organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1732-o1733

5-Bromo­benzene-1,3-dicarbo­nitrile

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie-tu.freiberg.de

(Received 25 September 2013; accepted 21 October 2013; online 6 November 2013)

The asymmetric unit of the title compound, C8H3BrN2, consists of two mol­ecules. The crystal structure features undulating mol­ecular sheets with the mol­ecules linked by C—H⋯N hydrogen bonds with one N atom acting as a bifurcated acceptor. N⋯Br inter­actions also occur [N⋯Br = 2.991 (3) and 3.099 (3) Å]. Inter­layer association is accomplished by offset face-to-face arene inter­actions [centroid–centroid distance = 3.768 (4) Å].

Related literature

For use of aromatic nitrils in organic synthesis and for their industrial applications, see: Fabiani (1999[Fabiani, M. E. (1999). Drug News Perspect. 12, 207-214.]); Ishii et al. (2011[Ishii, G., Moriyama, K. & Togo, H. (2011). Tetrahedron Lett. 52, 2404-2406.]); Sandier & Karo (1983[Sandier, S. R. & Karo, W. (1983). In Organic Functional Group Preparations. Academic Press: San Diego.]). For uses of aromatic nitrils in crystal engineering and the construction of metal-organic frameworks, see: Desiraju & Harlow (1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]); Leonard & MacGillivray (2010[Leonard, R. & MacGillivray, R. (2010). Editors. Metal-Organic Frameworks. Wiley: Hoboken.]); Reddy et al. (1993[Reddy, D. S., Pannerselvam, K., Pilati, T. & Desiraju, G. R. (1993). J. Chem. Soc. Chem. Commun. pp. 661-662.]); Tiekink et al. (2010[Tiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Wiley: Chichester.]). For the X-ray structure of 1,3,5-tri­cyano­benzene, see: Reddy et al. (1995[Reddy, D. S., Panneerselvam, K., Desiraju, G. R., Carrell, H. L. & Carrell, C. J. (1995). Acta Cryst. C51, 2352-2354.]). For non-covalant C—H⋯N and N⋯Br inter­actions as well as arene⋯arene stacking contacts, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 29-123. Oxford University Press.]); Dance (2004[Dance, I. (2004). Encyclopedia of Supramolecular Chemistry, pp. 1076-1092. New York: Dekker.]); Rowland & Taylor (1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int Ed. 114, 50-80.]). For the preparation of the title compound, see: Doyle & Haseltine (1994[Doyle, T. & Haseltine, J. (1994). J. Heterocycl. Chem. 31, 1417-1420.]).

[Scheme 1]

Experimental

Crystal data
  • C8H3BrN2

  • Mr = 207.03

  • Monoclinic, P 21 /c

  • a = 13.3019 (4) Å

  • b = 15.7762 (5) Å

  • c = 7.4265 (2) Å

  • β = 93.719 (2)°

  • V = 1555.19 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.21 mm−1

  • T = 173 K

  • 0.45 × 0.43 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.203, Tmax = 0.681

  • 16811 measured reflections

  • 4198 independent reflections

  • 3436 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.05

  • 4198 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4A⋯N2i 0.95 2.69 3.388 (3) 130
C4—H4⋯N2Ai 0.95 2.61 3.444 (3) 147
C6A—H6A⋯N1Aii 0.95 2.67 3.563 (3) 157
C2—H2⋯N1iii 0.95 2.69 3.624 (3) 168
C2A—H2A⋯N1iii 0.95 2.72 3.435 (3) 133
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Aromatic nitriles are important intermediate compounds in organic synthesis (Ishii et al., 2011). They can smoothly be converted into a great many of other functional groups, such as carboxylic acids, amidines, amines, esters and ketones (Sandier et al., 1983). Futhermore, they are used as functional materials, pharmaceuticals, dyes and liquid crystals (Fabiani et al., 1999). Recently, aromatic nitriles have also arisen interest for their capability of forming supramolecular interactions that turned out to good account in organic crystal engineering (Desiraju & Harlow, 1989; Reddy et al., 1993; Tiekink et al., 2010) or the construction of metal-organic framework structures (Leonard & MacGillivray, 2010). Relating to this latter topics, the title compound has been synthesized as a precursor and was identified by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/c with two molecules in the asymmetric part of the unit cell (Fig. 1). The bond distances and angles within the aromatic rings agree well with those found in the crystal structure of 1,3,5-tricyanobenzene (Reddy et al., 1995). According to a tilt angle of 12.3 (1) ° between the independent molecules, the crystal structure is composed of undulated molecular layers with the molecules linked by C—H···N hydrogen bonds (Desiraju & Steiner, 1999) [d(H)···N) 2.61 - 2.72 Å; C—H···N 114 - 168 °]. In this coordination structure (Figs. 2 and 3), the nitrogen N1 acts as a bifurcated acceptor (Steiner, 2002). Moreover, the interatomic distances between N2 and the bromo substituents of neighbouring molecules [2.991 (2) and 3.099 (2) Å], being considerably shorter than the sum of van der Waals radii of the respective atoms (3.40 Å), indicate the presence of N···Br interactions (Rowland & Taylor, 1996). In direction of the stacking axis of the molecular sheets, the crystal is stabilized by offset face-to-face arene interactions [CgA···CgA = 3.768 (4) Å] (Dance, 2004).

Related literature top

For use of aromatic nitrils in organic synthesis and for their industrial applications, see: Fabiani (1999); Ishii et al. (2011); Sandier & Karo (1983). For uses of aromatic nitrils in crystal engineering and the construction of metal-organic frameworks, see: Desiraju & Harlow (1989); Leonard & MacGillivray (2010); Reddy et al. (1993); Tiekink et al. (2010). For the X-ray structure of 1,3,5-tricyanobenzene, see: Reddy et al. (1995). For non-covalant C—H···N and N···Br interactions as well as arene···arene stacking contacts, see: Desiraju & Steiner (1999); Dance (2004); Rowland & Taylor (1996); Steiner (2002). For the preparation of the title compound, see: Doyle & Haseltine (1994).

Experimental top

The title compound was synthesized from 5-bromo-1,3-benzenedicarboxylic acid following the literature procedure (Doyle & Haseltine, 1994). Single crystals of X-ray diffraction quality were obtained as colourless plates via crystallization from acetone.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for aryl.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-NT (Bruker, 2007); data reduction: SAINT-NT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing the atom numbering scheme. Displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing structure viewed along the c-axis. Relevant intermolecular interactions are indicated as broken lines.
[Figure 3] Fig. 3. A view along the b-axis showing the intermolecular contacts as broken lines.
5-Bromobenzene-1,3-dicarbonitrile top
Crystal data top
C8H3BrN2F(000) = 800
Mr = 207.03Dx = 1.768 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7273 reflections
a = 13.3019 (4) Åθ = 2.6–29.1°
b = 15.7762 (5) ŵ = 5.21 mm1
c = 7.4265 (2) ÅT = 173 K
β = 93.719 (2)°Plate, colourless
V = 1555.19 (8) Å30.45 × 0.43 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4198 independent reflections
Radiation source: fine-focus sealed tube3436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 29.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1818
Tmin = 0.203, Tmax = 0.681k = 2121
16811 measured reflectionsl = 810
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.0903P]
where P = (Fo2 + 2Fc2)/3
4198 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C8H3BrN2V = 1555.19 (8) Å3
Mr = 207.03Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.3019 (4) ŵ = 5.21 mm1
b = 15.7762 (5) ÅT = 173 K
c = 7.4265 (2) Å0.45 × 0.43 × 0.08 mm
β = 93.719 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3436 reflections with I > 2σ(I)
Tmin = 0.203, Tmax = 0.681Rint = 0.039
16811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.60 e Å3
4198 reflectionsΔρmin = 0.58 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.117304 (18)0.402498 (14)0.12147 (3)0.03315 (8)
N10.15740 (18)0.79184 (15)0.2893 (4)0.0560 (7)
N20.27771 (15)0.56650 (13)0.4706 (3)0.0366 (5)
C10.05428 (17)0.50150 (13)0.2166 (3)0.0265 (4)
C20.04561 (16)0.49766 (13)0.2815 (3)0.0251 (4)
H20.08230.44610.27870.030*
C30.09102 (17)0.57163 (13)0.3513 (3)0.0243 (4)
C40.03878 (16)0.64751 (13)0.3566 (3)0.0266 (4)
H40.07030.69710.40590.032*
C50.06113 (17)0.64919 (14)0.2879 (3)0.0288 (4)
C60.10855 (17)0.57649 (14)0.2169 (3)0.0292 (4)
H60.17660.57840.16970.035*
C70.11580 (18)0.72847 (15)0.2884 (4)0.0377 (6)
C80.19580 (17)0.56869 (13)0.4179 (3)0.0272 (4)
Br1A0.370700 (19)0.099566 (15)0.08217 (4)0.03739 (8)
N1A0.37898 (18)0.49595 (14)0.0782 (3)0.0460 (6)
N2A0.78226 (14)0.24025 (12)0.3862 (3)0.0319 (4)
C1A0.44634 (16)0.19863 (13)0.1352 (3)0.0264 (4)
C2A0.40402 (17)0.27736 (14)0.1025 (3)0.0277 (4)
H2A0.33640.28230.05430.033*
C3A0.46205 (16)0.34971 (13)0.1413 (3)0.0257 (4)
C4A0.56122 (16)0.34354 (13)0.2127 (3)0.0252 (4)
H4A0.60060.39290.23810.030*
C5A0.60110 (15)0.26273 (13)0.2458 (3)0.0233 (4)
C6A0.54470 (16)0.18963 (12)0.2074 (3)0.0247 (4)
H6A0.57290.13500.23000.030*
C7A0.41674 (18)0.43201 (15)0.1068 (3)0.0317 (5)
C8A0.70312 (17)0.25181 (12)0.3230 (3)0.0262 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03797 (14)0.02912 (13)0.03247 (13)0.01325 (9)0.00308 (10)0.00301 (8)
N10.0359 (12)0.0372 (12)0.095 (2)0.0070 (10)0.0032 (13)0.0007 (13)
N20.0309 (10)0.0297 (10)0.0483 (13)0.0062 (8)0.0035 (9)0.0032 (9)
C10.0320 (11)0.0244 (10)0.0234 (10)0.0081 (8)0.0047 (8)0.0003 (7)
C20.0310 (11)0.0209 (9)0.0236 (10)0.0016 (8)0.0042 (8)0.0012 (7)
C30.0262 (10)0.0238 (9)0.0229 (10)0.0008 (8)0.0029 (8)0.0012 (7)
C40.0270 (11)0.0223 (10)0.0304 (11)0.0021 (8)0.0023 (9)0.0009 (8)
C50.0253 (11)0.0262 (10)0.0350 (12)0.0005 (8)0.0039 (9)0.0013 (8)
C60.0226 (10)0.0322 (11)0.0328 (11)0.0035 (9)0.0026 (9)0.0022 (9)
C70.0263 (12)0.0314 (12)0.0554 (16)0.0004 (10)0.0024 (11)0.0001 (11)
C80.0297 (11)0.0200 (9)0.0319 (11)0.0014 (8)0.0016 (9)0.0015 (8)
Br1A0.03607 (14)0.03308 (13)0.04293 (15)0.01449 (9)0.00186 (10)0.00027 (9)
N1A0.0482 (14)0.0387 (12)0.0506 (14)0.0124 (10)0.0004 (11)0.0062 (10)
N2A0.0297 (10)0.0259 (9)0.0394 (11)0.0012 (8)0.0039 (9)0.0011 (8)
C1A0.0275 (11)0.0265 (10)0.0256 (10)0.0053 (8)0.0053 (8)0.0007 (8)
C2A0.0222 (10)0.0366 (12)0.0244 (10)0.0015 (9)0.0022 (8)0.0013 (8)
C3A0.0280 (11)0.0254 (10)0.0237 (10)0.0039 (8)0.0018 (8)0.0007 (8)
C4A0.0289 (11)0.0226 (10)0.0240 (10)0.0000 (8)0.0005 (8)0.0009 (8)
C5A0.0233 (10)0.0253 (10)0.0212 (10)0.0006 (8)0.0017 (8)0.0001 (7)
C6A0.0268 (10)0.0218 (9)0.0262 (10)0.0004 (8)0.0056 (8)0.0004 (7)
C7A0.0316 (12)0.0330 (12)0.0302 (11)0.0032 (10)0.0003 (9)0.0018 (9)
C8A0.0308 (11)0.0194 (9)0.0282 (11)0.0002 (8)0.0013 (9)0.0004 (7)
Geometric parameters (Å, º) top
Br1—C11.888 (2)Br1A—C1A1.886 (2)
N1—C71.143 (3)N1A—C7A1.141 (3)
N2—C81.134 (3)N2A—C8A1.139 (3)
C1—C21.385 (3)C1A—C2A1.379 (3)
C1—C61.386 (3)C1A—C6A1.389 (3)
C2—C31.398 (3)C2A—C3A1.397 (3)
C2—H20.9500C2A—H2A0.9500
C3—C41.386 (3)C3A—C4A1.393 (3)
C3—C81.449 (3)C3A—C7A1.447 (3)
C4—C51.393 (3)C4A—C5A1.397 (3)
C4—H40.9500C4A—H4A0.9500
C5—C61.396 (3)C5A—C6A1.395 (3)
C5—C71.447 (3)C5A—C8A1.449 (3)
C6—H60.9500C6A—H6A0.9500
C2—C1—C6121.65 (19)C2A—C1A—C6A121.60 (19)
C2—C1—Br1119.13 (16)C2A—C1A—Br1A120.23 (16)
C6—C1—Br1119.21 (17)C6A—C1A—Br1A118.18 (15)
C1—C2—C3118.31 (19)C1A—C2A—C3A119.1 (2)
C1—C2—H2120.8C1A—C2A—H2A120.5
C3—C2—H2120.8C3A—C2A—H2A120.5
C4—C3—C2121.7 (2)C4A—C3A—C2A121.22 (19)
C4—C3—C8119.39 (19)C4A—C3A—C7A120.2 (2)
C2—C3—C8118.86 (19)C2A—C3A—C7A118.6 (2)
C3—C4—C5118.3 (2)C3A—C4A—C5A118.05 (19)
C3—C4—H4120.8C3A—C4A—H4A121.0
C5—C4—H4120.8C5A—C4A—H4A121.0
C4—C5—C6121.3 (2)C6A—C5A—C4A121.71 (19)
C4—C5—C7118.9 (2)C6A—C5A—C8A117.39 (18)
C6—C5—C7119.8 (2)C4A—C5A—C8A120.90 (18)
C1—C6—C5118.6 (2)C1A—C6A—C5A118.36 (19)
C1—C6—H6120.7C1A—C6A—H6A120.8
C5—C6—H6120.7C5A—C6A—H6A120.8
N1—C7—C5178.8 (3)N1A—C7A—C3A178.4 (3)
N2—C8—C3179.7 (3)N2A—C8A—C5A177.3 (2)
C6—C1—C2—C31.1 (3)C6A—C1A—C2A—C3A0.7 (3)
Br1—C1—C2—C3179.95 (15)Br1A—C1A—C2A—C3A179.35 (16)
C1—C2—C3—C40.0 (3)C1A—C2A—C3A—C4A0.2 (3)
C1—C2—C3—C8179.33 (19)C1A—C2A—C3A—C7A179.9 (2)
C2—C3—C4—C50.8 (3)C2A—C3A—C4A—C5A0.5 (3)
C8—C3—C4—C5178.5 (2)C7A—C3A—C4A—C5A179.2 (2)
C3—C4—C5—C60.7 (3)C3A—C4A—C5A—C6A0.7 (3)
C3—C4—C5—C7178.5 (2)C3A—C4A—C5A—C8A178.87 (19)
C2—C1—C6—C51.3 (3)C2A—C1A—C6A—C5A0.4 (3)
Br1—C1—C6—C5179.87 (17)Br1A—C1A—C6A—C5A179.62 (15)
C4—C5—C6—C10.4 (3)C4A—C5A—C6A—C1A0.3 (3)
C7—C5—C6—C1179.5 (2)C8A—C5A—C6A—C1A179.29 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4A···N2i0.952.693.388 (3)130
C4—H4···N2Ai0.952.613.444 (3)147
C6A—H6A···N1Aii0.952.673.563 (3)157
C2—H2···N1iii0.952.693.624 (3)168
C2A—H2A···N1iii0.952.723.435 (3)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4A···N2i0.952.693.388 (3)130
C4—H4···N2Ai0.952.613.444 (3)147
C6A—H6A···N1Aii0.952.673.563 (3)157
C2—H2···N1iii0.952.693.624 (3)168
C2A—H2A···N1iii0.952.723.435 (3)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

This work was performed within the Cluster of Excellence "Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)" which is supported financially by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDance, I. (2004). Encyclopedia of Supramolecular Chemistry, pp. 1076–1092. New York: Dekker.  Google Scholar
First citationDesiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757–6764.  CSD CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 29–123. Oxford University Press.  Google Scholar
First citationDoyle, T. & Haseltine, J. (1994). J. Heterocycl. Chem. 31, 1417–1420.  CrossRef CAS Google Scholar
First citationFabiani, M. E. (1999). Drug News Perspect. 12, 207–214.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshii, G., Moriyama, K. & Togo, H. (2011). Tetrahedron Lett. 52, 2404–2406.  Web of Science CrossRef CAS Google Scholar
First citationLeonard, R. & MacGillivray, R. (2010). Editors. Metal-Organic Frameworks. Wiley: Hoboken.  Google Scholar
First citationReddy, D. S., Panneerselvam, K., Desiraju, G. R., Carrell, H. L. & Carrell, C. J. (1995). Acta Cryst. C51, 2352–2354.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationReddy, D. S., Pannerselvam, K., Pilati, T. & Desiraju, G. R. (1993). J. Chem. Soc. Chem. Commun. pp. 661–662.  CrossRef Web of Science Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CrossRef CAS Web of Science Google Scholar
First citationSandier, S. R. & Karo, W. (1983). In Organic Functional Group Preparations. Academic Press: San Diego.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int Ed. 114, 50–80.  CrossRef Google Scholar
First citationTiekink, E. R. T., Vittal, J. J. & Zaworotko, M. J. (2010). Editors. Organic Crystal Engineering. Wiley: Chichester.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1732-o1733
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds