organic compounds
4-Ethoxy-3-methoxybenzaldehyde
aFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, bVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia, and cFaculty of Sciences, Department of Chemistry, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zorica@ac.me
In the title compound, C10H12O3, all non-H atoms are approximately coplanar, with an r.m.s. deviation of 0.046 Å. In the crystal, very weak C—H⋯O interactions link the molecules into sheets parallel to (101).
CCDC reference: 965471
Related literature
For the bioactivity of dehydrozingerone derivatives and their role in the synthesis of heterocycles, see: Tatsuzaki et al. (2006); Kubra et al. (2013); Panda & Chowdary (2008); Mostahar et al. (2007). For related crystal structures, see: Matos Beja et al. (1997); Velavan et al. (1995).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
CCDC reference: 965471
10.1107/S160053681302761X/zq2209sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681302761X/zq2209Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681302761X/zq2209Isup3.cml
Diethyl sulfate was dropped into a water solution of sodium hydroxide and vanillin. The reaction mixture was stirred overnight at 50°C and cooled at room temperature resulting firstly an oily product, which on standing gave crude crystal 4-ethoxy-3-methoxybenzaldehyde.
One gram of crude 4-ethoxy-3-methoxybenzaldehyde was stirred vigorously in 150 ml of boiling water, the hot mixture filtered of through a cotton pad. The obtained milky-white emulsion upon overnight cooling at room temperature gave crystal needles of 4-ethoxy-3-methoxybenzaldehyde.
All H atoms were included in calculated positions and treated as riding with d(C—H) equal to: 0.96 Å (CH3), 0.97 Å (CH2) or 0.93 Å (aromatic CH) and Uiso(H) equal to: 1.5 Ueq(C) for CH3 or 1.2 Ueq(C) for CH2 and CH.
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).C10H12O3 | F(000) = 384 |
Mr = 180.20 | Dx = 1.275 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 1676 reflections |
a = 11.5314 (16) Å | θ = 3.9–71.1° |
b = 8.7905 (11) Å | µ = 0.78 mm−1 |
c = 9.3363 (13) Å | T = 293 K |
β = 97.339 (14)° | Needle, white |
V = 938.6 (2) Å3 | 0.39 × 0.17 × 0.14 mm |
Z = 4 |
Agilent Gemini S diffractometer | 1848 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1299 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 16.3280 pixels mm-1 | θmax = 73.2°, θmin = 3.9° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −10→8 |
Tmin = 0.933, Tmax = 1.000 | l = −11→9 |
6035 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0746P)2 + 0.0716P] where P = (Fo2 + 2Fc2)/3 |
1848 reflections | (Δ/σ)max < 0.001 |
120 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C10H12O3 | V = 938.6 (2) Å3 |
Mr = 180.20 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 11.5314 (16) Å | µ = 0.78 mm−1 |
b = 8.7905 (11) Å | T = 293 K |
c = 9.3363 (13) Å | 0.39 × 0.17 × 0.14 mm |
β = 97.339 (14)° |
Agilent Gemini S diffractometer | 1848 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 1299 reflections with I > 2σ(I) |
Tmin = 0.933, Tmax = 1.000 | Rint = 0.021 |
6035 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.12 e Å−3 |
1848 reflections | Δρmin = −0.17 e Å−3 |
120 parameters |
Experimental. Absorption correction: empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO; Agilent, 2013) |
x | y | z | Uiso*/Ueq | ||
O1 | −0.01326 (13) | −0.00997 (18) | 0.78722 (16) | 0.0954 (5) | |
O2 | 0.27667 (11) | 0.22381 (13) | 0.46226 (14) | 0.0818 (4) | |
O3 | 0.37383 (11) | −0.00811 (13) | 0.35924 (13) | 0.0780 (4) | |
C1 | 0.03443 (17) | −0.1075 (2) | 0.7257 (2) | 0.0824 (5) | |
H1 | 0.0130 | −0.2076 | 0.7411 | 0.099* | |
C2 | 0.12260 (15) | −0.0833 (2) | 0.62934 (18) | 0.0683 (5) | |
C3 | 0.15663 (15) | 0.0635 (2) | 0.59500 (18) | 0.0675 (5) | |
H3 | 0.1230 | 0.1470 | 0.6348 | 0.081* | |
C4 | 0.23881 (14) | 0.08576 (18) | 0.50352 (17) | 0.0642 (4) | |
C5 | 0.29161 (15) | −0.0414 (2) | 0.44602 (18) | 0.0665 (5) | |
C6 | 0.25783 (15) | −0.1856 (2) | 0.47925 (19) | 0.0768 (5) | |
H6 | 0.2918 | −0.2696 | 0.4406 | 0.092* | |
C7 | 0.17310 (17) | −0.2063 (2) | 0.5703 (2) | 0.0793 (6) | |
H7 | 0.1502 | −0.3043 | 0.5917 | 0.095* | |
C8 | 0.22711 (16) | 0.3550 (2) | 0.5194 (2) | 0.0889 (6) | |
H8A | 0.1438 | 0.3535 | 0.4938 | 0.133* | |
H8B | 0.2588 | 0.4447 | 0.4804 | 0.133* | |
H8C | 0.2453 | 0.3554 | 0.6227 | 0.133* | |
C9 | 0.43966 (16) | −0.1315 (2) | 0.3099 (2) | 0.0812 (6) | |
H9A | 0.3872 | −0.2051 | 0.2583 | 0.097* | |
H9B | 0.4838 | −0.1823 | 0.3916 | 0.097* | |
C10 | 0.52047 (17) | −0.0694 (3) | 0.2129 (2) | 0.0930 (7) | |
H10A | 0.4761 | −0.0211 | 0.1314 | 0.140* | |
H10B | 0.5659 | −0.1507 | 0.1799 | 0.140* | |
H10C | 0.5717 | 0.0037 | 0.2645 | 0.140* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0975 (10) | 0.0929 (10) | 0.1040 (11) | −0.0069 (8) | 0.0448 (9) | −0.0036 (8) |
O2 | 0.0900 (8) | 0.0605 (7) | 0.1034 (9) | 0.0055 (6) | 0.0452 (7) | 0.0059 (6) |
O3 | 0.0846 (8) | 0.0715 (8) | 0.0838 (8) | 0.0123 (6) | 0.0332 (7) | 0.0019 (6) |
C1 | 0.0844 (12) | 0.0782 (12) | 0.0887 (13) | −0.0103 (10) | 0.0265 (10) | 0.0006 (10) |
C2 | 0.0694 (10) | 0.0658 (11) | 0.0714 (10) | −0.0022 (8) | 0.0152 (8) | 0.0024 (8) |
C3 | 0.0679 (10) | 0.0652 (10) | 0.0715 (10) | 0.0047 (8) | 0.0170 (8) | −0.0022 (8) |
C4 | 0.0661 (9) | 0.0578 (10) | 0.0706 (10) | 0.0041 (7) | 0.0162 (8) | 0.0045 (7) |
C5 | 0.0675 (9) | 0.0694 (11) | 0.0643 (9) | 0.0050 (8) | 0.0153 (8) | 0.0017 (8) |
C6 | 0.0872 (12) | 0.0633 (11) | 0.0834 (12) | 0.0063 (9) | 0.0239 (10) | −0.0036 (9) |
C7 | 0.0920 (13) | 0.0600 (11) | 0.0887 (12) | −0.0049 (9) | 0.0224 (10) | 0.0028 (9) |
C8 | 0.0965 (14) | 0.0606 (11) | 0.1171 (16) | 0.0027 (9) | 0.0431 (12) | −0.0010 (10) |
C9 | 0.0803 (12) | 0.0827 (12) | 0.0839 (12) | 0.0139 (10) | 0.0235 (10) | −0.0118 (10) |
C10 | 0.0837 (13) | 0.1090 (17) | 0.0911 (14) | 0.0149 (11) | 0.0294 (11) | −0.0087 (12) |
O1—C1 | 1.204 (2) | C6—C7 | 1.387 (2) |
O2—C4 | 1.3618 (18) | C6—H6 | 0.9300 |
O2—C8 | 1.421 (2) | C7—H7 | 0.9300 |
O3—C5 | 1.355 (2) | C8—H8A | 0.9600 |
O3—C9 | 1.433 (2) | C8—H8B | 0.9600 |
C1—C2 | 1.457 (2) | C8—H8C | 0.9600 |
C1—H1 | 0.9300 | C9—C10 | 1.484 (3) |
C2—C7 | 1.376 (2) | C9—H9A | 0.9700 |
C2—C3 | 1.398 (2) | C9—H9B | 0.9700 |
C3—C4 | 1.368 (2) | C10—H10A | 0.9600 |
C3—H3 | 0.9300 | C10—H10B | 0.9600 |
C4—C5 | 1.411 (2) | C10—H10C | 0.9600 |
C5—C6 | 1.374 (2) | ||
C4—O2—C8 | 117.27 (13) | C2—C7—H7 | 119.7 |
C5—O3—C9 | 117.93 (14) | C6—C7—H7 | 119.7 |
O1—C1—C2 | 126.0 (2) | O2—C8—H8A | 109.5 |
O1—C1—H1 | 117.0 | O2—C8—H8B | 109.5 |
C2—C1—H1 | 117.0 | H8A—C8—H8B | 109.5 |
C7—C2—C3 | 119.20 (16) | O2—C8—H8C | 109.5 |
C7—C2—C1 | 119.78 (17) | H8A—C8—H8C | 109.5 |
C3—C2—C1 | 121.02 (17) | H8B—C8—H8C | 109.5 |
C4—C3—C2 | 120.83 (16) | O3—C9—C10 | 108.51 (16) |
C4—C3—H3 | 119.6 | O3—C9—H9A | 110.0 |
C2—C3—H3 | 119.6 | C10—C9—H9A | 110.0 |
O2—C4—C3 | 125.22 (15) | O3—C9—H9B | 110.0 |
O2—C4—C5 | 115.38 (14) | C10—C9—H9B | 110.0 |
C3—C4—C5 | 119.40 (15) | H9A—C9—H9B | 108.4 |
O3—C5—C6 | 125.06 (16) | C9—C10—H10A | 109.5 |
O3—C5—C4 | 115.17 (15) | C9—C10—H10B | 109.5 |
C6—C5—C4 | 119.77 (16) | H10A—C10—H10B | 109.5 |
C5—C6—C7 | 120.13 (17) | C9—C10—H10C | 109.5 |
C5—C6—H6 | 119.9 | H10A—C10—H10C | 109.5 |
C7—C6—H6 | 119.9 | H10B—C10—H10C | 109.5 |
C2—C7—C6 | 120.65 (17) | ||
O1—C1—C2—C7 | 177.57 (19) | O2—C4—C5—O3 | 0.8 (2) |
O1—C1—C2—C3 | −2.7 (3) | C3—C4—C5—O3 | −178.53 (14) |
C7—C2—C3—C4 | 0.2 (3) | O2—C4—C5—C6 | −178.87 (16) |
C1—C2—C3—C4 | −179.46 (15) | C3—C4—C5—C6 | 1.7 (3) |
C8—O2—C4—C3 | 0.3 (3) | O3—C5—C6—C7 | 179.56 (16) |
C8—O2—C4—C5 | −179.05 (16) | C4—C5—C6—C7 | −0.8 (3) |
C2—C3—C4—O2 | 179.20 (15) | C3—C2—C7—C6 | 0.8 (3) |
C2—C3—C4—C5 | −1.5 (3) | C1—C2—C7—C6 | −179.51 (17) |
C9—O3—C5—C6 | −6.9 (3) | C5—C6—C7—C2 | −0.5 (3) |
C9—O3—C5—C4 | 173.41 (14) | C5—O3—C9—C10 | 177.85 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.93 | 2.67 | 3.547 (3) | 157 |
C10—H10B···O2ii | 0.96 | 2.62 | 3.525 (2) | 156 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1i | 0.93 | 2.67 | 3.547 (3) | 157.3 |
C10—H10B···O2ii | 0.96 | 2.62 | 3.525 (2) | 156.4 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
This work was supported by the Ministry of Education, Science and Technological development of the Republic of Serbia (projects No. 172014, 172035 and 172034).
References
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kubra, R., Murthy, P. & Mohan Rao, J. (2013). J. Food Sci. 78, M64–M69. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d'A., Pereira, M. M. & Serra, A. C. (1997). Acta Cryst. C53, 494–496. CSD CrossRef IUCr Journals Google Scholar
Mostahar, S., Katun, P. & Islam, A. (2007). J. Biol. Sci. 7, 514–519. CAS Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Panda, S. S. & Chowdary, P. V. R. (2008). Indian J. Pharm. Sci. 70, 208–215. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tatsuzaki, J., Bastow, K. F., Nakagawa-Goto, K., Nakamura, S., Itokawa, H. & Lee, K.-H. (2006). J. Nat. Prod. 69, 1445–1449. Web of Science CrossRef PubMed CAS Google Scholar
Velavan, R., Sureshkumar, P., Sivakumar, K. & Natarajan, S. (1995). Acta Cryst. C51, 1131–1133. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dehydrozingerone derivatives belong to an important class of compounds, not only due to their different bioactivities (Tatsuzaki et al., 2006; Kubra et al., 2013), but also as the key substrates in synthesis of some heterocycles (Panda et al., 2008), particularly flavones (Mostahar et al., 2007). They can be synthesized by condensation of the corresponding aromatic aldehyde with acetone. Thus, starting substrate in synthesis of ethyl derivative of dehydrozingerone is 4-ethoxy-3-methoxybenzaldehyde (I), compound obtained by simple methylation of vanillin.
In the title structure, all non-hydrogen atoms are approximately coplanar with a mean deviation of 0.046 Å (Fig. 1). A somewhat higher displacement of 0.102 (2) Å has been observed for atom C9 belonging to ethoxy moiety. The dihedral angle between the best planes through the phenyl ring and the non-H atoms of ethoxy moiety is 8.1 (1)°. The aromatic C—C bond lengths are in the expected range of 1.368 (2)–1.411 (2) Å (Table 2). The five C—O bonds have various lengths. The shortest length is found for the carbonyl C1—O1 = 1.204 (2) bond in accordance with the prevaling double bond character.
The crystal structure exhibits no conventional hydrogen bonding. The molecules are held together by weak C–H···O and van der Waals interactions. The two C—H···O intermolecular contacts shorter than the sum of the van der Waals radii [C1—H1 = 0.93; H1···O1= 2.67 Å; C1—H1···O1i = 157.3° and C10—H10B = 0.96, H10B···O2 = 2.62 Å, C10—H10B···O2ii = 156.4° (symmetry codes: i = -x,+y - 1/2,-z + 3/2; ii = -x + 1,+y - 1/2,-z + 1/2)] connect the molecules into a sheet parallel to (101). These sheets further connect into three-dimensional structure by C—H···π interaction [C10—H10c = 0.96, H10c···Cg1 = 3.00 Å C10—H10c···Cg1iii = 147° [(symmetry code: iii = -x + 1,-y,-z + 1)] (Fig. 2). The approximate distance between the adjacent parallel sheets is 3.5 Å. For related crystal structures, see Matos Beja et al. (1997) and Velavan et al. (1995).