organic compounds
1-(4-Methylphenylsulfonyl)-5,6-dinitro-1H-indazole
aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: b_oulemda@yahoo.fr
In the title compound, C14H10N4O6S, the indazole ring system is almost perpendicular to the tosyl ring, as indicated by the dihedral angle of 89.40 (9)° between their planes. The dihedral angles between the indazole system and the nitro groups are 57.0 (3) and 31.9 (3)°. In the crystal, molecules are linked by C—H⋯O interactions, forming chains running along [100].
CCDC reference: 978262
Related literature
For the biological activity of et al. (2008); Liu et al. (2004); Ali et al. (2008); Patel et al. (1999); Mosti et al. (2000); Bouissane et al. (2006); Abbassi et al. (2012). For the structures of similar compounds, see: Abbassi et al. (2013); Chicha et al. (2013).
see: SchmidtExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 978262
https://doi.org/10.1107/S1600536813034326/bt6953sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813034326/bt6953Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813034326/bt6953Isup3.cml
To a stirred solution of 5,6-dinitroindazole (0.5 g, 2.4 mmol) in pyridine (25 ml) was added crude p-methylbenzenesulfonyl chloride (0.45 g, 2.4 mmol) over 10 min. The reaction mixture was allowed to attain room temperature and was stirred for further 24 h. The mixture was evaporated under reduced pressure and the residue was purified by silica gel flash
eluting with dichloromethane. The title compound was recrystallized from acetone. Yield: 56%, m.p.: 307–309 K.H atoms were located in a difference map and treated as riding with C–H = 0.96 Å and C–H = 0.93 Å for methyl and aromatic, respectively and with Uiso(H) = 1.5 Ueq for methyl and Uiso(H) = 1.2 Ueq for aromatic H atoms.
Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry (Schmidt et al., 2008). Although rare in nature (Liu et al., 2004; Ali et al., 2008), indazoles exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999), antiarrhythmic and analgesic activities (Mosti et al., 2000), antitumor activity) and antihypertensive properties (Bouissane et al., 2006; Abbassi et al., 2012). The present work is a continuation of the investigation of the sulfonamide derivatives published recently by our team (Abbassi et al., 2013; Chicha et al., 2013).
The molecule of the title compound is built up from an indazole ring system linked to a tosyl ring and to two nitro groups as shown in Fig. 1. The indazole ring system makes dihedral angles of 57.0 (3)° and 31.9 (3)°, with the two plans through the atoms forming the first (N1, O1, O2) and the second (N2, O3, O4) nitro groups, respectively. The plane through the tosyl ring is practically perpendicular to the indazole ring system ring, as indicated by the dihedral angle of 89.40 (9) °. In the crystal, the molecules are linked by a C–H···O interaction to form a one-dimensional chain running along the [100] direction as shown in Fig. 2 and Table 2.
For the biological activity of
see: Schmidt et al. (2008); Liu et al. (2004); Ali et al. (2008); Patel et al. (1999); Mosti et al. (2000); Bouissane et al. (2006); Abbassi et al. (2012). For the structures of similar compounds, see: Abbassi et al. (2013); Chicha et al. (2013).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C14H10N4O6S | Z = 2 |
Mr = 362.32 | F(000) = 372 |
Triclinic, P1 | Dx = 1.570 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4125 (3) Å | Cell parameters from 3383 reflections |
b = 8.5371 (3) Å | θ = 2.6–27.1° |
c = 13.0825 (5) Å | µ = 0.25 mm−1 |
α = 90.401 (2)° | T = 296 K |
β = 95.707 (2)° | Block, colourless |
γ = 111.302 (2)° | 0.42 × 0.35 × 0.28 mm |
V = 766.66 (5) Å3 |
Bruker X8 APEX diffractometer | 3383 independent reflections |
Radiation source: fine-focus sealed tube | 2984 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
φ and ω scans | θmax = 27.1°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −9→9 |
Tmin = 0.693, Tmax = 0.747 | k = −10→10 |
19101 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0641P)2 + 0.3549P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3383 reflections | Δρmax = 0.46 e Å−3 |
227 parameters | Δρmin = −0.32 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.023 (4) |
C14H10N4O6S | γ = 111.302 (2)° |
Mr = 362.32 | V = 766.66 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4125 (3) Å | Mo Kα radiation |
b = 8.5371 (3) Å | µ = 0.25 mm−1 |
c = 13.0825 (5) Å | T = 296 K |
α = 90.401 (2)° | 0.42 × 0.35 × 0.28 mm |
β = 95.707 (2)° |
Bruker X8 APEX diffractometer | 3383 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2984 reflections with I > 2σ(I) |
Tmin = 0.693, Tmax = 0.747 | Rint = 0.031 |
19101 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.46 e Å−3 |
3383 reflections | Δρmin = −0.32 e Å−3 |
227 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0249 (2) | 0.1414 (2) | 0.35023 (12) | 0.0319 (3) | |
C2 | 0.1588 (3) | 0.2338 (2) | 0.43202 (13) | 0.0365 (4) | |
H2 | 0.2924 | 0.2632 | 0.4312 | 0.044* | |
C3 | 0.0814 (3) | 0.2782 (2) | 0.51328 (13) | 0.0370 (4) | |
C4 | −0.1209 (3) | 0.2326 (2) | 0.51564 (13) | 0.0389 (4) | |
C5 | −0.2510 (3) | 0.1422 (2) | 0.43547 (14) | 0.0395 (4) | |
H5 | −0.3845 | 0.1121 | 0.4373 | 0.047* | |
C6 | −0.1768 (2) | 0.0965 (2) | 0.35082 (13) | 0.0340 (4) | |
C7 | −0.2599 (3) | 0.0120 (2) | 0.25344 (14) | 0.0401 (4) | |
H7 | −0.3929 | −0.0317 | 0.2322 | 0.048* | |
C8 | 0.2592 (2) | 0.2835 (2) | 0.12063 (13) | 0.0341 (4) | |
C9 | 0.3100 (3) | 0.4449 (2) | 0.16444 (15) | 0.0459 (4) | |
H9 | 0.3465 | 0.4669 | 0.2347 | 0.055* | |
C10 | 0.3047 (3) | 0.5715 (3) | 0.10045 (19) | 0.0540 (5) | |
H10 | 0.3356 | 0.6796 | 0.1286 | 0.065* | |
C11 | 0.2545 (3) | 0.5414 (3) | −0.00455 (17) | 0.0494 (5) | |
C12 | 0.2060 (3) | 0.3792 (3) | −0.04551 (16) | 0.0523 (5) | |
H12 | 0.1725 | 0.3578 | −0.1160 | 0.063* | |
C13 | 0.2064 (3) | 0.2490 (3) | 0.01622 (14) | 0.0434 (4) | |
H13 | 0.1718 | 0.1404 | −0.0118 | 0.052* | |
C14 | 0.2506 (4) | 0.6822 (4) | −0.0728 (2) | 0.0757 (8) | |
H14A | 0.3662 | 0.7798 | −0.0550 | 0.114* | |
H14B | 0.1380 | 0.7089 | −0.0635 | 0.114* | |
H14C | 0.2451 | 0.6474 | −0.1434 | 0.114* | |
N1 | 0.2229 (3) | 0.3722 (2) | 0.59984 (13) | 0.0499 (4) | |
N2 | −0.1975 (3) | 0.2944 (2) | 0.60016 (14) | 0.0537 (5) | |
N3 | −0.1278 (2) | 0.00328 (19) | 0.19798 (11) | 0.0396 (3) | |
N4 | 0.0489 (2) | 0.07838 (19) | 0.25754 (11) | 0.0361 (3) | |
O1 | 0.3506 (3) | 0.5014 (3) | 0.58078 (16) | 0.0959 (8) | |
O2 | 0.2091 (4) | 0.3122 (3) | 0.68252 (13) | 0.0874 (7) | |
O3 | −0.0949 (3) | 0.4309 (2) | 0.64245 (15) | 0.0780 (6) | |
O4 | −0.3607 (3) | 0.2146 (3) | 0.61839 (17) | 0.0944 (7) | |
O5 | 0.4057 (2) | 0.1788 (2) | 0.28403 (11) | 0.0491 (4) | |
O6 | 0.2305 (2) | −0.02753 (18) | 0.14045 (12) | 0.0538 (4) | |
S1 | 0.25624 (6) | 0.11985 (6) | 0.20019 (3) | 0.03714 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0385 (8) | 0.0306 (8) | 0.0282 (8) | 0.0145 (7) | 0.0030 (6) | 0.0020 (6) |
C2 | 0.0380 (9) | 0.0381 (9) | 0.0325 (8) | 0.0140 (7) | −0.0008 (7) | −0.0007 (7) |
C3 | 0.0487 (10) | 0.0311 (8) | 0.0301 (8) | 0.0145 (7) | 0.0004 (7) | 0.0002 (6) |
C4 | 0.0540 (11) | 0.0348 (9) | 0.0329 (9) | 0.0200 (8) | 0.0128 (8) | 0.0052 (7) |
C5 | 0.0400 (9) | 0.0410 (9) | 0.0396 (9) | 0.0160 (8) | 0.0096 (7) | 0.0059 (7) |
C6 | 0.0357 (8) | 0.0326 (8) | 0.0337 (8) | 0.0126 (7) | 0.0028 (7) | 0.0038 (6) |
C7 | 0.0359 (9) | 0.0423 (9) | 0.0384 (9) | 0.0112 (7) | −0.0012 (7) | −0.0009 (7) |
C8 | 0.0316 (8) | 0.0409 (9) | 0.0322 (8) | 0.0157 (7) | 0.0053 (6) | −0.0024 (7) |
C9 | 0.0515 (11) | 0.0454 (10) | 0.0396 (10) | 0.0172 (9) | 0.0019 (8) | −0.0073 (8) |
C10 | 0.0575 (13) | 0.0419 (11) | 0.0643 (14) | 0.0192 (9) | 0.0102 (11) | 0.0015 (10) |
C11 | 0.0371 (10) | 0.0604 (12) | 0.0581 (12) | 0.0230 (9) | 0.0183 (9) | 0.0208 (10) |
C12 | 0.0515 (11) | 0.0751 (14) | 0.0351 (10) | 0.0277 (11) | 0.0092 (8) | 0.0092 (9) |
C13 | 0.0475 (10) | 0.0515 (11) | 0.0322 (9) | 0.0193 (9) | 0.0057 (8) | −0.0061 (8) |
C14 | 0.0625 (15) | 0.0889 (19) | 0.094 (2) | 0.0421 (14) | 0.0337 (14) | 0.0504 (16) |
N1 | 0.0650 (11) | 0.0446 (9) | 0.0355 (9) | 0.0168 (8) | −0.0028 (8) | −0.0076 (7) |
N2 | 0.0717 (12) | 0.0547 (10) | 0.0418 (9) | 0.0282 (9) | 0.0205 (9) | 0.0028 (8) |
N3 | 0.0415 (8) | 0.0407 (8) | 0.0332 (8) | 0.0129 (7) | −0.0027 (6) | −0.0040 (6) |
N4 | 0.0360 (7) | 0.0409 (8) | 0.0298 (7) | 0.0127 (6) | 0.0015 (6) | −0.0040 (6) |
O1 | 0.0898 (15) | 0.0859 (14) | 0.0680 (12) | −0.0171 (12) | −0.0005 (11) | −0.0216 (11) |
O2 | 0.1383 (19) | 0.0776 (12) | 0.0387 (9) | 0.0375 (13) | −0.0184 (10) | 0.0019 (8) |
O3 | 0.1032 (15) | 0.0646 (11) | 0.0696 (11) | 0.0315 (10) | 0.0245 (11) | −0.0176 (9) |
O4 | 0.0930 (15) | 0.0952 (15) | 0.0867 (14) | 0.0130 (12) | 0.0569 (13) | −0.0114 (12) |
O5 | 0.0403 (7) | 0.0691 (9) | 0.0438 (7) | 0.0289 (7) | −0.0017 (6) | 0.0018 (7) |
O6 | 0.0701 (10) | 0.0486 (8) | 0.0543 (9) | 0.0339 (7) | 0.0137 (7) | −0.0048 (7) |
S1 | 0.0394 (3) | 0.0435 (3) | 0.0349 (2) | 0.0227 (2) | 0.00423 (18) | −0.00191 (18) |
C1—N4 | 1.377 (2) | C10—C11 | 1.384 (3) |
C1—C2 | 1.400 (2) | C10—H10 | 0.9300 |
C1—C6 | 1.403 (2) | C11—C12 | 1.387 (3) |
C2—C3 | 1.370 (2) | C11—C14 | 1.509 (3) |
C2—H2 | 0.9300 | C12—C13 | 1.379 (3) |
C3—C4 | 1.409 (3) | C12—H12 | 0.9300 |
C3—N1 | 1.472 (2) | C13—H13 | 0.9300 |
C4—C5 | 1.368 (3) | C14—H14A | 0.9600 |
C4—N2 | 1.469 (2) | C14—H14B | 0.9600 |
C5—C6 | 1.397 (2) | C14—H14C | 0.9600 |
C5—H5 | 0.9300 | N1—O2 | 1.198 (2) |
C6—C7 | 1.425 (2) | N1—O1 | 1.211 (3) |
C7—N3 | 1.298 (2) | N2—O4 | 1.202 (3) |
C7—H7 | 0.9300 | N2—O3 | 1.227 (3) |
C8—C13 | 1.382 (2) | N3—N4 | 1.383 (2) |
C8—C9 | 1.392 (3) | N4—S1 | 1.6992 (15) |
C8—S1 | 1.7429 (18) | O5—S1 | 1.4245 (14) |
C9—C10 | 1.381 (3) | O6—S1 | 1.4186 (14) |
C9—H9 | 0.9300 | ||
N4—C1—C2 | 132.03 (16) | C10—C11—C14 | 120.6 (2) |
N4—C1—C6 | 105.65 (15) | C12—C11—C14 | 120.8 (2) |
C2—C1—C6 | 122.32 (16) | C13—C12—C11 | 121.32 (19) |
C3—C2—C1 | 116.04 (16) | C13—C12—H12 | 119.3 |
C3—C2—H2 | 122.0 | C11—C12—H12 | 119.3 |
C1—C2—H2 | 122.0 | C12—C13—C8 | 118.61 (19) |
C2—C3—C4 | 122.37 (16) | C12—C13—H13 | 120.7 |
C2—C3—N1 | 115.68 (17) | C8—C13—H13 | 120.7 |
C4—C3—N1 | 121.92 (16) | C11—C14—H14A | 109.5 |
C5—C4—C3 | 121.29 (16) | C11—C14—H14B | 109.5 |
C5—C4—N2 | 117.78 (18) | H14A—C14—H14B | 109.5 |
C3—C4—N2 | 120.69 (17) | C11—C14—H14C | 109.5 |
C4—C5—C6 | 117.80 (17) | H14A—C14—H14C | 109.5 |
C4—C5—H5 | 121.1 | H14B—C14—H14C | 109.5 |
C6—C5—H5 | 121.1 | O2—N1—O1 | 124.8 (2) |
C5—C6—C1 | 120.16 (16) | O2—N1—C3 | 118.03 (18) |
C5—C6—C7 | 134.80 (17) | O1—N1—C3 | 117.08 (18) |
C1—C6—C7 | 105.00 (15) | O4—N2—O3 | 124.3 (2) |
N3—C7—C6 | 111.90 (16) | O4—N2—C4 | 118.2 (2) |
N3—C7—H7 | 124.1 | O3—N2—C4 | 117.26 (19) |
C6—C7—H7 | 124.1 | C7—N3—N4 | 106.16 (14) |
C13—C8—C9 | 121.71 (18) | C1—N4—N3 | 111.21 (14) |
C13—C8—S1 | 119.26 (14) | C1—N4—S1 | 128.92 (12) |
C9—C8—S1 | 119.01 (14) | N3—N4—S1 | 118.15 (11) |
C10—C9—C8 | 118.03 (18) | O6—S1—O5 | 121.02 (9) |
C10—C9—H9 | 121.0 | O6—S1—N4 | 106.26 (8) |
C8—C9—H9 | 121.0 | O5—S1—N4 | 103.11 (8) |
C9—C10—C11 | 121.7 (2) | O6—S1—C8 | 110.38 (9) |
C9—C10—H10 | 119.2 | O5—S1—C8 | 110.65 (9) |
C11—C10—H10 | 119.2 | N4—S1—C8 | 103.62 (8) |
C10—C11—C12 | 118.67 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O5i | 0.93 | 2.61 | 3.175 (2) | 120 |
Symmetry code: (i) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O5i | 0.93 | 2.61 | 3.175 (2) | 119.9 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. Web of Science CrossRef CAS PubMed Google Scholar
Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191. CSD CrossRef CAS IUCr Journals Google Scholar
Ali, Z., Ferreira, D., Carvalho, P., Avery, M. A. & Khan, I. A. (2008). J. Nat. Prod. 71, 1111–1112. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Liu, Y., Yang, J. & Liu, Q. (2004). Chem. Pharm. Bull. 52, 454–455. Web of Science CrossRef PubMed CAS Google Scholar
Mosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim. Forsch. Drug. Res. 50, 963–972. CAS Google Scholar
Patel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klaba, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220. Web of Science CrossRef PubMed CAS Google Scholar
Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. 24, 4073–4095. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry (Schmidt et al., 2008). Although rare in nature (Liu et al., 2004; Ali et al., 2008), indazoles exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999), antiarrhythmic and analgesic activities (Mosti et al., 2000), antitumor activity) and antihypertensive properties (Bouissane et al., 2006; Abbassi et al., 2012). The present work is a continuation of the investigation of the sulfonamide derivatives published recently by our team (Abbassi et al., 2013; Chicha et al., 2013).
The molecule of the title compound is built up from an indazole ring system linked to a tosyl ring and to two nitro groups as shown in Fig. 1. The indazole ring system makes dihedral angles of 57.0 (3)° and 31.9 (3)°, with the two plans through the atoms forming the first (N1, O1, O2) and the second (N2, O3, O4) nitro groups, respectively. The plane through the tosyl ring is practically perpendicular to the indazole ring system ring, as indicated by the dihedral angle of 89.40 (9) °. In the crystal, the molecules are linked by a C–H···O interaction to form a one-dimensional chain running along the [100] direction as shown in Fig. 2 and Table 2.