organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­­oxy-3-meth­­oxy­benzaldehyde

aFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, bVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia, and cFaculty of Sciences, Department of Chemistry, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zorica@ac.me

(Received 4 October 2013; accepted 9 October 2013; online 6 November 2013)

In the title compound, C10H12O3, all non-H atoms are approximately coplanar, with an r.m.s. deviation of 0.046 Å. In the crystal, very weak C—H⋯O inter­actions link the mol­ecules into sheets parallel to (101).

Related literature

For the bioactivity of de­hydro­zingerone derivatives and their role in the synthesis of heterocycles, see: Tatsuzaki et al. (2006[Tatsuzaki, J., Bastow, K. F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H. & Lee, K.-H. (2006). J. Nat. Prod. 69, 1445-1449.]); Kubra et al. (2013[Kubra, R., Murthy, P. & Mohan Rao, J. (2013). J. Food Sci. 78, M64-M69.]); Panda & Chowdary (2008[Panda, S. S. & Chowdary, P. V. R. (2008). Indian J. Pharm. Sci. 70, 208-215.]); Mostahar et al. (2007[Mostahar, S., Katun, P. & Islam, A. (2007). J. Biol. Sci. 7, 514-519.]). For related crystal structures, see: Matos Beja et al. (1997[Matos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d'A., Pereira, M. M. & Serra, A. C. (1997). Acta Cryst. C53, 494-496.]); Velavan et al. (1995[Velavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131-1133.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O3

  • Mr = 180.20

  • Monoclinic, P 21 /c

  • a = 11.5314 (16) Å

  • b = 8.7905 (11) Å

  • c = 9.3363 (13) Å

  • β = 97.339 (14)°

  • V = 938.6 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 293 K

  • 0.39 × 0.17 × 0.14 mm

Data collection
  • Agilent Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.933, Tmax = 1.000

  • 6035 measured reflections

  • 1848 independent reflections

  • 1299 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.148

  • S = 1.04

  • 1848 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.67 3.547 (3) 157
C10—H10B⋯O2ii 0.96 2.62 3.525 (2) 156
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Dehydrozingerone derivatives belong to an important class of compounds, not only due to their different bioactivities (Tatsuzaki et al., 2006; Kubra et al., 2013), but also as the key substrates in synthesis of some heterocycles (Panda et al., 2008), particularly flavones (Mostahar et al., 2007). They can be synthesized by condensation of the corresponding aromatic aldehyde with acetone. Thus, starting substrate in synthesis of ethyl derivative of dehydrozingerone is 4-ethoxy-3-methoxybenzaldehyde (I), compound obtained by simple methylation of vanillin.

In the title structure, all non-hydrogen atoms are approximately coplanar with a mean deviation of 0.046 Å (Fig. 1). A somewhat higher displacement of 0.102 (2) Å has been observed for atom C9 belonging to ethoxy moiety. The dihedral angle between the best planes through the phenyl ring and the non-H atoms of ethoxy moiety is 8.1 (1)°. The aromatic C—C bond lengths are in the expected range of 1.368 (2)–1.411 (2) Å (Table 2). The five C—O bonds have various lengths. The shortest length is found for the carbonyl C1—O1 = 1.204 (2) bond in accordance with the prevaling double bond character.

The crystal structure exhibits no conventional hydrogen bonding. The molecules are held together by weak C–H···O and van der Waals interactions. The two C—H···O intermolecular contacts shorter than the sum of the van der Waals radii [C1—H1 = 0.93; H1···O1= 2.67 Å; C1—H1···O1i = 157.3° and C10—H10B = 0.96, H10B···O2 = 2.62 Å, C10—H10B···O2ii = 156.4° (symmetry codes: i = -x,+y - 1/2,-z + 3/2; ii = -x + 1,+y - 1/2,-z + 1/2)] connect the molecules into a sheet parallel to (101). These sheets further connect into three-dimensional structure by C—H···π interaction [C10—H10c = 0.96, H10c···Cg1 = 3.00 Å C10—H10c···Cg1iii = 147° [(symmetry code: iii = -x + 1,-y,-z + 1)] (Fig. 2). The approximate distance between the adjacent parallel sheets is 3.5 Å. For related crystal structures, see Matos Beja et al. (1997) and Velavan et al. (1995).

Related literature top

For the bioactivity of dehydrozingerone derivatives and their role in the synthesis of heterocycles, see: Tatsuzaki et al. (2006); Kubra et al. (2013); Panda et al. (2008); Mostahar et al. (2007). For related crystal structures, see: Matos Beja et al. (1997); Velavan et al. (1995).

Experimental top

Diethyl sulfate was dropped into a water solution of sodium hydroxide and vanillin. The reaction mixture was stirred overnight at 50°C and cooled at room temperature resulting firstly an oily product, which on standing gave crude crystal 4-ethoxy-3-methoxybenzaldehyde.

One gram of crude 4-ethoxy-3-methoxybenzaldehyde was stirred vigorously in 150 ml of boiling water, the hot mixture filtered of through a cotton pad. The obtained milky-white emulsion upon overnight cooling at room temperature gave crystal needles of 4-ethoxy-3-methoxybenzaldehyde.

Refinement top

All H atoms were included in calculated positions and treated as riding with d(C—H) equal to: 0.96 Å (CH3), 0.97 Å (CH2) or 0.93 Å (aromatic CH) and Uiso(H) equal to: 1.5 Ueq(C) for CH3 or 1.2 Ueq(C) for CH2 and CH.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Three-dimensional layered structure of the title compound. All H atoms which are not involved in intermolecular interactions are omitted for clarity.
4-Ethoxy-3-methoxybenzaldehyde top
Crystal data top
C10H12O3F(000) = 384
Mr = 180.20Dx = 1.275 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 1676 reflections
a = 11.5314 (16) Åθ = 3.9–71.1°
b = 8.7905 (11) ŵ = 0.78 mm1
c = 9.3363 (13) ÅT = 293 K
β = 97.339 (14)°Needle, white
V = 938.6 (2) Å30.39 × 0.17 × 0.14 mm
Z = 4
Data collection top
Agilent Gemini S
diffractometer
1848 independent reflections
Radiation source: Enhance (Cu) X-ray Source1299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.3280 pixels mm-1θmax = 73.2°, θmin = 3.9°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 108
Tmin = 0.933, Tmax = 1.000l = 119
6035 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.0716P]
where P = (Fo2 + 2Fc2)/3
1848 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H12O3V = 938.6 (2) Å3
Mr = 180.20Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.5314 (16) ŵ = 0.78 mm1
b = 8.7905 (11) ÅT = 293 K
c = 9.3363 (13) Å0.39 × 0.17 × 0.14 mm
β = 97.339 (14)°
Data collection top
Agilent Gemini S
diffractometer
1848 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1299 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 1.000Rint = 0.021
6035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.12 e Å3
1848 reflectionsΔρmin = 0.17 e Å3
120 parameters
Special details top

Experimental. Absorption correction: empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO; Agilent, 2013)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01326 (13)0.00997 (18)0.78722 (16)0.0954 (5)
O20.27667 (11)0.22381 (13)0.46226 (14)0.0818 (4)
O30.37383 (11)0.00811 (13)0.35924 (13)0.0780 (4)
C10.03443 (17)0.1075 (2)0.7257 (2)0.0824 (5)
H10.01300.20760.74110.099*
C20.12260 (15)0.0833 (2)0.62934 (18)0.0683 (5)
C30.15663 (15)0.0635 (2)0.59500 (18)0.0675 (5)
H30.12300.14700.63480.081*
C40.23881 (14)0.08576 (18)0.50352 (17)0.0642 (4)
C50.29161 (15)0.0414 (2)0.44602 (18)0.0665 (5)
C60.25783 (15)0.1856 (2)0.47925 (19)0.0768 (5)
H60.29180.26960.44060.092*
C70.17310 (17)0.2063 (2)0.5703 (2)0.0793 (6)
H70.15020.30430.59170.095*
C80.22711 (16)0.3550 (2)0.5194 (2)0.0889 (6)
H8A0.14380.35350.49380.133*
H8B0.25880.44470.48040.133*
H8C0.24530.35540.62270.133*
C90.43966 (16)0.1315 (2)0.3099 (2)0.0812 (6)
H9A0.38720.20510.25830.097*
H9B0.48380.18230.39160.097*
C100.52047 (17)0.0694 (3)0.2129 (2)0.0930 (7)
H10A0.47610.02110.13140.140*
H10B0.56590.15070.17990.140*
H10C0.57170.00370.26450.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0975 (10)0.0929 (10)0.1040 (11)0.0069 (8)0.0448 (9)0.0036 (8)
O20.0900 (8)0.0605 (7)0.1034 (9)0.0055 (6)0.0452 (7)0.0059 (6)
O30.0846 (8)0.0715 (8)0.0838 (8)0.0123 (6)0.0332 (7)0.0019 (6)
C10.0844 (12)0.0782 (12)0.0887 (13)0.0103 (10)0.0265 (10)0.0006 (10)
C20.0694 (10)0.0658 (11)0.0714 (10)0.0022 (8)0.0152 (8)0.0024 (8)
C30.0679 (10)0.0652 (10)0.0715 (10)0.0047 (8)0.0170 (8)0.0022 (8)
C40.0661 (9)0.0578 (10)0.0706 (10)0.0041 (7)0.0162 (8)0.0045 (7)
C50.0675 (9)0.0694 (11)0.0643 (9)0.0050 (8)0.0153 (8)0.0017 (8)
C60.0872 (12)0.0633 (11)0.0834 (12)0.0063 (9)0.0239 (10)0.0036 (9)
C70.0920 (13)0.0600 (11)0.0887 (12)0.0049 (9)0.0224 (10)0.0028 (9)
C80.0965 (14)0.0606 (11)0.1171 (16)0.0027 (9)0.0431 (12)0.0010 (10)
C90.0803 (12)0.0827 (12)0.0839 (12)0.0139 (10)0.0235 (10)0.0118 (10)
C100.0837 (13)0.1090 (17)0.0911 (14)0.0149 (11)0.0294 (11)0.0087 (12)
Geometric parameters (Å, º) top
O1—C11.204 (2)C6—C71.387 (2)
O2—C41.3618 (18)C6—H60.9300
O2—C81.421 (2)C7—H70.9300
O3—C51.355 (2)C8—H8A0.9600
O3—C91.433 (2)C8—H8B0.9600
C1—C21.457 (2)C8—H8C0.9600
C1—H10.9300C9—C101.484 (3)
C2—C71.376 (2)C9—H9A0.9700
C2—C31.398 (2)C9—H9B0.9700
C3—C41.368 (2)C10—H10A0.9600
C3—H30.9300C10—H10B0.9600
C4—C51.411 (2)C10—H10C0.9600
C5—C61.374 (2)
C4—O2—C8117.27 (13)C2—C7—H7119.7
C5—O3—C9117.93 (14)C6—C7—H7119.7
O1—C1—C2126.0 (2)O2—C8—H8A109.5
O1—C1—H1117.0O2—C8—H8B109.5
C2—C1—H1117.0H8A—C8—H8B109.5
C7—C2—C3119.20 (16)O2—C8—H8C109.5
C7—C2—C1119.78 (17)H8A—C8—H8C109.5
C3—C2—C1121.02 (17)H8B—C8—H8C109.5
C4—C3—C2120.83 (16)O3—C9—C10108.51 (16)
C4—C3—H3119.6O3—C9—H9A110.0
C2—C3—H3119.6C10—C9—H9A110.0
O2—C4—C3125.22 (15)O3—C9—H9B110.0
O2—C4—C5115.38 (14)C10—C9—H9B110.0
C3—C4—C5119.40 (15)H9A—C9—H9B108.4
O3—C5—C6125.06 (16)C9—C10—H10A109.5
O3—C5—C4115.17 (15)C9—C10—H10B109.5
C6—C5—C4119.77 (16)H10A—C10—H10B109.5
C5—C6—C7120.13 (17)C9—C10—H10C109.5
C5—C6—H6119.9H10A—C10—H10C109.5
C7—C6—H6119.9H10B—C10—H10C109.5
C2—C7—C6120.65 (17)
O1—C1—C2—C7177.57 (19)O2—C4—C5—O30.8 (2)
O1—C1—C2—C32.7 (3)C3—C4—C5—O3178.53 (14)
C7—C2—C3—C40.2 (3)O2—C4—C5—C6178.87 (16)
C1—C2—C3—C4179.46 (15)C3—C4—C5—C61.7 (3)
C8—O2—C4—C30.3 (3)O3—C5—C6—C7179.56 (16)
C8—O2—C4—C5179.05 (16)C4—C5—C6—C70.8 (3)
C2—C3—C4—O2179.20 (15)C3—C2—C7—C60.8 (3)
C2—C3—C4—C51.5 (3)C1—C2—C7—C6179.51 (17)
C9—O3—C5—C66.9 (3)C5—C6—C7—C20.5 (3)
C9—O3—C5—C4173.41 (14)C5—O3—C9—C10177.85 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.673.547 (3)157
C10—H10B···O2ii0.962.623.525 (2)156
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.673.547 (3)157.3
C10—H10B···O2ii0.962.623.525 (2)156.4
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological development of the Republic of Serbia (projects No. 172014, 172035 and 172034).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKubra, R., Murthy, P. & Mohan Rao, J. (2013). J. Food Sci. 78, M64–M69.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d'A., Pereira, M. M. & Serra, A. C. (1997). Acta Cryst. C53, 494–496.  CSD CrossRef IUCr Journals Google Scholar
First citationMostahar, S., Katun, P. & Islam, A. (2007). J. Biol. Sci. 7, 514–519.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPanda, S. S. & Chowdary, P. V. R. (2008). Indian J. Pharm. Sci. 70, 208–215.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTatsuzaki, J., Bastow, K. F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H. & Lee, K.-H. (2006). J. Nat. Prod. 69, 1445–1449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVelavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131–1133.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds