organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[5-(Pyridin-4-yl)-4-p-tolyl-4H-1,2,4-triazol-3-yl]meth­yl}acrylic acid hemi­hydrate

aDepartment of Organic Chemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. A. Jurasza 2, 85-089 Bydgoszcz, Poland, and bDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 13 December 2013; accepted 17 December 2013; online 24 December 2013)

The asymmetric unit of the title compound, 2C18H16N4O2·H2O, consists of two organic molecules and one solvent molecule. The symmetry-independent organic mol­ecules have slightly different conformations: the 1,2,4-triazole ring forms dihedral angles of 84.61 (4), 89.68 (5) and 22.38 (6)°, respectively, with the 2-propenecarbocylic, p-tolyl and 4-pyridyl groups in one independent molecule, and 71.35 (4), 82.13 (5) and 24.82 (6)°, respectively, in the second. In the crystal, mol­ecules ralated by the 21 screw axes are assembled via O—H⋯N and O—H⋯O hydrogen bonds into infinite chains and these are linked by further O—H⋯N hydrogen bonds into undulating sheets parallel to the bc plane. Adjacent sheets are connected by weak C—H⋯O inter­actions, forming a three-dimensional structure.

Related literature

For the pharmacological activity of 1,2,4-triazole derivatives, see: Amir & Shikha (2004[Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535-545.]); El-Serwy et al. (2013[El-Serwy, W. S., Mohamed, N. A., Abbas, E. M. & Abdel-Rahman, R. F. (2013). Res. Chem. Intermed. 39, 2543-2554.]); McDowell et al. (2010[McDowell, M., Gonzales, S. R., Kumarapperuma, S. C., Jeselnik, M., Arterburn, J. B. & Hanley, K. A. (2010). Antiviral Res. 87, 78-80.]); Modzelewska-Banachiewicz, Paprocka et al. (2012[Modzelewska-Banachiewicz, B., Paprocka, R., Mazur, L., Saczewski, J., Kutkowska, J., St\,epień, D. K. & Cyrański, M. (2012). J. Mol. Struct. 1022, 211-219.]); Modzelewska-Banachiewicz, Ucherek et al. (2012[Modzelewska-Banachiewicz, B., Ucherek, M., Zimecki, M., Kutkowska, J., Kamińska, T., Morak-Młodawska, B., Paprocka, R., Szulc, M., Lewandowski, G., Marciniak, J. & Bobkiewicz-Kozłowska, T. (2012). Arch. Pharm. Chem. Life Sci. 345, 486-494.]); Siddiqui & Ahsan (2010[Siddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 1536-1543.]); Sztanke et al. (2008[Sztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszen, M. (2008). Eur. J. Med. Chem. 43, 404-419.]); Wang et al. (2000[Wang, W., Wang, S., Liu, Y., Dong, G., Cao, Y., Miao, Z., Yao, J., Zhang, W. & Sheng, C. (2000). Eur. J. Med. Chem. 45, 6020-6026.]).

[Scheme 1]

Experimental

Crystal data
  • 2C18H16N4O2·H2O

  • Mr = 658.71

  • Monoclinic, P 21 /n

  • a = 10.0344 (1) Å

  • b = 16.1485 (2) Å

  • c = 20.1650 (3) Å

  • β = 98.699 (1)°

  • V = 3229.96 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 130 K

  • 0.55 × 0.30 × 0.10 mm

Data collection
  • Agilent Xcalibur Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.991, Tmax = 1.000

  • 22090 measured reflections

  • 7724 independent reflections

  • 6542 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.03

  • 7724 reflections

  • 460 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11A—H11A⋯N22Ai 0.92 (3) 1.77 (3) 2.6838 (17) 178 (2)
O11B—H11B⋯O25 0.98 (2) 1.59 (2) 2.5619 (16) 174 (2)
O25—H25A⋯N1A 0.86 (2) 2.00 (2) 2.8373 (17) 166 (2)
O25—H25B⋯N22Bii 0.94 (2) 1.87 (2) 2.8050 (18) 171 (2)
C6A—H6A2⋯O10Biii 0.97 2.51 3.3300 (18) 142
C24A—H24A⋯O10Biv 0.93 2.41 3.2683 (18) 153
C24B—H24B⋯O10Aiii 0.93 2.57 3.4628 (18) 162
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The increasing diversity of small molecule libraries is an important source for the discovery of new drug candidates. In terms of this trend, triazole heterocycles are of importance in modern medicinal chemistry. 1,2,4-Triazole derivatives have been widely investigated for a range of pharmacological activities, such as anticancer (Sztanke et al., 2008), antibacterial (Sztanke et al., 2008), antiviral (McDowell et al., 2010), antifungal (Wang et al., 2000), anti-inflammatory (El-Serwy et al., 2013), analgesic (Amir & Shikha, 2004), anticonvulsant (Siddiqui & Ahsan, 2010). Recently it was communicated that new 1,2,4-triazole-containing analogues of alkenoic acids showed antimicrobial activity (Modzelewska-Banachiewicz, Paprocka et al., 2012). A series of 4,5-diarylsubstituted 1,2,4-triazole derivatives were also described as antiviral, antibacterial and anti-inflammatory agents (Modzelewska-Banachiewicz, Ucherek et al., 2012).

The structure investigation of the title compound with potential antibacterial activity has been undertaken to determine its spatial structure and to facilitate the interpretation of 1H–, 13C-NMR and MS data.

The X-ray analysis showed that the crystal structure is a hemihydrate. The asymmetric part of the unit cell contains two symmetry-independent molecules, denoted A and B, of the compound (I) (solute) and one molecule of water (solvent) (Fig. 1). The independent molecules of (I) differ to a rather moderate extent in conformation. The weighted r.m.s. deviation for the superposition of the non-H atoms in both molecules is 0.674 Å (Spek, 2009). The differences concern the angular arrangement of the system of 1,2,4-triazole, towards three substituents, i.e. the 2-propenecarbocylic, p-tolyl and 4-pyridyl groups [molecule A: 84.61 (4), 89.68 (5) and 22.38 (6)°; molecule B: 71.35 (4), 82.13 (5) and 24.82 (6)°]. Angular orientation of the 2-propenecarbocylic fragment in the molecules A and B reveal two torsional angles N2—C3—C6—C7 and C3—C6—C7—C9 [molecule A: -47.08 (19) and -64.30 (15)°; molecule B: -7.6 (2) and -67.30 (17)°]. The first one indicates that in molecule A the N2—C3 bond adopts conformation halfway between synperiplanar and synclinal with respect to C6—C7 bond while in molecule B the mentioned bonds are synperiplanar to each other. The second torsional angle reveals mutual anticlinal orientation of the bonds C3—C6 and C7—C9. Conjugated system of double bonds C7C8 and C9O10 has s-trans conformation [torsion angle C8—C7—C9—O10: -175.09 (15)° (molecule A), -158.02 (15)° (molecule B)].

The interatomic distances C7C8 take the values of 1.325 (2) in the molecule A and 1.317 (2) Å in the molecule B and confirm the presence of the double bond between these atoms.

In the crystal lattice, the symmetry-independent molecules A and B of (I) are connected with hydrogen bonds forming chains made separately from molecules A and B. Molecules A are joined to one another through the O11A—H11A···N22Ai hydrogen bonds while molecules B through the O11B—H11B···O25 and O25—H25B···N22Bii hydrogen bonds. The latter are connected via water molecules (Table 1, Fig. 2). The neighbouring chains of molecules A and B are linked with O25—H25A···N1A hydrogen bonds into undulating sheets parallel to bc plane (Fig. 3). Moreover, in the crystal weak hydrogen bonds C6A—H6A2···O10Biii, C24A—H24A···O10Biv, C24B—H24B···O10Aiii are observed. They connect the adjacent sheets into three-dimensional structure.

Related literature top

For the pharmacological activity of 1,2,4-triazole derivatives, see: Amir & Shikha (2004); El-Serwy et al. (2013); McDowell et al. (2010); Modzelewska-Banachiewicz, Paprocka et al. (2012); Modzelewska-Banachiewicz, Ucherek et al. (2012); Siddiqui & Ahsan (2010); Sztanke et al. (2008); Wang et al. (2000).

Experimental top

2-{[5-(Pyridine-4-yl)-4-p-tolyl-4H-1,2,4-triazol-3-yl]methyl}acrylic acid was obtained in reaction of N-p-tolylpyridine-4-carbothioamide with itaconic anhydride in the medium of anhydrous diethyl ether. Crystals were obtained after crystallization from water.

Refinement top

The positions of the carboxyl groups and water H atoms were obtained from a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and were refined within the riding model approximation: Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97 Å, C(sp2)—H = 0.93 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The methyl groups were refined as rigid groups which were allowed to rotate. The difference density of 0.80 e / Å has no physical meaning and is rather due to the crystal quality.

Structure description top

The increasing diversity of small molecule libraries is an important source for the discovery of new drug candidates. In terms of this trend, triazole heterocycles are of importance in modern medicinal chemistry. 1,2,4-Triazole derivatives have been widely investigated for a range of pharmacological activities, such as anticancer (Sztanke et al., 2008), antibacterial (Sztanke et al., 2008), antiviral (McDowell et al., 2010), antifungal (Wang et al., 2000), anti-inflammatory (El-Serwy et al., 2013), analgesic (Amir & Shikha, 2004), anticonvulsant (Siddiqui & Ahsan, 2010). Recently it was communicated that new 1,2,4-triazole-containing analogues of alkenoic acids showed antimicrobial activity (Modzelewska-Banachiewicz, Paprocka et al., 2012). A series of 4,5-diarylsubstituted 1,2,4-triazole derivatives were also described as antiviral, antibacterial and anti-inflammatory agents (Modzelewska-Banachiewicz, Ucherek et al., 2012).

The structure investigation of the title compound with potential antibacterial activity has been undertaken to determine its spatial structure and to facilitate the interpretation of 1H–, 13C-NMR and MS data.

The X-ray analysis showed that the crystal structure is a hemihydrate. The asymmetric part of the unit cell contains two symmetry-independent molecules, denoted A and B, of the compound (I) (solute) and one molecule of water (solvent) (Fig. 1). The independent molecules of (I) differ to a rather moderate extent in conformation. The weighted r.m.s. deviation for the superposition of the non-H atoms in both molecules is 0.674 Å (Spek, 2009). The differences concern the angular arrangement of the system of 1,2,4-triazole, towards three substituents, i.e. the 2-propenecarbocylic, p-tolyl and 4-pyridyl groups [molecule A: 84.61 (4), 89.68 (5) and 22.38 (6)°; molecule B: 71.35 (4), 82.13 (5) and 24.82 (6)°]. Angular orientation of the 2-propenecarbocylic fragment in the molecules A and B reveal two torsional angles N2—C3—C6—C7 and C3—C6—C7—C9 [molecule A: -47.08 (19) and -64.30 (15)°; molecule B: -7.6 (2) and -67.30 (17)°]. The first one indicates that in molecule A the N2—C3 bond adopts conformation halfway between synperiplanar and synclinal with respect to C6—C7 bond while in molecule B the mentioned bonds are synperiplanar to each other. The second torsional angle reveals mutual anticlinal orientation of the bonds C3—C6 and C7—C9. Conjugated system of double bonds C7C8 and C9O10 has s-trans conformation [torsion angle C8—C7—C9—O10: -175.09 (15)° (molecule A), -158.02 (15)° (molecule B)].

The interatomic distances C7C8 take the values of 1.325 (2) in the molecule A and 1.317 (2) Å in the molecule B and confirm the presence of the double bond between these atoms.

In the crystal lattice, the symmetry-independent molecules A and B of (I) are connected with hydrogen bonds forming chains made separately from molecules A and B. Molecules A are joined to one another through the O11A—H11A···N22Ai hydrogen bonds while molecules B through the O11B—H11B···O25 and O25—H25B···N22Bii hydrogen bonds. The latter are connected via water molecules (Table 1, Fig. 2). The neighbouring chains of molecules A and B are linked with O25—H25A···N1A hydrogen bonds into undulating sheets parallel to bc plane (Fig. 3). Moreover, in the crystal weak hydrogen bonds C6A—H6A2···O10Biii, C24A—H24A···O10Biv, C24B—H24B···O10Aiii are observed. They connect the adjacent sheets into three-dimensional structure.

For the pharmacological activity of 1,2,4-triazole derivatives, see: Amir & Shikha (2004); El-Serwy et al. (2013); McDowell et al. (2010); Modzelewska-Banachiewicz, Paprocka et al. (2012); Modzelewska-Banachiewicz, Ucherek et al. (2012); Siddiqui & Ahsan (2010); Sztanke et al. (2008); Wang et al. (2000).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The independent molecules of (I) and water showing the atomic labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids and H atoms are drawn as spheres of an arbitrary radius.
[Figure 2] Fig. 2. The hydrogen bonding in the title structure. For symmetry codes, see Table 1. H atoms not involved in hydrogen-bonding have been omitted for clarity.
[Figure 3] Fig. 3. The hydrogen-bonded undulating sheet in (I).
2-{[5-(Pyridin-4-yl)-4-p-tolyl-4H-1,2,4-triazol-3-yl]methyl}acrylic acid hemihydrate top
Crystal data top
2C18H16N4O2·H2OF(000) = 1384
Mr = 658.71Dx = 1.355 Mg m3
Monoclinic, P21/nMelting point = 416–418 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.0344 (1) ÅCell parameters from 9224 reflections
b = 16.1485 (2) Åθ = 2.0–29.1°
c = 20.1650 (3) ŵ = 0.09 mm1
β = 98.699 (1)°T = 130 K
V = 3229.96 (7) Å3Lath, colourless
Z = 40.55 × 0.30 × 0.10 mm
Data collection top
Agilent Xcalibur Atlas
diffractometer
7724 independent reflections
Radiation source: Enhance (Mo) X-ray Source6542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 10.3088 pixels mm-1θmax = 29.2°, θmin = 2.2°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1821
Tmin = 0.991, Tmax = 1.000l = 2627
22090 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0533P)2 + 1.7812P]
where P = (Fo2 + 2Fc2)/3
7724 reflections(Δ/σ)max < 0.001
460 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
2C18H16N4O2·H2OV = 3229.96 (7) Å3
Mr = 658.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0344 (1) ŵ = 0.09 mm1
b = 16.1485 (2) ÅT = 130 K
c = 20.1650 (3) Å0.55 × 0.30 × 0.10 mm
β = 98.699 (1)°
Data collection top
Agilent Xcalibur Atlas
diffractometer
7724 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
6542 reflections with I > 2σ(I)
Tmin = 0.991, Tmax = 1.000Rint = 0.015
22090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.80 e Å3
7724 reflectionsΔρmin = 0.28 e Å3
460 parameters
Special details top

Experimental. none

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.13167 (12)0.47922 (8)0.35710 (6)0.0239 (3)
N2A0.03447 (12)0.43871 (8)0.38651 (6)0.0246 (3)
C3A0.06428 (14)0.42016 (8)0.33856 (7)0.0210 (3)
N4A0.03617 (11)0.44814 (7)0.27792 (6)0.0194 (2)
C5A0.08908 (13)0.48407 (8)0.29241 (7)0.0201 (3)
C6A0.18670 (14)0.37179 (9)0.34822 (7)0.0234 (3)
H6A10.23550.35580.30490.028*
H6A20.24570.40600.37060.028*
C7A0.14745 (13)0.29541 (9)0.38961 (7)0.0213 (3)
C8A0.17641 (16)0.28325 (11)0.45081 (8)0.0326 (3)
H8A10.14590.23580.47450.039*
H8A20.22720.32210.47010.039*
C9A0.06644 (13)0.23433 (9)0.35751 (7)0.0202 (3)
O10A0.03092 (11)0.24626 (7)0.30337 (5)0.0292 (2)
O11A0.03137 (11)0.16726 (7)0.39398 (5)0.0257 (2)
H11A0.033 (3)0.1388 (16)0.3757 (12)0.067 (7)*
C12A0.11815 (13)0.43501 (8)0.21379 (7)0.0197 (3)
C13A0.21393 (14)0.49326 (9)0.18935 (8)0.0274 (3)
H13A0.22550.54070.21400.033*
C14A0.29256 (15)0.48007 (10)0.12756 (8)0.0299 (3)
H14A0.35580.51970.11040.036*
C15A0.27859 (14)0.40888 (10)0.09086 (7)0.0253 (3)
C16A0.18208 (17)0.35127 (10)0.11710 (7)0.0298 (3)
H16A0.17150.30320.09310.036*
C17A0.10138 (16)0.36387 (9)0.17820 (7)0.0271 (3)
H17A0.03680.32490.19500.033*
C18A0.36508 (17)0.39371 (12)0.02439 (8)0.0362 (4)
H18A0.42990.43750.01530.054*
H18B0.41130.34180.02570.054*
H18C0.30940.39210.01030.054*
C19A0.17137 (13)0.51971 (8)0.24532 (7)0.0200 (3)
C20A0.12086 (14)0.54991 (9)0.18206 (7)0.0252 (3)
H20A0.02890.54820.16640.030*
C21A0.20962 (15)0.58253 (9)0.14279 (8)0.0271 (3)
H21A0.17460.60300.10060.033*
N22A0.34290 (12)0.58630 (8)0.16195 (6)0.0254 (3)
C23A0.39050 (14)0.55747 (9)0.22296 (8)0.0268 (3)
H23A0.48300.56000.23720.032*
C24A0.31073 (14)0.52426 (9)0.26586 (7)0.0244 (3)
H24A0.34880.50510.30800.029*
N1B0.37740 (12)0.80883 (8)0.70883 (6)0.0239 (3)
N2B0.45728 (12)0.77341 (8)0.66600 (6)0.0246 (3)
C3B0.56239 (14)0.74131 (9)0.70340 (7)0.0213 (3)
N4B0.55646 (11)0.75461 (7)0.77019 (6)0.0203 (2)
C5B0.43786 (13)0.79731 (8)0.77051 (7)0.0204 (3)
C6B0.67580 (14)0.69625 (10)0.67849 (7)0.0259 (3)
H6B10.69000.64350.70150.031*
H6B20.75790.72840.68900.031*
C7B0.64739 (14)0.68143 (9)0.60410 (7)0.0246 (3)
C8B0.72326 (16)0.71225 (11)0.56226 (9)0.0337 (4)
H8B10.70740.69750.51720.040*
H8B20.79270.74870.57780.040*
C9B0.53499 (14)0.62252 (9)0.57998 (7)0.0221 (3)
O10B0.48977 (10)0.57518 (7)0.61765 (5)0.0273 (2)
O11B0.49295 (11)0.62687 (7)0.51487 (5)0.0279 (2)
H11B0.419 (2)0.5879 (14)0.5013 (11)0.053 (6)*
C12B0.64672 (14)0.72110 (9)0.82592 (7)0.0206 (3)
C13B0.61305 (16)0.64845 (9)0.85523 (8)0.0270 (3)
H13B0.53340.62100.83880.032*
C14B0.69968 (17)0.61681 (10)0.90969 (8)0.0320 (3)
H14B0.67750.56760.92940.038*
C15B0.81822 (16)0.65707 (11)0.93523 (8)0.0316 (3)
C16B0.84978 (16)0.73014 (11)0.90471 (8)0.0325 (3)
H16B0.92880.75810.92140.039*
C17B0.76551 (15)0.76198 (10)0.84992 (8)0.0280 (3)
H17B0.78850.81040.82940.034*
C18B0.9097 (2)0.62366 (14)0.99552 (9)0.0495 (5)
H18D0.87160.57391.01070.074*
H18E0.91920.66421.03080.074*
H18F0.99660.61160.98340.074*
C19B0.38527 (14)0.83183 (8)0.82898 (7)0.0207 (3)
C20B0.46609 (15)0.85228 (9)0.88900 (7)0.0258 (3)
H20B0.55730.83900.89610.031*
C21B0.40785 (16)0.89298 (10)0.93822 (8)0.0285 (3)
H21B0.46250.90620.97830.034*
N22B0.27817 (13)0.91411 (8)0.93119 (6)0.0284 (3)
C23B0.20068 (15)0.89272 (10)0.87382 (8)0.0281 (3)
H23B0.10970.90640.86840.034*
C24B0.24830 (15)0.85145 (9)0.82223 (7)0.0249 (3)
H24B0.19010.83690.78360.030*
O250.28894 (12)0.53329 (7)0.47820 (6)0.0319 (3)
H25A0.254 (2)0.5184 (13)0.4385 (12)0.045 (6)*
H25B0.274 (2)0.4899 (16)0.5073 (12)0.064 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0241 (6)0.0267 (6)0.0205 (6)0.0052 (5)0.0021 (5)0.0002 (5)
N2A0.0250 (6)0.0275 (6)0.0214 (6)0.0050 (5)0.0034 (5)0.0003 (5)
C3A0.0222 (6)0.0203 (6)0.0206 (7)0.0014 (5)0.0038 (5)0.0000 (5)
N4A0.0187 (5)0.0199 (5)0.0192 (6)0.0007 (4)0.0019 (4)0.0013 (4)
C5A0.0202 (6)0.0188 (6)0.0208 (6)0.0008 (5)0.0013 (5)0.0011 (5)
C6A0.0194 (6)0.0257 (7)0.0253 (7)0.0004 (5)0.0044 (5)0.0006 (6)
C7A0.0171 (6)0.0241 (7)0.0228 (7)0.0034 (5)0.0034 (5)0.0009 (5)
C8A0.0334 (8)0.0355 (9)0.0308 (8)0.0030 (7)0.0110 (7)0.0028 (7)
C9A0.0175 (6)0.0241 (7)0.0180 (6)0.0030 (5)0.0010 (5)0.0010 (5)
O10A0.0352 (6)0.0332 (6)0.0205 (5)0.0071 (5)0.0084 (4)0.0026 (4)
O11A0.0264 (5)0.0267 (5)0.0244 (5)0.0035 (4)0.0057 (4)0.0039 (4)
C12A0.0184 (6)0.0211 (6)0.0189 (6)0.0020 (5)0.0011 (5)0.0000 (5)
C13A0.0241 (7)0.0243 (7)0.0321 (8)0.0030 (6)0.0016 (6)0.0065 (6)
C14A0.0235 (7)0.0306 (8)0.0330 (8)0.0066 (6)0.0039 (6)0.0006 (7)
C15A0.0235 (7)0.0320 (8)0.0199 (7)0.0034 (6)0.0017 (5)0.0013 (6)
C16A0.0432 (9)0.0254 (7)0.0199 (7)0.0043 (6)0.0016 (6)0.0033 (6)
C17A0.0345 (8)0.0254 (7)0.0207 (7)0.0087 (6)0.0016 (6)0.0007 (6)
C18A0.0346 (8)0.0482 (10)0.0234 (8)0.0012 (7)0.0030 (6)0.0034 (7)
C19A0.0213 (6)0.0170 (6)0.0215 (7)0.0012 (5)0.0025 (5)0.0011 (5)
C20A0.0201 (6)0.0269 (7)0.0277 (7)0.0007 (5)0.0011 (5)0.0046 (6)
C21A0.0268 (7)0.0279 (7)0.0258 (7)0.0003 (6)0.0018 (6)0.0062 (6)
N22A0.0251 (6)0.0246 (6)0.0266 (6)0.0043 (5)0.0045 (5)0.0012 (5)
C23A0.0203 (6)0.0298 (8)0.0293 (8)0.0039 (6)0.0007 (6)0.0006 (6)
C24A0.0245 (7)0.0258 (7)0.0215 (7)0.0033 (6)0.0012 (5)0.0014 (6)
N1B0.0249 (6)0.0262 (6)0.0203 (6)0.0031 (5)0.0028 (5)0.0024 (5)
N2B0.0255 (6)0.0275 (6)0.0208 (6)0.0030 (5)0.0039 (5)0.0034 (5)
C3B0.0232 (6)0.0212 (7)0.0191 (6)0.0021 (5)0.0015 (5)0.0034 (5)
N4B0.0207 (5)0.0219 (6)0.0178 (5)0.0012 (4)0.0013 (4)0.0014 (4)
C5B0.0208 (6)0.0198 (6)0.0203 (6)0.0006 (5)0.0019 (5)0.0003 (5)
C6B0.0222 (7)0.0302 (7)0.0249 (7)0.0009 (6)0.0025 (5)0.0067 (6)
C7B0.0217 (6)0.0267 (7)0.0254 (7)0.0008 (5)0.0036 (5)0.0060 (6)
C8B0.0313 (8)0.0373 (9)0.0331 (8)0.0058 (7)0.0072 (7)0.0080 (7)
C9B0.0204 (6)0.0244 (7)0.0212 (7)0.0028 (5)0.0024 (5)0.0023 (5)
O10B0.0262 (5)0.0300 (6)0.0249 (5)0.0029 (4)0.0018 (4)0.0022 (4)
O11B0.0282 (5)0.0326 (6)0.0218 (5)0.0067 (5)0.0001 (4)0.0004 (4)
C12B0.0231 (6)0.0214 (7)0.0168 (6)0.0038 (5)0.0011 (5)0.0020 (5)
C13B0.0294 (7)0.0241 (7)0.0273 (7)0.0013 (6)0.0035 (6)0.0011 (6)
C14B0.0410 (9)0.0277 (8)0.0279 (8)0.0073 (7)0.0072 (7)0.0066 (6)
C15B0.0352 (8)0.0384 (9)0.0205 (7)0.0154 (7)0.0020 (6)0.0020 (6)
C16B0.0260 (7)0.0380 (9)0.0306 (8)0.0034 (6)0.0051 (6)0.0062 (7)
C17B0.0269 (7)0.0268 (7)0.0287 (8)0.0015 (6)0.0006 (6)0.0001 (6)
C18B0.0492 (11)0.0654 (13)0.0305 (9)0.0223 (10)0.0048 (8)0.0064 (9)
C19B0.0252 (7)0.0183 (6)0.0189 (6)0.0016 (5)0.0043 (5)0.0017 (5)
C20B0.0255 (7)0.0282 (7)0.0231 (7)0.0045 (6)0.0018 (6)0.0021 (6)
C21B0.0333 (8)0.0309 (8)0.0209 (7)0.0031 (6)0.0026 (6)0.0023 (6)
N22B0.0345 (7)0.0300 (7)0.0219 (6)0.0056 (5)0.0078 (5)0.0005 (5)
C23B0.0266 (7)0.0328 (8)0.0257 (7)0.0054 (6)0.0068 (6)0.0020 (6)
C24B0.0260 (7)0.0275 (7)0.0210 (7)0.0024 (6)0.0027 (5)0.0007 (6)
O250.0368 (6)0.0364 (6)0.0203 (5)0.0149 (5)0.0025 (5)0.0010 (5)
Geometric parameters (Å, º) top
N1A—C5A1.3121 (18)N1B—N2B1.3875 (16)
N1A—N2A1.3806 (16)N2B—C3B1.3073 (19)
N2A—C3A1.3102 (18)C3B—N4B1.3740 (17)
C3A—N4A1.3722 (17)C3B—C6B1.4999 (19)
C3A—C6A1.4932 (19)N4B—C5B1.3763 (17)
N4A—C5A1.3750 (17)N4B—C12B1.4381 (17)
N4A—C12A1.4396 (17)C5B—C19B1.4722 (19)
C5A—C19A1.4670 (18)C6B—C7B1.503 (2)
C6A—C7A1.508 (2)C6B—H6B10.9700
C6A—H6A10.9700C6B—H6B20.9700
C6A—H6A20.9700C7B—C8B1.317 (2)
C7A—C8A1.325 (2)C7B—C9B1.499 (2)
C7A—C9A1.4871 (19)C8B—H8B10.9300
C8A—H8A10.9300C8B—H8B20.9300
C8A—H8A20.9300C9B—O10B1.2132 (17)
C9A—O10A1.2140 (17)C9B—O11B1.3187 (17)
C9A—O11A1.3263 (17)O11B—H11B0.98 (2)
O11A—H11A0.91 (3)C12B—C13B1.379 (2)
C12A—C17A1.378 (2)C12B—C17B1.384 (2)
C12A—C13A1.381 (2)C13B—C14B1.391 (2)
C13A—C14A1.387 (2)C13B—H13B0.9300
C13A—H13A0.9300C14B—C15B1.385 (2)
C14A—C15A1.386 (2)C14B—H14B0.9300
C14A—H14A0.9300C15B—C16B1.389 (2)
C15A—C16A1.389 (2)C15B—C18B1.508 (2)
C15A—C18A1.503 (2)C16B—C17B1.385 (2)
C16A—C17A1.383 (2)C16B—H16B0.9300
C16A—H16A0.9300C17B—H17B0.9300
C17A—H17A0.9300C18B—H18D0.9600
C18A—H18A0.9600C18B—H18E0.9600
C18A—H18B0.9600C18B—H18F0.9600
C18A—H18C0.9600C19B—C20B1.391 (2)
C19A—C20A1.388 (2)C19B—C24B1.397 (2)
C19A—C24A1.3991 (19)C20B—C21B1.391 (2)
C20A—C21A1.382 (2)C20B—H20B0.9300
C20A—H20A0.9300C21B—N22B1.332 (2)
C21A—N22A1.3362 (19)C21B—H21B0.9300
C21A—H21A0.9300N22B—C23B1.338 (2)
N22A—C23A1.3344 (19)C23B—C24B1.380 (2)
C23A—C24A1.373 (2)C23B—H23B0.9300
C23A—H23A0.9300C24B—H24B0.9300
C24A—H24A0.9300O25—H25A0.86 (2)
N1B—C5B1.3120 (18)O25—H25B0.94 (3)
C5A—N1A—N2A108.07 (11)C3B—N2B—N1B107.22 (11)
C3A—N2A—N1A107.22 (11)N2B—C3B—N4B110.65 (12)
N2A—C3A—N4A110.36 (12)N2B—C3B—C6B125.87 (13)
N2A—C3A—C6A124.65 (13)N4B—C3B—C6B123.48 (12)
N4A—C3A—C6A124.93 (12)C3B—N4B—C5B104.39 (11)
C3A—N4A—C5A104.72 (11)C3B—N4B—C12B126.28 (11)
C3A—N4A—C12A125.84 (11)C5B—N4B—C12B128.88 (11)
C5A—N4A—C12A129.25 (11)N1B—C5B—N4B110.05 (12)
N1A—C5A—N4A109.63 (12)N1B—C5B—C19B122.35 (12)
N1A—C5A—C19A122.44 (12)N4B—C5B—C19B127.47 (12)
N4A—C5A—C19A127.87 (12)C3B—C6B—C7B111.87 (12)
C3A—C6A—C7A110.42 (11)C3B—C6B—H6B1109.2
C3A—C6A—H6A1109.6C7B—C6B—H6B1109.2
C7A—C6A—H6A1109.6C3B—C6B—H6B2109.2
C3A—C6A—H6A2109.6C7B—C6B—H6B2109.2
C7A—C6A—H6A2109.6H6B1—C6B—H6B2107.9
H6A1—C6A—H6A2108.1C8B—C7B—C9B120.77 (14)
C8A—C7A—C9A121.23 (14)C8B—C7B—C6B122.58 (14)
C8A—C7A—C6A124.14 (14)C9B—C7B—C6B116.40 (13)
C9A—C7A—C6A114.58 (12)C7B—C8B—H8B1120.0
C7A—C8A—H8A1120.0C7B—C8B—H8B2120.0
C7A—C8A—H8A2120.0H8B1—C8B—H8B2120.0
H8A1—C8A—H8A2120.0O10B—C9B—O11B124.29 (13)
O10A—C9A—O11A122.60 (13)O10B—C9B—C7B122.07 (13)
O10A—C9A—C7A122.70 (13)O11B—C9B—C7B113.63 (12)
O11A—C9A—C7A114.65 (12)C9B—O11B—H11B111.0 (13)
C9A—O11A—H11A109.4 (16)C13B—C12B—C17B120.66 (13)
C17A—C12A—C13A121.00 (13)C13B—C12B—N4B119.28 (13)
C17A—C12A—N4A119.49 (12)C17B—C12B—N4B120.06 (13)
C13A—C12A—N4A119.50 (12)C12B—C13B—C14B119.13 (14)
C12A—C13A—C14A119.11 (14)C12B—C13B—H13B120.4
C12A—C13A—H13A120.4C14B—C13B—H13B120.4
C14A—C13A—H13A120.4C15B—C14B—C13B121.37 (15)
C15A—C14A—C13A121.16 (14)C15B—C14B—H14B119.3
C15A—C14A—H14A119.4C13B—C14B—H14B119.3
C13A—C14A—H14A119.4C14B—C15B—C16B118.32 (14)
C14A—C15A—C16A118.25 (14)C14B—C15B—C18B121.06 (17)
C14A—C15A—C18A121.34 (14)C16B—C15B—C18B120.60 (17)
C16A—C15A—C18A120.40 (14)C17B—C16B—C15B121.08 (15)
C17A—C16A—C15A121.42 (14)C17B—C16B—H16B119.5
C17A—C16A—H16A119.3C15B—C16B—H16B119.5
C15A—C16A—H16A119.3C12B—C17B—C16B119.43 (15)
C12A—C17A—C16A119.03 (14)C12B—C17B—H17B120.3
C12A—C17A—H17A120.5C16B—C17B—H17B120.3
C16A—C17A—H17A120.5C15B—C18B—H18D109.5
C15A—C18A—H18A109.5C15B—C18B—H18E109.5
C15A—C18A—H18B109.5H18D—C18B—H18E109.5
H18A—C18A—H18B109.5C15B—C18B—H18F109.5
C15A—C18A—H18C109.5H18D—C18B—H18F109.5
H18A—C18A—H18C109.5H18E—C18B—H18F109.5
H18B—C18A—H18C109.5C20B—C19B—C24B117.81 (13)
C20A—C19A—C24A117.60 (13)C20B—C19B—C5B123.66 (12)
C20A—C19A—C5A124.74 (12)C24B—C19B—C5B118.32 (12)
C24A—C19A—C5A117.66 (12)C21B—C20B—C19B118.73 (14)
C21A—C20A—C19A118.89 (13)C21B—C20B—H20B120.6
C21A—C20A—H20A120.6C19B—C20B—H20B120.6
C19A—C20A—H20A120.6N22B—C21B—C20B123.66 (14)
N22A—C21A—C20A123.72 (14)N22B—C21B—H21B118.2
N22A—C21A—H21A118.1C20B—C21B—H21B118.2
C20A—C21A—H21A118.1C21B—N22B—C23B117.17 (13)
C23A—N22A—C21A116.99 (13)N22B—C23B—C24B123.65 (14)
N22A—C23A—C24A123.75 (13)N22B—C23B—H23B118.2
N22A—C23A—H23A118.1C24B—C23B—H23B118.2
C24A—C23A—H23A118.1C23B—C24B—C19B118.93 (14)
C23A—C24A—C19A119.05 (13)C23B—C24B—H24B120.5
C23A—C24A—H24A120.5C19B—C24B—H24B120.5
C19A—C24A—H24A120.5H25A—O25—H25B107 (2)
C5B—N1B—N2B107.69 (11)
C5A—N1A—N2A—C3A0.04 (16)C5B—N1B—N2B—C3B0.47 (16)
N1A—N2A—C3A—N4A0.71 (16)N1B—N2B—C3B—N4B0.51 (16)
N1A—N2A—C3A—C6A176.50 (13)N1B—N2B—C3B—C6B179.78 (13)
N2A—C3A—N4A—C5A1.06 (15)N2B—C3B—N4B—C5B0.36 (16)
C6A—C3A—N4A—C5A176.14 (13)C6B—C3B—N4B—C5B179.92 (13)
N2A—C3A—N4A—C12A176.44 (12)N2B—C3B—N4B—C12B173.18 (13)
C6A—C3A—N4A—C12A0.8 (2)C6B—C3B—N4B—C12B7.1 (2)
N2A—N1A—C5A—N4A0.63 (16)N2B—N1B—C5B—N4B0.25 (16)
N2A—N1A—C5A—C19A176.64 (12)N2B—N1B—C5B—C19B175.94 (12)
C3A—N4A—C5A—N1A1.02 (15)C3B—N4B—C5B—N1B0.05 (15)
C12A—N4A—C5A—N1A176.18 (13)C12B—N4B—C5B—N1B172.62 (13)
C3A—N4A—C5A—C19A176.06 (13)C3B—N4B—C5B—C19B176.00 (13)
C12A—N4A—C5A—C19A0.9 (2)C12B—N4B—C5B—C19B11.4 (2)
N2A—C3A—C6A—C7A47.08 (19)N2B—C3B—C6B—C7B7.6 (2)
N4A—C3A—C6A—C7A129.72 (14)N4B—C3B—C6B—C7B172.73 (13)
C3A—C6A—C7A—C8A113.07 (16)C3B—C6B—C7B—C8B118.41 (16)
C3A—C6A—C7A—C9A64.30 (15)C3B—C6B—C7B—C9B67.30 (17)
C8A—C7A—C9A—O10A175.09 (15)C8B—C7B—C9B—O10B158.02 (15)
C6A—C7A—C9A—O10A2.37 (19)C6B—C7B—C9B—O10B16.4 (2)
C8A—C7A—C9A—O11A2.28 (19)C8B—C7B—C9B—O11B21.1 (2)
C6A—C7A—C9A—O11A179.74 (11)C6B—C7B—C9B—O11B164.47 (12)
C3A—N4A—C12A—C17A86.66 (17)C3B—N4B—C12B—C13B93.89 (17)
C5A—N4A—C12A—C17A87.56 (18)C5B—N4B—C12B—C13B77.17 (19)
C3A—N4A—C12A—C13A92.27 (17)C3B—N4B—C12B—C17B86.56 (18)
C5A—N4A—C12A—C13A93.51 (17)C5B—N4B—C12B—C17B102.38 (17)
C17A—C12A—C13A—C14A1.0 (2)C17B—C12B—C13B—C14B0.4 (2)
N4A—C12A—C13A—C14A179.92 (13)N4B—C12B—C13B—C14B179.14 (13)
C12A—C13A—C14A—C15A1.4 (2)C12B—C13B—C14B—C15B0.5 (2)
C13A—C14A—C15A—C16A0.9 (2)C13B—C14B—C15B—C16B0.5 (2)
C13A—C14A—C15A—C18A179.02 (15)C13B—C14B—C15B—C18B178.25 (15)
C14A—C15A—C16A—C17A0.0 (2)C14B—C15B—C16B—C17B0.3 (2)
C18A—C15A—C16A—C17A179.95 (15)C18B—C15B—C16B—C17B179.07 (16)
C13A—C12A—C17A—C16A0.1 (2)C13B—C12B—C17B—C16B1.2 (2)
N4A—C12A—C17A—C16A179.02 (13)N4B—C12B—C17B—C16B178.34 (13)
C15A—C16A—C17A—C12A0.4 (2)C15B—C16B—C17B—C12B1.2 (2)
N1A—C5A—C19A—C20A159.06 (14)N1B—C5B—C19B—C20B151.82 (15)
N4A—C5A—C19A—C20A24.2 (2)N4B—C5B—C19B—C20B23.7 (2)
N1A—C5A—C19A—C24A20.3 (2)N1B—C5B—C19B—C24B22.8 (2)
N4A—C5A—C19A—C24A156.40 (14)N4B—C5B—C19B—C24B161.69 (14)
C24A—C19A—C20A—C21A0.1 (2)C24B—C19B—C20B—C21B1.8 (2)
C5A—C19A—C20A—C21A179.52 (14)C5B—C19B—C20B—C21B172.90 (14)
C19A—C20A—C21A—N22A0.5 (2)C19B—C20B—C21B—N22B0.3 (2)
C20A—C21A—N22A—C23A0.8 (2)C20B—C21B—N22B—C23B1.6 (2)
C21A—N22A—C23A—C24A0.5 (2)C21B—N22B—C23B—C24B0.8 (2)
N22A—C23A—C24A—C19A0.1 (2)N22B—C23B—C24B—C19B1.3 (2)
C20A—C19A—C24A—C23A0.4 (2)C20B—C19B—C24B—C23B2.5 (2)
C5A—C19A—C24A—C23A179.87 (13)C5B—C19B—C24B—C23B172.47 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11A···N22Ai0.92 (3)1.77 (3)2.6838 (17)178 (2)
O11B—H11B···O250.98 (2)1.59 (2)2.5619 (16)174 (2)
O25—H25A···N1A0.86 (2)2.00 (2)2.8373 (17)166 (2)
O25—H25B···N22Bii0.94 (2)1.87 (2)2.8050 (18)171 (2)
C6A—H6A2···O10Biii0.972.513.3300 (18)142
C24A—H24A···O10Biv0.932.413.2683 (18)153
C24B—H24B···O10Aiii0.932.573.4628 (18)162
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11A···N22Ai0.92 (3)1.77 (3)2.6838 (17)178 (2)
O11B—H11B···O250.98 (2)1.59 (2)2.5619 (16)174 (2)
O25—H25A···N1A0.86 (2)2.00 (2)2.8373 (17)166 (2)
O25—H25B···N22Bii0.94 (2)1.87 (2)2.8050 (18)171 (2)
C6A—H6A2···O10Biii0.972.513.3300 (18)142
C24A—H24A···O10Biv0.932.413.2683 (18)153
C24B—H24B···O10Aiii0.932.573.4628 (18)162
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1.
 

References

First citationAgilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationAmir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Serwy, W. S., Mohamed, N. A., Abbas, E. M. & Abdel-Rahman, R. F. (2013). Res. Chem. Intermed. 39, 2543–2554.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcDowell, M., Gonzales, S. R., Kumarapperuma, S. C., Jeselnik, M., Arterburn, J. B. & Hanley, K. A. (2010). Antiviral Res. 87, 78–80.  CrossRef CAS PubMed Google Scholar
First citationModzelewska-Banachiewicz, B., Paprocka, R., Mazur, L., Saczewski, J., Kutkowska, J., St\,epień, D. K. & Cyrański, M. (2012). J. Mol. Struct. 1022, 211–219.  Google Scholar
First citationModzelewska-Banachiewicz, B., Ucherek, M., Zimecki, M., Kutkowska, J., Kamińska, T., Morak-Młodawska, B., Paprocka, R., Szulc, M., Lewandowski, G., Marciniak, J. & Bobkiewicz-Kozłowska, T. (2012). Arch. Pharm. Chem. Life Sci. 345, 486–494.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 1536–1543.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszen, M. (2008). Eur. J. Med. Chem. 43, 404–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, W., Wang, S., Liu, Y., Dong, G., Cao, Y., Miao, Z., Yao, J., Zhang, W. & Sheng, C. (2000). Eur. J. Med. Chem. 45, 6020–6026.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds