansal, Y. & Silakari, O. (2012). Bioorg. Med. Chem. 20, 6208-6236.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds