inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium trinickel(II) orthophosphate diphosphate, KNi3(PO4)P2O7

aLaboratoire de Physico-Chimie des Matériaux Inorganiques, Faculté des Sciences Aïn Chock, Casablanca, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: moutataouia_m@yahoo.fr

(Received 13 December 2013; accepted 17 December 2013; online 24 December 2013)

The structure of the title compound is characterized by the presence of two different anions, (PO4)3− and (P2O7)4− with an eclipsed conformation. The crystal structure consists of edge-sharing [NiO6] octa­hedra forming an [Ni3O14] chain running parallel to [001]. Adjacent chains are connected through edges and apices to PO4 and P2O7 groups in such a way as to build a three-dimensional host lattice. The resulting framework presents inter­secting tunnels running along [010] and [101] in which the 11-coordinated potassium cation is located. The crystal structure of this new phosphate probably represents a new structural type.

Related literature

For example of crystal structures with mixed phosphate anions, see: Ayed (2012[Ayed, A. (2012). C. R. Chim. 15, 603-608.]); Palkina & Maksimova (1980[Palkina, K. K. & Maksimova, S. I. (1980). Dokl. Akad. Nauk SSSR, 250, 1130-1134.]); Nagornyi et al. (1996[Nagornyi, P. G., Kapshuk, A. A., Sobolev, A. N. & Golego, N. V. (1996). Kristallografiya, 41, 835-838.]); Sanz et al. (1996[Sanz, F., Prada, C., Amado, U., Monge, M. A. & Ruiz-Valero, C. (1996). J. Solid State Chem. 123, 129-139.], 1999[Sanz, F., Prada, C., Rojo, J. M. & Ruiz-Valero, C. (1999). Chem. Mater. 11, 2673-2679.], 2001[Sanz, F., Prada, C., Rojo, J. M. & Ruiz-Valero, C. (2001). Chem. Mater. 13, 1334-1340.]).

Experimental

Crystal data
  • KNi3(PO4)P2O7

  • Mr = 484.14

  • Monoclinic, P 21 /n

  • a = 9.8591 (3) Å

  • b = 9.3953 (3) Å

  • c = 9.9778 (3) Å

  • β = 118.965 (1)°

  • V = 808.63 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.09 mm−1

  • T = 296 K

  • 0.25 × 0.18 × 0.12 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.223, Tmax = 0.443

  • 14936 measured reflections

  • 3543 independent reflections

  • 3352 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.050

  • S = 1.06

  • 3543 reflections

  • 164 parameters

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Despite the large number of new structures of transition metal phosphates determined in recent years, only a limited number of phosphates show the existence of P2O7 diphosphate and PO4 monophosphate groups in their structures. Of these compounds, we report AgCr2(PO4)(P2O7) discovered by Ayed (2012). The K2Ni4(PO4)2(P2O7), Na4Ni5(PO4)2(P2O7)2 and Na4MII3(PO4)2(P2O7), (MII = Mn, Co, Ni) compounds were respectively developed by Palkina & Maksimova (1980), Nagornyi et al. (1996) and Sanz et al. (1996, 1999 and 2001). In the present work, we report the synthesis and structural determination of the new mixed anion phosphate, KNi3(PO4)(P2O7), from single-crystal X-ray diffraction data.

The partial three-dimensional plot in Fig.1 shows the connection ion-oxygen polyhedra in the crystal structure of the title compound. In the PO4 tetrahedron, the P–O distances and O–P–O angles respectively between 1.5170—1.5916 (9) Å and 104.70—114.66 (5) Å are consistent with values found in the literature. In the P2O7 group, the values of the P–O distances are in the range of 1.4924—1.5659 (9) Å while the shared oxygen is at P2–O8–P3 between 1.5971—1.6408 (9) Å and the angle P2—O8—P3 = 125.38 (6)°. P2O7 adopts an eclipsed conformation as indicated by the dihedral angle of 7.42°, between the two plans through O5P2O8 and O8P3O9.

In this structure the three independent nickel atoms occupy regular octahedra with Ni–O distances between 2.0027 (9) Å and 2.2284 (9) Å. The [Ni1O6], [Ni2O6] and [Ni3O6] octahedra share edges and form a chain directed along the c axis. The chains are linked together by PO4 and P2O7 tetrahedra and by sharing two edges of two octahedra in the way to form a layer perpendicular to the b axis. The potassium atom K1, is coordinated to eleven oxygen atoms building a very distorted polyhedron.

The resulting 3-D framework presents intersecting tunnels running along the [010] and [001] directions, where the potassium cation is located (Fig.2). Probably, the structure of this phosphate represents a new structural type.

Related literature top

For example of crystal structures with mixed phosphate anions, see: Ayed (2012); Palkina & Maksimova (1980); Nagornyi et al. (1996); Sanz et al. (1996, 1999, 2001).

Experimental top

KNi3(PO4)P2O7 is obtained during the preparation of NaK5Ni4Co(P2O7)4 diphosphate. The powder of this phosphate was prepared by solid state reaction, by mixing the nominal proportions reagents NaNO3, KNO3, Ni(NO3)2,6H2O, Co(NO3)2,6H2O and (NH4)H2PO4. The mixture is put into a platinum crucible, and subjected to thermal treatment (473 K, 673 K and 873 K) interspersed with grinding until a temperature of 1073 K. The final powder is brown colour.

The prepared powder by the solid route is gradually increased to a temperature above its melting point (1273 K) for 2 h, followed by slow cooling to about 5 K per hour to 673 K. Then, the power supply of the furnace is cut, and cooling is continued to room temperature. Single crystals of brown colour are obtained.

Refinement top

The highest peak and the deepest hole in the final Fourier map are at 0.70 Å and 0.84 Å, respectively, from O3 and Ni2. The not significant bonds and angles were removed from the CIF file.

Structure description top

Despite the large number of new structures of transition metal phosphates determined in recent years, only a limited number of phosphates show the existence of P2O7 diphosphate and PO4 monophosphate groups in their structures. Of these compounds, we report AgCr2(PO4)(P2O7) discovered by Ayed (2012). The K2Ni4(PO4)2(P2O7), Na4Ni5(PO4)2(P2O7)2 and Na4MII3(PO4)2(P2O7), (MII = Mn, Co, Ni) compounds were respectively developed by Palkina & Maksimova (1980), Nagornyi et al. (1996) and Sanz et al. (1996, 1999 and 2001). In the present work, we report the synthesis and structural determination of the new mixed anion phosphate, KNi3(PO4)(P2O7), from single-crystal X-ray diffraction data.

The partial three-dimensional plot in Fig.1 shows the connection ion-oxygen polyhedra in the crystal structure of the title compound. In the PO4 tetrahedron, the P–O distances and O–P–O angles respectively between 1.5170—1.5916 (9) Å and 104.70—114.66 (5) Å are consistent with values found in the literature. In the P2O7 group, the values of the P–O distances are in the range of 1.4924—1.5659 (9) Å while the shared oxygen is at P2–O8–P3 between 1.5971—1.6408 (9) Å and the angle P2—O8—P3 = 125.38 (6)°. P2O7 adopts an eclipsed conformation as indicated by the dihedral angle of 7.42°, between the two plans through O5P2O8 and O8P3O9.

In this structure the three independent nickel atoms occupy regular octahedra with Ni–O distances between 2.0027 (9) Å and 2.2284 (9) Å. The [Ni1O6], [Ni2O6] and [Ni3O6] octahedra share edges and form a chain directed along the c axis. The chains are linked together by PO4 and P2O7 tetrahedra and by sharing two edges of two octahedra in the way to form a layer perpendicular to the b axis. The potassium atom K1, is coordinated to eleven oxygen atoms building a very distorted polyhedron.

The resulting 3-D framework presents intersecting tunnels running along the [010] and [001] directions, where the potassium cation is located (Fig.2). Probably, the structure of this phosphate represents a new structural type.

For example of crystal structures with mixed phosphate anions, see: Ayed (2012); Palkina & Maksimova (1980); Nagornyi et al. (1996); Sanz et al. (1996, 1999, 2001).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of KNi3(PO4)P2O7 crystal structure showing polyhedra linkage. Displacement ellipsoids are drawn at the 70% probability level. Symmetry codes:(i) x + 1/2, -y + 1/2, z + 1/2; (ii) -x + 3/2, y - 1/2, -z + 3/2; (iii) x, y - 1, z; (iv) -x + 2, -y + 1, -z + 1; (v) x + 1/2, -y + 3/2, z + 1/2; (vi) x - 1/2, -y + 1/2, z - 1/2; (vii) -x + 3/2, y - 1/2, -z + 1/2; (viii) x - 1/2, -y + 3/2, z - 1/2; (ix) -x + 3/2, y + 1/2, -z + 3/2; (x) -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. Projection views of the KNi3(PO4)P2O7 framework structure showing tunnels running along b directions where the potassium atoms are located.
Potassium trinickel(II) orthophosphate diphosphate top
Crystal data top
KNi3(PO4)P2O7F(000) = 944
Mr = 484.14Dx = 3.977 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3543 reflections
a = 9.8591 (3) Åθ = 3.2–35.0°
b = 9.3953 (3) ŵ = 8.09 mm1
c = 9.9778 (3) ÅT = 296 K
β = 118.965 (1)°Block, brown
V = 808.63 (4) Å30.25 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
3543 independent reflections
Radiation source: fine-focus sealed tube3352 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 35.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.223, Tmax = 0.443k = 1215
14936 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.021P)2 + 0.5342P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.69 e Å3
3543 reflectionsΔρmin = 0.91 e Å3
164 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0100 (4)
Crystal data top
KNi3(PO4)P2O7V = 808.63 (4) Å3
Mr = 484.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8591 (3) ŵ = 8.09 mm1
b = 9.3953 (3) ÅT = 296 K
c = 9.9778 (3) Å0.25 × 0.18 × 0.12 mm
β = 118.965 (1)°
Data collection top
Bruker X8 APEX
diffractometer
3543 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3352 reflections with I > 2σ(I)
Tmin = 0.223, Tmax = 0.443Rint = 0.036
14936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020164 parameters
wR(F2) = 0.0500 restraints
S = 1.06Δρmax = 0.69 e Å3
3543 reflectionsΔρmin = 0.91 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.861648 (18)0.127830 (16)0.624602 (19)0.00491 (4)
Ni21.007773 (18)0.632051 (17)0.603321 (18)0.00441 (4)
Ni30.679301 (17)0.131207 (17)0.264248 (18)0.00438 (4)
K10.50173 (3)0.73539 (3)0.41894 (4)0.01315 (6)
P10.82799 (3)0.83779 (3)0.43146 (3)0.00345 (5)
P20.69371 (3)0.42611 (3)0.42330 (3)0.00344 (6)
P30.85111 (3)0.44065 (3)0.75246 (3)0.00384 (6)
O10.96823 (10)0.77074 (9)0.41635 (10)0.00519 (14)
O20.82563 (10)1.00027 (9)0.43452 (10)0.00565 (14)
O30.84288 (10)0.77158 (10)0.57665 (10)0.00698 (15)
O40.68760 (10)0.77531 (10)0.28581 (10)0.00575 (14)
O50.54105 (10)0.47889 (10)0.30043 (10)0.00712 (15)
O60.83385 (10)0.49624 (10)0.41561 (10)0.00516 (14)
O70.70827 (10)0.26402 (9)0.43661 (10)0.00567 (14)
O80.70879 (10)0.48003 (10)0.58176 (10)0.00553 (14)
O90.81763 (10)0.52456 (10)0.86045 (10)0.00722 (15)
O100.85298 (11)0.28110 (10)0.76671 (11)0.00720 (15)
O110.99874 (10)0.49156 (10)0.74974 (10)0.00609 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00522 (7)0.00507 (8)0.00467 (7)0.00009 (4)0.00258 (6)0.00000 (5)
Ni20.00475 (7)0.00416 (7)0.00444 (7)0.00088 (4)0.00232 (6)0.00091 (4)
Ni30.00555 (7)0.00355 (8)0.00402 (7)0.00021 (4)0.00230 (6)0.00010 (4)
K10.01425 (12)0.01237 (13)0.01689 (13)0.00032 (9)0.01076 (10)0.00072 (10)
P10.00407 (11)0.00287 (12)0.00361 (12)0.00047 (8)0.00202 (9)0.00016 (9)
P20.00370 (11)0.00332 (12)0.00354 (12)0.00001 (8)0.00194 (9)0.00022 (9)
P30.00463 (11)0.00382 (12)0.00401 (12)0.00023 (9)0.00284 (9)0.00035 (9)
O10.0048 (3)0.0046 (3)0.0073 (4)0.0006 (3)0.0038 (3)0.0003 (3)
O20.0076 (3)0.0031 (4)0.0053 (3)0.0008 (3)0.0025 (3)0.0000 (3)
O30.0092 (4)0.0073 (4)0.0064 (4)0.0025 (3)0.0053 (3)0.0023 (3)
O40.0045 (3)0.0050 (4)0.0061 (3)0.0000 (3)0.0012 (3)0.0008 (3)
O50.0053 (3)0.0072 (4)0.0058 (4)0.0007 (3)0.0003 (3)0.0002 (3)
O60.0049 (3)0.0052 (4)0.0065 (4)0.0007 (3)0.0036 (3)0.0002 (3)
O70.0077 (3)0.0034 (4)0.0060 (4)0.0002 (3)0.0034 (3)0.0003 (3)
O80.0059 (3)0.0067 (4)0.0042 (3)0.0007 (3)0.0025 (3)0.0005 (3)
O90.0086 (4)0.0084 (4)0.0062 (4)0.0006 (3)0.0048 (3)0.0020 (3)
O100.0112 (4)0.0042 (4)0.0079 (4)0.0006 (3)0.0060 (3)0.0005 (3)
O110.0052 (3)0.0068 (4)0.0074 (4)0.0002 (3)0.0039 (3)0.0019 (3)
Geometric parameters (Å, º) top
Ni1—O5i2.0509 (9)K1—O52.7928 (10)
Ni1—O102.0515 (9)K1—O8x2.8966 (9)
Ni1—O9ii2.0840 (9)K1—O32.9627 (9)
Ni1—O2iii2.1230 (9)K1—O3viii2.9901 (9)
Ni1—O1iv2.1335 (9)K1—O7x3.0421 (9)
Ni1—O72.1668 (9)K1—O83.0578 (9)
Ni2—O112.0027 (9)K1—O11viii3.0633 (10)
Ni2—O32.0033 (9)K1—O10x3.0677 (10)
Ni2—O4v2.0223 (9)P1—O31.5170 (9)
Ni2—O6iv2.0524 (9)P1—O21.5273 (9)
Ni2—O12.1508 (9)P1—O41.5569 (9)
Ni2—O62.2284 (9)P1—O11.5916 (9)
Ni3—O2iii2.0266 (9)P2—O51.4924 (9)
Ni3—O72.0299 (9)P2—O71.5294 (9)
Ni3—O11vi2.0666 (9)P2—O61.5659 (9)
Ni3—O4vii2.1069 (9)P2—O81.5971 (9)
Ni3—O1vii2.1314 (9)P3—O91.4953 (9)
Ni3—O6vii2.1494 (9)P3—O101.5050 (10)
K1—O42.7605 (9)P3—O111.5447 (9)
K1—O9viii2.7742 (10)P3—O81.6408 (9)
K1—O10ix2.7790 (10)
O5i—Ni1—O1093.40 (4)O8x—K1—O3135.18 (3)
O5i—Ni1—O9ii96.96 (4)O4—K1—O3viii63.64 (2)
O10—Ni1—O9ii87.52 (4)O9viii—K1—O3viii81.38 (3)
O5i—Ni1—O2iii100.96 (4)O10ix—K1—O3viii172.36 (3)
O10—Ni1—O2iii165.64 (4)O5—K1—O3viii66.47 (3)
O9ii—Ni1—O2iii91.17 (4)O8x—K1—O3viii90.21 (3)
O5i—Ni1—O1iv87.13 (4)O3—K1—O3viii116.18 (3)
O10—Ni1—O1iv96.81 (3)O4—K1—O7x172.06 (3)
O9ii—Ni1—O1iv173.88 (4)O9viii—K1—O7x64.66 (3)
O2iii—Ni1—O1iv83.57 (3)O10ix—K1—O7x64.03 (3)
O5i—Ni1—O7168.65 (4)O5—K1—O7x117.91 (3)
O10—Ni1—O786.48 (4)O8x—K1—O7x49.54 (2)
O9ii—Ni1—O794.38 (3)O3—K1—O7x127.31 (3)
O2iii—Ni1—O779.36 (3)O3viii—K1—O7x116.17 (3)
O1iv—Ni1—O781.62 (3)O4—K1—O886.23 (3)
O11—Ni2—O3102.02 (4)O9viii—K1—O8161.82 (3)
O11—Ni2—O4v87.49 (4)O10ix—K1—O871.04 (3)
O3—Ni2—O4v98.00 (4)O5—K1—O849.77 (3)
O11—Ni2—O6iv89.12 (4)O8x—K1—O875.30 (3)
O3—Ni2—O6iv167.61 (4)O3—K1—O860.91 (2)
O4v—Ni2—O6iv87.78 (4)O3viii—K1—O8115.80 (3)
O11—Ni2—O1168.14 (3)O7x—K1—O8100.50 (2)
O3—Ni2—O172.17 (3)O4—K1—O11viii56.81 (3)
O4v—Ni2—O1103.41 (4)O9viii—K1—O11viii51.13 (2)
O6iv—Ni2—O195.88 (3)O10ix—K1—O11viii110.78 (3)
O11—Ni2—O687.01 (4)O5—K1—O11viii117.10 (3)
O3—Ni2—O691.05 (4)O8x—K1—O11viii140.19 (3)
O4v—Ni2—O6170.22 (4)O3—K1—O11viii84.38 (2)
O6iv—Ni2—O684.05 (4)O3viii—K1—O11viii61.90 (2)
O1—Ni2—O682.84 (3)O7x—K1—O11viii115.62 (3)
O2iii—Ni3—O784.95 (4)O8—K1—O11viii140.86 (2)
O2iii—Ni3—O11vi87.67 (4)O4—K1—O10x123.00 (3)
O7—Ni3—O11vi99.52 (4)O9viii—K1—O10x58.37 (3)
O2iii—Ni3—O4vii108.45 (4)O10ix—K1—O10x120.20 (3)
O7—Ni3—O4vii87.57 (4)O5—K1—O10x92.99 (3)
O11vi—Ni3—O4vii163.00 (4)O8x—K1—O10x50.00 (2)
O2iii—Ni3—O1vii178.03 (3)O3—K1—O10x174.53 (3)
O7—Ni3—O1vii95.54 (4)O3viii—K1—O10x59.72 (2)
O11vi—Ni3—O1vii94.13 (3)O7x—K1—O10x56.48 (2)
O4vii—Ni3—O1vii69.68 (3)O8—K1—O10x123.62 (3)
O2iii—Ni3—O6vii94.15 (3)O11viii—K1—O10x90.32 (3)
O7—Ni3—O6vii175.46 (3)O3—P1—O2112.71 (5)
O11vi—Ni3—O6vii84.87 (3)O3—P1—O4111.59 (5)
O4vii—Ni3—O6vii88.50 (3)O2—P1—O4112.35 (5)
O1vii—Ni3—O6vii85.21 (3)O3—P1—O1103.97 (5)
O4—K1—O9viii107.91 (3)O2—P1—O1114.83 (5)
O4—K1—O10ix115.00 (3)O4—P1—O1100.53 (5)
O9viii—K1—O10ix92.23 (3)O5—P2—O7114.66 (5)
O4—K1—O569.69 (3)O5—P2—O6112.50 (5)
O9viii—K1—O5145.41 (3)O7—P2—O6112.05 (5)
O10ix—K1—O5120.66 (3)O5—P2—O8106.34 (5)
O4—K1—O8x137.36 (3)O7—P2—O8105.67 (5)
O9viii—K1—O8x99.93 (3)O6—P2—O8104.70 (5)
O10ix—K1—O8x95.04 (3)O9—P3—O10117.00 (5)
O5—K1—O8x69.04 (3)O9—P3—O11112.84 (5)
O4—K1—O352.60 (3)O10—P3—O11109.97 (5)
O9viii—K1—O3118.50 (3)O9—P3—O8104.65 (5)
O10ix—K1—O363.30 (3)O10—P3—O8106.73 (5)
O5—K1—O388.24 (3)O11—P3—O8104.55 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x, y1, z; (iv) x+2, y+1, z+1; (v) x+1/2, y+3/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x1/2, y+3/2, z1/2; (ix) x+3/2, y+1/2, z+3/2; (x) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaKNi3(PO4)P2O7
Mr484.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.8591 (3), 9.3953 (3), 9.9778 (3)
β (°) 118.965 (1)
V3)808.63 (4)
Z4
Radiation typeMo Kα
µ (mm1)8.09
Crystal size (mm)0.25 × 0.18 × 0.12
Data collection
DiffractometerBruker X8 APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.223, 0.443
No. of measured, independent and
observed [I > 2σ(I)] reflections
14936, 3543, 3352
Rint0.036
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 1.06
No. of reflections3543
No. of parameters164
Δρmax, Δρmin (e Å3)0.69, 0.91

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAyed, A. (2012). C. R. Chim. 15, 603–608.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNagornyi, P. G., Kapshuk, A. A., Sobolev, A. N. & Golego, N. V. (1996). Kristallografiya, 41, 835–838.  CAS Google Scholar
First citationPalkina, K. K. & Maksimova, S. I. (1980). Dokl. Akad. Nauk SSSR, 250, 1130–1134.  CAS Google Scholar
First citationSanz, F., Prada, C., Amado, U., Monge, M. A. & Ruiz-Valero, C. (1996). J. Solid State Chem. 123, 129–139.  CrossRef CAS Web of Science Google Scholar
First citationSanz, F., Prada, C., Rojo, J. M. & Ruiz-Valero, C. (1999). Chem. Mater. 11, 2673–2679.  Web of Science CrossRef CAS Google Scholar
First citationSanz, F., Prada, C., Rojo, J. M. & Ruiz-Valero, C. (2001). Chem. Mater. 13, 1334–1340.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds