organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl­phenyl­sulfon­yl)-5,6-di­nitro-1H-indazole

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: b_oulemda@yahoo.fr

(Received 19 December 2013; accepted 20 December 2013; online 24 December 2013)

In the title compound, C14H10N4O6S, the indazole ring system is almost perpendicular to the tosyl ring, as indicated by the dihedral angle of 89.40 (9)° between their planes. The dihedral angles between the indazole system and the nitro groups are 57.0 (3) and 31.9 (3)°. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming chains running along [100].

Related literature

For the biological activity of sulfonamides, see: Schmidt et al. (2008[Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. 24, 4073-4095.]); Liu et al. (2004[Liu, Y., Yang, J. & Liu, Q. (2004). Chem. Pharm. Bull. 52, 454-455.]); Ali et al. (2008[Ali, Z., Ferreira, D., Carvalho, P., Avery, M. A. & Khan, I. A. (2008). J. Nat. Prod. 71, 1111-1112.]); Patel et al. (1999[Patel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klaba, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217-3220.]); Mosti et al. (2000[Mosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim. Forsch. Drug. Res. 50, 963-972.]); Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]); Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.]). For the structures of similar compounds, see: Abbassi et al. (2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2013[Chicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N4O6S

  • Mr = 362.32

  • Triclinic, [P \overline 1]

  • a = 7.4125 (3) Å

  • b = 8.5371 (3) Å

  • c = 13.0825 (5) Å

  • α = 90.401 (2)°

  • β = 95.707 (2)°

  • γ = 111.302 (2)°

  • V = 766.66 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.42 × 0.35 × 0.28 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.747

  • 19101 measured reflections

  • 3383 independent reflections

  • 2984 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.07

  • 3383 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O5i 0.93 2.61 3.175 (2) 120
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry (Schmidt et al., 2008). Although rare in nature (Liu et al., 2004; Ali et al., 2008), indazoles exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999), antiarrhythmic and analgesic activities (Mosti et al., 2000), antitumor activity) and antihypertensive properties (Bouissane et al., 2006; Abbassi et al., 2012). The present work is a continuation of the investigation of the sulfonamide derivatives published recently by our team (Abbassi et al., 2013; Chicha et al., 2013).

The molecule of the title compound is built up from an indazole ring system linked to a tosyl ring and to two nitro groups as shown in Fig. 1. The indazole ring system makes dihedral angles of 57.0 (3)° and 31.9 (3)°, with the two plans through the atoms forming the first (N1, O1, O2) and the second (N2, O3, O4) nitro groups, respectively. The plane through the tosyl ring is practically perpendicular to the indazole ring system ring, as indicated by the dihedral angle of 89.40 (9) °. In the crystal, the molecules are linked by a C–H···O interaction to form a one-dimensional chain running along the [100] direction as shown in Fig. 2 and Table 2.

Related literature top

For the biological activity of sulfonamides, see: Schmidt et al. (2008); Liu et al. (2004); Ali et al. (2008); Patel et al. (1999); Mosti et al. (2000); Bouissane et al. (2006); Abbassi et al. (2012). For the structures of similar compounds, see: Abbassi et al. (2013); Chicha et al. (2013).

Experimental top

To a stirred solution of 5,6-dinitroindazole (0.5 g, 2.4 mmol) in pyridine (25 ml) was added crude p-methylbenzenesulfonyl chloride (0.45 g, 2.4 mmol) over 10 min. The reaction mixture was allowed to attain room temperature and was stirred for further 24 h. The mixture was evaporated under reduced pressure and the residue was purified by silica gel flash column chromatography eluting with dichloromethane. The title compound was recrystallized from acetone. Yield: 56%, m.p.: 307–309 K.

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å and C–H = 0.93 Å for methyl and aromatic, respectively and with Uiso(H) = 1.5 Ueq for methyl and Uiso(H) = 1.2 Ueq for aromatic H atoms.

Structure description top

Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry (Schmidt et al., 2008). Although rare in nature (Liu et al., 2004; Ali et al., 2008), indazoles exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999), antiarrhythmic and analgesic activities (Mosti et al., 2000), antitumor activity) and antihypertensive properties (Bouissane et al., 2006; Abbassi et al., 2012). The present work is a continuation of the investigation of the sulfonamide derivatives published recently by our team (Abbassi et al., 2013; Chicha et al., 2013).

The molecule of the title compound is built up from an indazole ring system linked to a tosyl ring and to two nitro groups as shown in Fig. 1. The indazole ring system makes dihedral angles of 57.0 (3)° and 31.9 (3)°, with the two plans through the atoms forming the first (N1, O1, O2) and the second (N2, O3, O4) nitro groups, respectively. The plane through the tosyl ring is practically perpendicular to the indazole ring system ring, as indicated by the dihedral angle of 89.40 (9) °. In the crystal, the molecules are linked by a C–H···O interaction to form a one-dimensional chain running along the [100] direction as shown in Fig. 2 and Table 2.

For the biological activity of sulfonamides, see: Schmidt et al. (2008); Liu et al. (2004); Ali et al. (2008); Patel et al. (1999); Mosti et al. (2000); Bouissane et al. (2006); Abbassi et al. (2012). For the structures of similar compounds, see: Abbassi et al. (2013); Chicha et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Plot of the molecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Partial crystal packing for the title compound showing hydrogen bonds as dashed lines.
1-(4-Methylphenylsulfonyl)-5,6-dinitro-1H-indazole top
Crystal data top
C14H10N4O6SZ = 2
Mr = 362.32F(000) = 372
Triclinic, P1Dx = 1.570 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4125 (3) ÅCell parameters from 3383 reflections
b = 8.5371 (3) Åθ = 2.6–27.1°
c = 13.0825 (5) ŵ = 0.25 mm1
α = 90.401 (2)°T = 296 K
β = 95.707 (2)°Block, colourless
γ = 111.302 (2)°0.42 × 0.35 × 0.28 mm
V = 766.66 (5) Å3
Data collection top
Bruker X8 APEX
diffractometer
3383 independent reflections
Radiation source: fine-focus sealed tube2984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 27.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.693, Tmax = 0.747k = 1010
19101 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.3549P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3383 reflectionsΔρmax = 0.46 e Å3
227 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (4)
Crystal data top
C14H10N4O6Sγ = 111.302 (2)°
Mr = 362.32V = 766.66 (5) Å3
Triclinic, P1Z = 2
a = 7.4125 (3) ÅMo Kα radiation
b = 8.5371 (3) ŵ = 0.25 mm1
c = 13.0825 (5) ÅT = 296 K
α = 90.401 (2)°0.42 × 0.35 × 0.28 mm
β = 95.707 (2)°
Data collection top
Bruker X8 APEX
diffractometer
3383 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2984 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.031
19101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
3383 reflectionsΔρmin = 0.32 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0249 (2)0.1414 (2)0.35023 (12)0.0319 (3)
C20.1588 (3)0.2338 (2)0.43202 (13)0.0365 (4)
H20.29240.26320.43120.044*
C30.0814 (3)0.2782 (2)0.51328 (13)0.0370 (4)
C40.1209 (3)0.2326 (2)0.51564 (13)0.0389 (4)
C50.2510 (3)0.1422 (2)0.43547 (14)0.0395 (4)
H50.38450.11210.43730.047*
C60.1768 (2)0.0965 (2)0.35082 (13)0.0340 (4)
C70.2599 (3)0.0120 (2)0.25344 (14)0.0401 (4)
H70.39290.03170.23220.048*
C80.2592 (2)0.2835 (2)0.12063 (13)0.0341 (4)
C90.3100 (3)0.4449 (2)0.16444 (15)0.0459 (4)
H90.34650.46690.23470.055*
C100.3047 (3)0.5715 (3)0.10045 (19)0.0540 (5)
H100.33560.67960.12860.065*
C110.2545 (3)0.5414 (3)0.00455 (17)0.0494 (5)
C120.2060 (3)0.3792 (3)0.04551 (16)0.0523 (5)
H120.17250.35780.11600.063*
C130.2064 (3)0.2490 (3)0.01622 (14)0.0434 (4)
H130.17180.14040.01180.052*
C140.2506 (4)0.6822 (4)0.0728 (2)0.0757 (8)
H14A0.36620.77980.05500.114*
H14B0.13800.70890.06350.114*
H14C0.24510.64740.14340.114*
N10.2229 (3)0.3722 (2)0.59984 (13)0.0499 (4)
N20.1975 (3)0.2944 (2)0.60016 (14)0.0537 (5)
N30.1278 (2)0.00328 (19)0.19798 (11)0.0396 (3)
N40.0489 (2)0.07838 (19)0.25754 (11)0.0361 (3)
O10.3506 (3)0.5014 (3)0.58078 (16)0.0959 (8)
O20.2091 (4)0.3122 (3)0.68252 (13)0.0874 (7)
O30.0949 (3)0.4309 (2)0.64245 (15)0.0780 (6)
O40.3607 (3)0.2146 (3)0.61839 (17)0.0944 (7)
O50.4057 (2)0.1788 (2)0.28403 (11)0.0491 (4)
O60.2305 (2)0.02753 (18)0.14045 (12)0.0538 (4)
S10.25624 (6)0.11985 (6)0.20019 (3)0.03714 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0385 (8)0.0306 (8)0.0282 (8)0.0145 (7)0.0030 (6)0.0020 (6)
C20.0380 (9)0.0381 (9)0.0325 (8)0.0140 (7)0.0008 (7)0.0007 (7)
C30.0487 (10)0.0311 (8)0.0301 (8)0.0145 (7)0.0004 (7)0.0002 (6)
C40.0540 (11)0.0348 (9)0.0329 (9)0.0200 (8)0.0128 (8)0.0052 (7)
C50.0400 (9)0.0410 (9)0.0396 (9)0.0160 (8)0.0096 (7)0.0059 (7)
C60.0357 (8)0.0326 (8)0.0337 (8)0.0126 (7)0.0028 (7)0.0038 (6)
C70.0359 (9)0.0423 (9)0.0384 (9)0.0112 (7)0.0012 (7)0.0009 (7)
C80.0316 (8)0.0409 (9)0.0322 (8)0.0157 (7)0.0053 (6)0.0024 (7)
C90.0515 (11)0.0454 (10)0.0396 (10)0.0172 (9)0.0019 (8)0.0073 (8)
C100.0575 (13)0.0419 (11)0.0643 (14)0.0192 (9)0.0102 (11)0.0015 (10)
C110.0371 (10)0.0604 (12)0.0581 (12)0.0230 (9)0.0183 (9)0.0208 (10)
C120.0515 (11)0.0751 (14)0.0351 (10)0.0277 (11)0.0092 (8)0.0092 (9)
C130.0475 (10)0.0515 (11)0.0322 (9)0.0193 (9)0.0057 (8)0.0061 (8)
C140.0625 (15)0.0889 (19)0.094 (2)0.0421 (14)0.0337 (14)0.0504 (16)
N10.0650 (11)0.0446 (9)0.0355 (9)0.0168 (8)0.0028 (8)0.0076 (7)
N20.0717 (12)0.0547 (10)0.0418 (9)0.0282 (9)0.0205 (9)0.0028 (8)
N30.0415 (8)0.0407 (8)0.0332 (8)0.0129 (7)0.0027 (6)0.0040 (6)
N40.0360 (7)0.0409 (8)0.0298 (7)0.0127 (6)0.0015 (6)0.0040 (6)
O10.0898 (15)0.0859 (14)0.0680 (12)0.0171 (12)0.0005 (11)0.0216 (11)
O20.1383 (19)0.0776 (12)0.0387 (9)0.0375 (13)0.0184 (10)0.0019 (8)
O30.1032 (15)0.0646 (11)0.0696 (11)0.0315 (10)0.0245 (11)0.0176 (9)
O40.0930 (15)0.0952 (15)0.0867 (14)0.0130 (12)0.0569 (13)0.0114 (12)
O50.0403 (7)0.0691 (9)0.0438 (7)0.0289 (7)0.0017 (6)0.0018 (7)
O60.0701 (10)0.0486 (8)0.0543 (9)0.0339 (7)0.0137 (7)0.0048 (7)
S10.0394 (3)0.0435 (3)0.0349 (2)0.0227 (2)0.00423 (18)0.00191 (18)
Geometric parameters (Å, º) top
C1—N41.377 (2)C10—C111.384 (3)
C1—C21.400 (2)C10—H100.9300
C1—C61.403 (2)C11—C121.387 (3)
C2—C31.370 (2)C11—C141.509 (3)
C2—H20.9300C12—C131.379 (3)
C3—C41.409 (3)C12—H120.9300
C3—N11.472 (2)C13—H130.9300
C4—C51.368 (3)C14—H14A0.9600
C4—N21.469 (2)C14—H14B0.9600
C5—C61.397 (2)C14—H14C0.9600
C5—H50.9300N1—O21.198 (2)
C6—C71.425 (2)N1—O11.211 (3)
C7—N31.298 (2)N2—O41.202 (3)
C7—H70.9300N2—O31.227 (3)
C8—C131.382 (2)N3—N41.383 (2)
C8—C91.392 (3)N4—S11.6992 (15)
C8—S11.7429 (18)O5—S11.4245 (14)
C9—C101.381 (3)O6—S11.4186 (14)
C9—H90.9300
N4—C1—C2132.03 (16)C10—C11—C14120.6 (2)
N4—C1—C6105.65 (15)C12—C11—C14120.8 (2)
C2—C1—C6122.32 (16)C13—C12—C11121.32 (19)
C3—C2—C1116.04 (16)C13—C12—H12119.3
C3—C2—H2122.0C11—C12—H12119.3
C1—C2—H2122.0C12—C13—C8118.61 (19)
C2—C3—C4122.37 (16)C12—C13—H13120.7
C2—C3—N1115.68 (17)C8—C13—H13120.7
C4—C3—N1121.92 (16)C11—C14—H14A109.5
C5—C4—C3121.29 (16)C11—C14—H14B109.5
C5—C4—N2117.78 (18)H14A—C14—H14B109.5
C3—C4—N2120.69 (17)C11—C14—H14C109.5
C4—C5—C6117.80 (17)H14A—C14—H14C109.5
C4—C5—H5121.1H14B—C14—H14C109.5
C6—C5—H5121.1O2—N1—O1124.8 (2)
C5—C6—C1120.16 (16)O2—N1—C3118.03 (18)
C5—C6—C7134.80 (17)O1—N1—C3117.08 (18)
C1—C6—C7105.00 (15)O4—N2—O3124.3 (2)
N3—C7—C6111.90 (16)O4—N2—C4118.2 (2)
N3—C7—H7124.1O3—N2—C4117.26 (19)
C6—C7—H7124.1C7—N3—N4106.16 (14)
C13—C8—C9121.71 (18)C1—N4—N3111.21 (14)
C13—C8—S1119.26 (14)C1—N4—S1128.92 (12)
C9—C8—S1119.01 (14)N3—N4—S1118.15 (11)
C10—C9—C8118.03 (18)O6—S1—O5121.02 (9)
C10—C9—H9121.0O6—S1—N4106.26 (8)
C8—C9—H9121.0O5—S1—N4103.11 (8)
C9—C10—C11121.7 (2)O6—S1—C8110.38 (9)
C9—C10—H10119.2O5—S1—C8110.65 (9)
C11—C10—H10119.2N4—S1—C8103.62 (8)
C10—C11—C12118.67 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5i0.932.613.175 (2)120
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5i0.932.613.175 (2)119.9
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAli, Z., Ferreira, D., Carvalho, P., Avery, M. A. & Khan, I. A. (2008). J. Nat. Prod. 71, 1111–1112.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Kouakou, A., Rakib, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1353.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Y., Yang, J. & Liu, Q. (2004). Chem. Pharm. Bull. 52, 454–455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim. Forsch. Drug. Res. 50, 963–972.  CAS Google Scholar
First citationPatel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klaba, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. 24, 4073–4095.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds