inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dilithium manganese(II) catena-tetra­kis­(polyphosphate), Li2Mn(PO3)4

crossmark logo

aLaboratoire de Physico-Chimie des Matériaux Inorganiques, Faculté des Sciences Aïn Chock, Casablanca, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: moutataouia_m@yahoo.fr

(Received 25 November 2013; accepted 27 November 2013; online 4 December 2013)

The poly-phosphate Li2Mn(PO3)4 was synthesized and its structure characterized from powder diffraction data by Averbuch-Pouchot & Durif [J. Appl. Cryst. (1972), 5, 307–308]. These authors showed that the structure of this phosphate is isotypic to that of Li2Cd(PO3)4, as confirmed by the present work. The structure is built from infinite zigzag polyphosphate chains, [(PO3)]n, extending along [010]. These polyphosphate chains are connected by sharing vertices with MnO6 octa­hedra (site symmetry .m.) and Li2O7 polyhedra, which form also chains parallel to [010]. Adjacent chains are linked by common vertices of polyhedra in such a way as to form porous layers parallel to (100). The three-dimensional framework delimits empty channels extending along [010].

Related literature

For potential applications of lithium and manganese phosphates, see: Parada et al. (2003[Parada, C., Perles, J., Sáez-Puche, R., Ruiz-Valero, C. & Snejko, N. (2003). Chem. Mater. 15, 3347-3351.]); Jouini et al. (2003[Jouini, A., Férid, M., Gacon, J. C. & Trabelsi-Ayadi, M. (2003). Opt. Mater. 24, 175-180.]); Bian et al. (2003[Bian, J.-J., Kim, D.-W. & Hong, K. S. (2003). J. Eur. Ceram. Soc. 23, 2589-2592.]); Aravindan et al. (2013[Aravindan, V., Gnanaraj, J., Lee, Y.-S. & Madhavi, S. (2013). J. Mater. Chem. A, 1, 3518-3539.]); Drezen et al. (2007[Drezen, T., Kwon, N.-H., Bowen, P., Teerlinck, I. & Isono, M. (2007). J. Power Sources, 174, 949-953.]); Bakenov & Taniguchi (2010[Bakenov, Z. & Taniguchi, I. (2010). J. Electrochem. Soc. 157, 4, A430-A436.]); Adam et al. (2008[Adam, L., Guesdon, A. & Raveau, B. (2008). J. Solid State Chem. 181, 3110-3115.]). For a previous structure determination from powder data, see: Averbuch-Pouchot & Durif (1972[Averbuch-Pouchot, M. T. & Durif, A. (1972). J. Appl. Cryst. 5, 307-308.]). For the isotypic structure of Li2Cd(PO3)4, see: Averbuch-Pouchot et al. (1976[Averbuch-Pouchot, M. T., Tordjman, I. & Guitel, J. C. (1976). Acta Cryst. B32, 2953-2956.]).

Experimental

Crystal data
  • Li2Mn(PO3)4

  • Mr = 384.70

  • Orthorhombic, P n m a

  • a = 9.4295 (2) Å

  • b = 9.2755 (2) Å

  • c = 10.0972 (2) Å

  • V = 883.13 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 296 K

  • 0.23 × 0.16 × 0.13 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.651, Tmax = 0.743

  • 13605 measured reflections

  • 2520 independent reflections

  • 2318 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.051

  • S = 1.09

  • 2520 reflections

  • 97 parameters

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Due to their interesting physical properties, the lithium and manganese phosphates have a wide domain of applications (Parada et al., 2003; Jouini et al., 2003; Bian et al., 2003). Among these mixed phosphates, the LiMnPO4 monophosphate is the most studied, followed by the Li2MnP2O7 diphosphate and the Li2Mn(PO3)4 polyphosphate, which is the object of this work. These phosphate materials are being extensively studied as lithium-ion battery electrodes (Aravindan et al., 2013; Drezen et al., 2007; Bakenov & Taniguchi, 2010; Adam et al., 2008).

Averbuch-Pouchot & Durif (1972) have synthesized the powder of the polyphosphate Li2Mn(PO3)4 and have shown that the structure of this phosphate is isotype to that of Li2Cd(PO3)4 (Averbuch-Pouchot et al., 1976). The present paper describes the crystal structure of the title compound from single-crystal X-ray diffraction data.

The partial three-dimensional plot in Fig.1 illustrates the connection ion-oxygen polyhedra in the crystal structure of the title compound. The phosphorous atoms have a tetrahedral environment with P–O distances varying between 1.4650 (9) Å and 1.5932 (7) Å and the angles O–P–O are in the range of 95.22 (5)–119.93 (5) °. These value are within the limits generally observed in the crystal chemistry of condensed phosphate. The Mn2+ cation is surrounded by a roughly octahedral arrangement of six oxygen atoms and share one edge with Li2O7 polyhedron in which each Li is coordinated to five oxygen atoms.

The structure of Li2Mn(PO3)4 consists of edge-sharing [MnO6] octahedra and [Li2O7] polyhedra forming an infinite linear chains [Mn–Li–Li–Mn] running parallel to [100], as shown in Fig.2. The (PO3)-n polyphosphate form also infinite zigzag chains propaging along b axis. Adjacent chains are linked together by common vertices of polyhedra in such a way as to form porous layers parallel to (100). The resulting 3-D framework presents empty tunnels running along [010] directions (Fig.2).

Related literature top

For potential applications of lithium and manganese phosphates, see: Parada et al. (2003); Jouini et al. (2003); Bian et al. (2003); Aravindan et al. (2013); Drezen et al. (2007); Bakenov & Taniguchi (2010); Adam et al. (2008). For a previous structure determination from powder data, see: Averbuch-Pouchot & Durif (1972). For the isotypic structure of Li2Cd(PO3)4, see: Averbuch-Pouchot et al. (1976).

Experimental top

The synthesis of the polyphosphate Li2MnP4O12 by wet process, was made starting from the stoechiometric proportions of (LiNO3 99,9%) (I); (Mn(NO3)2,4H2O 99%) (II) and ((NH4)2HPO4 99%) (III). The starting reagents were made in distilled water solution. A drop by drop of the solution (II) was added on the solution (I), under mechanical agitation, and thereafter the solution (III). The mixture is carried to 373 K until total evaporation of the solution. The residue thus obtained was heated in air, intersected with grindings, until a final temperature of 773 K during 4 h. The final products are of violet colour.

The previous powder of the Li2MnP4O12 phase synthesized by wet process introduced into a platinum crucible, then carried gradually heated at a temperature higher than its melting point (973 K) during 2 h, followed-up by a slow cooling about 5 °K per hour until 773 K. Then, the power supply of the furnace is cut, and cooling is continued until the ambient temperature. The single crystals obtained are of violet colour.

Refinement top

The highest peak and the deepest hole in the final Fourier map are at 0.51 Å and 0.97 Å, from O3 and P1, respectively. The not significant bonds and angles were removed from the CIF file.

Structure description top

Due to their interesting physical properties, the lithium and manganese phosphates have a wide domain of applications (Parada et al., 2003; Jouini et al., 2003; Bian et al., 2003). Among these mixed phosphates, the LiMnPO4 monophosphate is the most studied, followed by the Li2MnP2O7 diphosphate and the Li2Mn(PO3)4 polyphosphate, which is the object of this work. These phosphate materials are being extensively studied as lithium-ion battery electrodes (Aravindan et al., 2013; Drezen et al., 2007; Bakenov & Taniguchi, 2010; Adam et al., 2008).

Averbuch-Pouchot & Durif (1972) have synthesized the powder of the polyphosphate Li2Mn(PO3)4 and have shown that the structure of this phosphate is isotype to that of Li2Cd(PO3)4 (Averbuch-Pouchot et al., 1976). The present paper describes the crystal structure of the title compound from single-crystal X-ray diffraction data.

The partial three-dimensional plot in Fig.1 illustrates the connection ion-oxygen polyhedra in the crystal structure of the title compound. The phosphorous atoms have a tetrahedral environment with P–O distances varying between 1.4650 (9) Å and 1.5932 (7) Å and the angles O–P–O are in the range of 95.22 (5)–119.93 (5) °. These value are within the limits generally observed in the crystal chemistry of condensed phosphate. The Mn2+ cation is surrounded by a roughly octahedral arrangement of six oxygen atoms and share one edge with Li2O7 polyhedron in which each Li is coordinated to five oxygen atoms.

The structure of Li2Mn(PO3)4 consists of edge-sharing [MnO6] octahedra and [Li2O7] polyhedra forming an infinite linear chains [Mn–Li–Li–Mn] running parallel to [100], as shown in Fig.2. The (PO3)-n polyphosphate form also infinite zigzag chains propaging along b axis. Adjacent chains are linked together by common vertices of polyhedra in such a way as to form porous layers parallel to (100). The resulting 3-D framework presents empty tunnels running along [010] directions (Fig.2).

For potential applications of lithium and manganese phosphates, see: Parada et al. (2003); Jouini et al. (2003); Bian et al. (2003); Aravindan et al. (2013); Drezen et al. (2007); Bakenov & Taniguchi (2010); Adam et al. (2008). For a previous structure determination from powder data, see: Averbuch-Pouchot & Durif (1972). For the isotypic structure of Li2Cd(PO3)4, see: Averbuch-Pouchot et al. (1976).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of Li2Mn(PO3)4 crystal structure showing polyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) x - 1/2, y, -z + 3/2; (ii) x - 1/2, -y + 1/2, -z + 3/2; (iii) x, -y + 1/2, z; (iv) -x + 1/2, y + 1/2, z + 1/2; (v) -x + 1/2, -y, z + 1/2; (vi) x - 1/2, y, -z + 1/2; (vii) -x, -y, -z + 1; (viii) -x + 1/2, -y, z - 1/2.
[Figure 2] Fig. 2. Three-dimensional views of the Li2Mn(PO3)4 framework structure showing emptly tunnels running along b.
Dilithium manganese(II) catena-tetrakis(polyphosphate) top
Crystal data top
Li2Mn(PO3)4F(000) = 748
Mr = 384.70Dx = 2.893 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2520 reflections
a = 9.4295 (2) Åθ = 3.0–38.1°
b = 9.2755 (2) ŵ = 2.29 mm1
c = 10.0972 (2) ÅT = 296 K
V = 883.13 (3) Å3Block, violet
Z = 40.23 × 0.16 × 0.13 mm
Data collection top
Bruker X8 APEX
diffractometer
2520 independent reflections
Radiation source: fine-focus sealed tube2318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 38.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1613
Tmin = 0.651, Tmax = 0.743k = 1613
13605 measured reflectionsl = 1117
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.018Secondary atom site location: difference Fourier map
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.2295P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2520 reflectionsΔρmax = 0.52 e Å3
97 parametersΔρmin = 0.51 e Å3
Crystal data top
Li2Mn(PO3)4V = 883.13 (3) Å3
Mr = 384.70Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.4295 (2) ŵ = 2.29 mm1
b = 9.2755 (2) ÅT = 296 K
c = 10.0972 (2) Å0.23 × 0.16 × 0.13 mm
Data collection top
Bruker X8 APEX
diffractometer
2520 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2318 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.743Rint = 0.024
13605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01897 parameters
wR(F2) = 0.0510 restraints
S = 1.09Δρmax = 0.52 e Å3
2520 reflectionsΔρmin = 0.51 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.012320 (17)0.25000.697042 (16)0.00824 (4)
P10.30533 (3)0.25000.39321 (3)0.00708 (5)
P20.29220 (2)0.03744 (2)0.610286 (19)0.00742 (4)
P30.22718 (3)0.25000.98429 (3)0.00661 (5)
O10.14967 (9)0.25000.37467 (9)0.01356 (15)
O20.40037 (9)0.25000.27630 (8)0.01232 (14)
O30.35189 (7)0.11634 (8)0.48227 (7)0.01946 (13)
O40.13548 (6)0.05951 (7)0.62027 (6)0.01146 (10)
O50.38358 (7)0.07235 (7)0.72611 (7)0.01537 (11)
O60.32753 (6)0.12374 (7)0.57702 (7)0.01270 (10)
O70.14661 (10)0.25000.86024 (9)0.01801 (18)
O80.38557 (9)0.25000.98024 (8)0.01291 (15)
Li10.0036 (2)0.1031 (3)0.3305 (3)0.0319 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00776 (6)0.00889 (7)0.00807 (7)0.0000.00102 (5)0.000
P10.00667 (10)0.00812 (11)0.00646 (10)0.0000.00036 (7)0.000
P20.00715 (7)0.00576 (8)0.00935 (8)0.00010 (5)0.00026 (5)0.00046 (6)
P30.00626 (10)0.00710 (11)0.00645 (10)0.0000.00036 (7)0.000
O10.0071 (3)0.0192 (4)0.0144 (3)0.0000.0017 (3)0.000
O20.0121 (3)0.0163 (4)0.0086 (3)0.0000.0034 (3)0.000
O30.0135 (2)0.0205 (3)0.0243 (3)0.0064 (2)0.0071 (2)0.0153 (3)
O40.0076 (2)0.0110 (2)0.0158 (2)0.00088 (18)0.00164 (17)0.0008 (2)
O50.0134 (2)0.0165 (3)0.0162 (3)0.0019 (2)0.0040 (2)0.0070 (2)
O60.0125 (2)0.0068 (2)0.0188 (3)0.00120 (18)0.0044 (2)0.0039 (2)
O70.0158 (4)0.0279 (5)0.0103 (3)0.0000.0058 (3)0.000
O80.0065 (3)0.0222 (4)0.0099 (3)0.0000.0015 (2)0.000
Li10.0186 (8)0.0241 (10)0.0530 (14)0.0087 (7)0.0128 (8)0.0163 (10)
Geometric parameters (Å, º) top
Mn1—O72.0782 (9)P2—O31.5885 (7)
Mn1—O8i2.1523 (8)P3—O71.4650 (9)
Mn1—O5i2.1888 (6)P3—O81.4941 (8)
Mn1—O5ii2.1888 (6)P3—O6iv1.5857 (6)
Mn1—O4iii2.2519 (6)P3—O6v1.5857 (6)
Mn1—O42.2519 (6)Li1—O11.988 (2)
P1—O11.4797 (9)Li1—O2vi1.992 (2)
P1—O21.4821 (9)Li1—O4vii2.060 (2)
P1—O3iii1.5932 (7)Li1—O5viii2.211 (3)
P1—O31.5932 (7)Li1—O8i2.598 (3)
P2—O51.4883 (6)Li1—Li1iii2.725 (5)
P2—O41.4953 (6)Li1—Mn1vii3.290 (2)
P2—O61.5681 (6)
O7—Mn1—O8i176.19 (4)O5—P2—O6104.64 (4)
O7—Mn1—O5i93.26 (3)O4—P2—O6110.79 (4)
O8i—Mn1—O5i89.25 (2)O5—P2—O3109.51 (4)
O7—Mn1—O5ii93.26 (3)O4—P2—O3110.00 (4)
O8i—Mn1—O5ii89.25 (2)O6—P2—O3100.93 (4)
O5i—Mn1—O5ii97.67 (4)O7—P3—O8119.67 (5)
O7—Mn1—O4iii87.63 (2)O7—P3—O6iv109.64 (4)
O8i—Mn1—O4iii90.01 (2)O8—P3—O6iv109.97 (3)
O5i—Mn1—O4iii177.06 (2)O7—P3—O6v109.64 (4)
O5ii—Mn1—O4iii79.48 (2)O8—P3—O6v109.97 (3)
O7—Mn1—O487.63 (2)O6iv—P3—O6v95.22 (5)
O8i—Mn1—O490.01 (2)O1—Li1—O2vi89.50 (9)
O5i—Mn1—O479.48 (2)O1—Li1—O4vii152.74 (16)
O5ii—Mn1—O4177.06 (2)O2vi—Li1—O4vii108.68 (9)
O4iii—Mn1—O4103.37 (3)O1—Li1—O5viii106.16 (10)
O1—P1—O2119.93 (5)O2vi—Li1—O5viii118.72 (14)
O1—P1—O3iii110.17 (3)O4vii—Li1—O5viii83.24 (9)
O2—P1—O3iii106.43 (3)O1—Li1—O8i76.84 (10)
O1—P1—O3110.17 (3)O2vi—Li1—O8i80.21 (9)
O2—P1—O3106.43 (3)O4vii—Li1—O8i86.20 (9)
O3iii—P1—O3102.18 (6)O5viii—Li1—O8i160.51 (11)
O5—P2—O4119.30 (4)
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x1/2, y+1/2, z+3/2; (iii) x, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y, z+1/2; (vi) x1/2, y, z+1/2; (vii) x, y, z+1; (viii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaLi2Mn(PO3)4
Mr384.70
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)9.4295 (2), 9.2755 (2), 10.0972 (2)
V3)883.13 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.23 × 0.16 × 0.13
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.651, 0.743
No. of measured, independent and
observed [I > 2σ(I)] reflections
13605, 2520, 2318
Rint0.024
(sin θ/λ)max1)0.869
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.051, 1.09
No. of reflections2520
No. of parameters97
Δρmax, Δρmin (e Å3)0.52, 0.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAdam, L., Guesdon, A. & Raveau, B. (2008). J. Solid State Chem. 181, 3110–3115.  Web of Science CrossRef CAS Google Scholar
First citationAravindan, V., Gnanaraj, J., Lee, Y.-S. & Madhavi, S. (2013). J. Mater. Chem. A, 1, 3518–3539.  Web of Science CrossRef CAS Google Scholar
First citationAverbuch-Pouchot, M. T. & Durif, A. (1972). J. Appl. Cryst. 5, 307–308.  CrossRef CAS IUCr Journals Google Scholar
First citationAverbuch-Pouchot, M. T., Tordjman, I. & Guitel, J. C. (1976). Acta Cryst. B32, 2953–2956.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBakenov, Z. & Taniguchi, I. (2010). J. Electrochem. Soc. 157, 4, A430–A436.  Google Scholar
First citationBian, J.-J., Kim, D.-W. & Hong, K. S. (2003). J. Eur. Ceram. Soc. 23, 2589–2592.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrezen, T., Kwon, N.-H., Bowen, P., Teerlinck, I. & Isono, M. (2007). J. Power Sources, 174, 949–953.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJouini, A., Férid, M., Gacon, J. C. & Trabelsi-Ayadi, M. (2003). Opt. Mater. 24, 175–180.  Web of Science CrossRef CAS Google Scholar
First citationParada, C., Perles, J., Sáez-Puche, R., Ruiz-Valero, C. & Snejko, N. (2003). Chem. Mater. 15, 3347–3351.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds