organic compounds
4-Amino-12-methylsulfonyloxy-[2.2]paracyclophane
aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Taian University, Taian 271021, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
*Correspondence e-mail: duanwenzeng@163.com
The title compound, C17H19NO3S, was synthesized from 4-benzhydrylideneamino-12-hydroxy-[2.2]paracyclophane and methanesulfonyl chloride. In the molecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. In the crystal, weak N—H⋯O and C—H⋯O hydrogen bonds link the molecules into layers parallel to the ac plane.
CCDC reference: 974579
Related literature
For background to [2.2]paracyclophane, see: Cram et al. (1959); Liebman & Greenberg (1976); Dyson et al. (1998). For its synthesis and applications in catalysis, see: Hou et al. (2000); Duan et al. (2008, 2012). For a related structure, see: Ma et al. (2012).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 974579
https://doi.org/10.1107/S1600536813032595/cv5436sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813032595/cv5436Isup2.hkl
The title compound was prepared by the method reported by Duan et al. (2012). The crystals were obtained by recrystallization from hexane and ethyl acetate.
All the H atoms were located in difference maps, but placed in idealized positions (N—H 0.86 Å, C—H 0.93–0.97 Å), and refined as riding, with with Uiso(H) = 1.2–1.5 Ueq of the parent atom.
Since the first synthesis of [2.2]paracyclophane (Cram, 1959), its structure atrracted considerable interest (Liebman et al., 1976; Dyson et al., 1998). [2.2]Paracyclophane needs only one substituent to become planar chiral, so, there has been notable progress with regard to the synthesis of new derivatives and their applications in asymmetric catalysis(Hou et al., 2000; Duan et al., 2008).
In the title compound (Fig. 1), all bond lengths and angles are normal and in agreement with those observed in the related structure (Ma et al., 2012). In the molecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. The crystal packing exhibits weak intermolecular N—H···O and C—H···O hydrogen bonds (Table 1), which link the molecules into layers parallel to the ac plane.
For background to [2.2]paracyclophane, see: Cram et al. (1959); Liebman & Greenberg (1976); Dyson et al. (1998). For its synthesis and applications in catalysis, see: Hou et al. (2000); Duan et al. (2008, 2012). For a related structure, see: Ma et al. (2012).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme and 50% probability displacement ellipsoids. |
C17H19NO3S | F(000) = 672 |
Mr = 317.39 | Dx = 1.389 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2210 reflections |
a = 8.017 (7) Å | θ = 2.8–23.1° |
b = 11.734 (9) Å | µ = 0.23 mm−1 |
c = 16.131 (13) Å | T = 273 K |
V = 1517 (2) Å3 | Block, colourless |
Z = 4 | 0.13 × 0.12 × 0.10 mm |
Bruker SMART CCD diffractometer | 2676 independent reflections |
Radiation source: fine-focus sealed tube | 2266 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
phi and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −9→9 |
Tmin = 0.971, Tmax = 0.978 | k = −13→13 |
7769 measured reflections | l = −11→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.0436P)2 + 0.0218P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2676 reflections | Δρmax = 0.15 e Å−3 |
200 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1122 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (9) |
C17H19NO3S | V = 1517 (2) Å3 |
Mr = 317.39 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.017 (7) Å | µ = 0.23 mm−1 |
b = 11.734 (9) Å | T = 273 K |
c = 16.131 (13) Å | 0.13 × 0.12 × 0.10 mm |
Bruker SMART CCD diffractometer | 2676 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2266 reflections with I > 2σ(I) |
Tmin = 0.971, Tmax = 0.978 | Rint = 0.037 |
7769 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.084 | Δρmax = 0.15 e Å−3 |
S = 1.04 | Δρmin = −0.23 e Å−3 |
2676 reflections | Absolute structure: Flack (1983), 1122 Friedel pairs |
200 parameters | Absolute structure parameter: 0.02 (9) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.0276 (4) | 0.2690 (2) | 0.10319 (15) | 0.0464 (7) | |
H1C | 1.0358 | 0.1905 | 0.0849 | 0.056* | |
H1D | 1.1386 | 0.3019 | 0.1019 | 0.056* | |
C2 | 0.9100 (3) | 0.3373 (2) | 0.04181 (16) | 0.0484 (7) | |
H2A | 0.9781 | 0.3785 | 0.0022 | 0.058* | |
H2B | 0.8411 | 0.2839 | 0.0113 | 0.058* | |
C3 | 0.7987 (3) | 0.4208 (2) | 0.08747 (14) | 0.0386 (6) | |
C4 | 0.6334 (4) | 0.3938 (2) | 0.10371 (16) | 0.0478 (7) | |
H4 | 0.5785 | 0.3439 | 0.0682 | 0.057* | |
C5 | 0.5469 (3) | 0.4382 (2) | 0.17062 (18) | 0.0492 (7) | |
H5 | 0.4357 | 0.4188 | 0.1794 | 0.059* | |
C6 | 0.6281 (3) | 0.5120 (2) | 0.22456 (16) | 0.0412 (6) | |
C7 | 0.7798 (3) | 0.5569 (2) | 0.19893 (15) | 0.0402 (6) | |
H7 | 0.8257 | 0.6175 | 0.2283 | 0.048* | |
C8 | 0.8654 (3) | 0.5139 (2) | 0.13052 (15) | 0.0376 (6) | |
C9 | 0.5778 (4) | 0.5230 (3) | 0.31434 (17) | 0.0551 (8) | |
H9A | 0.4571 | 0.5206 | 0.3180 | 0.066* | |
H9B | 0.6140 | 0.5967 | 0.3348 | 0.066* | |
C10 | 0.6529 (3) | 0.4269 (2) | 0.37183 (16) | 0.0491 (7) | |
H10A | 0.7088 | 0.4625 | 0.4185 | 0.059* | |
H10B | 0.5624 | 0.3808 | 0.3935 | 0.059* | |
C11 | 0.7741 (3) | 0.3510 (2) | 0.32766 (15) | 0.0359 (6) | |
C12 | 0.7184 (3) | 0.2616 (2) | 0.27724 (15) | 0.0425 (7) | |
H12 | 0.6159 | 0.2280 | 0.2886 | 0.051* | |
C13 | 0.8110 (3) | 0.2222 (2) | 0.21135 (16) | 0.0432 (7) | |
H13 | 0.7716 | 0.1612 | 0.1802 | 0.052* | |
C14 | 0.9620 (3) | 0.27203 (19) | 0.19075 (14) | 0.0358 (6) | |
C15 | 1.0336 (3) | 0.34300 (19) | 0.24992 (15) | 0.0336 (6) | |
H15 | 1.1437 | 0.3666 | 0.2440 | 0.040* | |
C16 | 0.9421 (3) | 0.37825 (19) | 0.31712 (14) | 0.0304 (6) | |
C17 | 1.0148 (4) | 0.3455 (2) | 0.51017 (17) | 0.0548 (8) | |
H17A | 0.9649 | 0.2812 | 0.4830 | 0.082* | |
H17B | 0.9287 | 0.3953 | 0.5303 | 0.082* | |
H17C | 1.0816 | 0.3196 | 0.5558 | 0.082* | |
N1 | 1.0226 (3) | 0.5546 (2) | 0.11279 (15) | 0.0610 (7) | |
H1A | 1.0668 | 0.6060 | 0.1438 | 0.073* | |
H1B | 1.0764 | 0.5286 | 0.0707 | 0.073* | |
O1 | 1.2545 (2) | 0.34091 (17) | 0.40407 (12) | 0.0602 (6) | |
O2 | 1.2004 (2) | 0.52194 (15) | 0.47560 (11) | 0.0553 (5) | |
O3 | 1.0125 (2) | 0.46195 (13) | 0.37118 (10) | 0.0355 (4) | |
S1 | 1.14007 (8) | 0.41905 (5) | 0.43999 (4) | 0.03807 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0554 (18) | 0.0443 (15) | 0.0395 (15) | 0.0054 (14) | 0.0040 (13) | −0.0094 (12) |
C2 | 0.059 (2) | 0.0540 (16) | 0.0325 (15) | −0.0026 (14) | 0.0012 (12) | −0.0085 (12) |
C3 | 0.0400 (15) | 0.0459 (14) | 0.0298 (13) | −0.0008 (13) | −0.0051 (10) | 0.0041 (11) |
C4 | 0.0484 (17) | 0.0558 (17) | 0.0393 (15) | −0.0035 (15) | −0.0172 (14) | −0.0016 (12) |
C5 | 0.0306 (15) | 0.0631 (18) | 0.0538 (17) | 0.0011 (14) | −0.0059 (13) | 0.0068 (14) |
C6 | 0.0382 (16) | 0.0432 (15) | 0.0421 (15) | 0.0115 (13) | 0.0007 (13) | 0.0056 (11) |
C7 | 0.0513 (17) | 0.0289 (13) | 0.0404 (15) | 0.0050 (12) | −0.0003 (12) | −0.0003 (10) |
C8 | 0.0431 (15) | 0.0360 (13) | 0.0338 (13) | −0.0012 (12) | 0.0014 (12) | 0.0090 (10) |
C9 | 0.056 (2) | 0.0561 (17) | 0.0530 (18) | 0.0177 (16) | 0.0161 (14) | 0.0021 (14) |
C10 | 0.0341 (14) | 0.0767 (19) | 0.0365 (14) | 0.0078 (15) | 0.0061 (12) | 0.0012 (14) |
C11 | 0.0330 (15) | 0.0466 (15) | 0.0281 (13) | −0.0016 (12) | −0.0026 (11) | 0.0087 (11) |
C12 | 0.0351 (15) | 0.0496 (16) | 0.0429 (16) | −0.0107 (13) | −0.0067 (12) | 0.0127 (12) |
C13 | 0.0544 (19) | 0.0347 (14) | 0.0404 (15) | −0.0060 (13) | −0.0051 (13) | −0.0017 (11) |
C14 | 0.0388 (16) | 0.0315 (12) | 0.0372 (14) | 0.0068 (12) | −0.0027 (11) | 0.0004 (11) |
C15 | 0.0270 (14) | 0.0386 (13) | 0.0353 (13) | 0.0041 (11) | −0.0025 (11) | 0.0011 (11) |
C16 | 0.0300 (14) | 0.0328 (12) | 0.0283 (13) | 0.0000 (11) | −0.0044 (11) | 0.0015 (10) |
C17 | 0.064 (2) | 0.0572 (17) | 0.0435 (17) | −0.0100 (16) | −0.0063 (14) | 0.0125 (13) |
N1 | 0.0609 (17) | 0.0645 (16) | 0.0575 (15) | −0.0188 (14) | 0.0172 (13) | −0.0116 (12) |
O1 | 0.0347 (11) | 0.0791 (13) | 0.0669 (14) | 0.0165 (11) | −0.0073 (10) | −0.0073 (10) |
O2 | 0.0593 (13) | 0.0522 (11) | 0.0543 (12) | −0.0180 (10) | −0.0204 (9) | −0.0005 (9) |
O3 | 0.0377 (10) | 0.0345 (8) | 0.0344 (9) | 0.0015 (8) | −0.0078 (8) | −0.0002 (7) |
S1 | 0.0327 (3) | 0.0438 (3) | 0.0377 (3) | −0.0030 (3) | −0.0080 (3) | 0.0024 (3) |
C1—C14 | 1.508 (4) | C10—H10A | 0.9700 |
C1—C2 | 1.585 (4) | C10—H10B | 0.9700 |
C1—H1C | 0.9700 | C11—C16 | 1.394 (3) |
C1—H1D | 0.9700 | C11—C12 | 1.401 (4) |
C2—C3 | 1.516 (4) | C12—C13 | 1.377 (4) |
C2—H2A | 0.9700 | C12—H12 | 0.9300 |
C2—H2B | 0.9700 | C13—C14 | 1.384 (4) |
C3—C4 | 1.387 (4) | C13—H13 | 0.9300 |
C3—C8 | 1.400 (3) | C14—C15 | 1.391 (3) |
C4—C5 | 1.385 (4) | C15—C16 | 1.373 (3) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.390 (4) | C16—O3 | 1.430 (3) |
C5—H5 | 0.9300 | C17—S1 | 1.742 (3) |
C6—C7 | 1.389 (4) | C17—H17A | 0.9600 |
C6—C9 | 1.509 (4) | C17—H17B | 0.9600 |
C7—C8 | 1.394 (4) | C17—H17C | 0.9600 |
C7—H7 | 0.9300 | N1—H1A | 0.8600 |
C8—N1 | 1.377 (3) | N1—H1B | 0.8600 |
C9—C10 | 1.579 (4) | O1—S1 | 1.421 (2) |
C9—H9A | 0.9700 | O2—S1 | 1.422 (2) |
C9—H9B | 0.9700 | O3—S1 | 1.5908 (18) |
C10—C11 | 1.499 (4) | ||
C14—C1—C2 | 111.5 (2) | C9—C10—H10A | 109.0 |
C14—C1—H1C | 109.3 | C11—C10—H10B | 109.0 |
C2—C1—H1C | 109.3 | C9—C10—H10B | 109.0 |
C14—C1—H1D | 109.3 | H10A—C10—H10B | 107.8 |
C2—C1—H1D | 109.3 | C16—C11—C12 | 114.1 (2) |
H1C—C1—H1D | 108.0 | C16—C11—C10 | 123.2 (2) |
C3—C2—C1 | 111.9 (2) | C12—C11—C10 | 120.9 (2) |
C3—C2—H2A | 109.2 | C13—C12—C11 | 121.9 (2) |
C1—C2—H2A | 109.2 | C13—C12—H12 | 119.1 |
C3—C2—H2B | 109.2 | C11—C12—H12 | 119.1 |
C1—C2—H2B | 109.2 | C12—C13—C14 | 121.0 (2) |
H2A—C2—H2B | 107.9 | C12—C13—H13 | 119.5 |
C4—C3—C8 | 116.7 (2) | C14—C13—H13 | 119.5 |
C4—C3—C2 | 120.4 (2) | C13—C14—C15 | 116.7 (2) |
C8—C3—C2 | 121.3 (2) | C13—C14—C1 | 121.3 (2) |
C5—C4—C3 | 122.7 (3) | C15—C14—C1 | 120.9 (2) |
C5—C4—H4 | 118.7 | C16—C15—C14 | 120.1 (2) |
C3—C4—H4 | 118.7 | C16—C15—H15 | 119.9 |
C4—C5—C6 | 119.2 (3) | C14—C15—H15 | 120.0 |
C4—C5—H5 | 120.4 | C15—C16—C11 | 122.9 (2) |
C6—C5—H5 | 120.4 | C15—C16—O3 | 118.5 (2) |
C5—C6—C7 | 117.4 (2) | C11—C16—O3 | 117.7 (2) |
C5—C6—C9 | 122.0 (3) | S1—C17—H17A | 109.5 |
C7—C6—C9 | 119.2 (3) | S1—C17—H17B | 109.5 |
C6—C7—C8 | 122.0 (3) | H17A—C17—H17B | 109.5 |
C6—C7—H7 | 119.0 | S1—C17—H17C | 109.5 |
C8—C7—H7 | 119.0 | H17A—C17—H17C | 109.5 |
N1—C8—C7 | 119.3 (2) | H17B—C17—H17C | 109.5 |
N1—C8—C3 | 121.1 (2) | C8—N1—H1A | 120.0 |
C7—C8—C3 | 119.1 (3) | C8—N1—H1B | 120.0 |
C6—C9—C10 | 113.6 (2) | H1A—N1—H1B | 120.0 |
C6—C9—H9A | 108.8 | C16—O3—S1 | 117.52 (14) |
C10—C9—H9A | 108.8 | O1—S1—O2 | 119.55 (14) |
C6—C9—H9B | 108.8 | O1—S1—O3 | 109.55 (12) |
C10—C9—H9B | 108.8 | O2—S1—O3 | 103.40 (10) |
H9A—C9—H9B | 107.7 | O1—S1—C17 | 108.54 (14) |
C11—C10—C9 | 113.1 (2) | O2—S1—C17 | 110.74 (14) |
C11—C10—H10A | 109.0 | O3—S1—C17 | 103.86 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O2i | 0.86 | 2.43 | 3.262 (3) | 163 |
C10—H10B···O1ii | 0.97 | 2.52 | 3.390 (4) | 149 |
Symmetry codes: (i) −x+5/2, −y+1, z−1/2; (ii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O2i | 0.86 | 2.43 | 3.262 (3) | 163 |
C10—H10B···O1ii | 0.97 | 2.52 | 3.390 (4) | 149 |
Symmetry codes: (i) −x+5/2, −y+1, z−1/2; (ii) x−1, y, z. |
Acknowledgements
Financial support from Shandong Province Natural Science Foundation (ZR2012BL08) is gratefully acknowledged.
References
Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cram, D. J. (1959). Rec. Chem. Prog. 20, 71–93. CAS Google Scholar
Duan, W. Z., Ma, Y. D., Qu, B., Zhao, L., Chen, J. Q. & Song, C. (2012). Tetrahedron Asymmetry, 23, 1369–1375. Web of Science CrossRef CAS Google Scholar
Duan, W. Z., Ma, Y. D., Xia, H. Q., Liu, X. Y., Ma, Q. S. & Sun, J. S. (2008). J. Org. Chem. 73, 4330–4333. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dyson, P. J., Johnson, B. F. G. & Martin, C. M. (1998). Coord. Chem. Rev. 175, 59–89. Web of Science CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hou, X. L., Wu, X. W., Dai, L. X., Cao, B. X. & Sun, J. (2000). Chem. Commun. pp. 1195–1196. Web of Science CSD CrossRef Google Scholar
Liebman, J. F. & Greenberg, A. (1976). Chem. Rev. 76, 311–365. CrossRef CAS Web of Science Google Scholar
Ma, K., Duan, W., He, F. & Ma, Y. (2012). Acta Cryst. E68, o1380. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since the first synthesis of [2.2]paracyclophane (Cram, 1959), its structure atrracted considerable interest (Liebman et al., 1976; Dyson et al., 1998). [2.2]Paracyclophane needs only one substituent to become planar chiral, so, there has been notable progress with regard to the synthesis of new derivatives and their applications in asymmetric catalysis(Hou et al., 2000; Duan et al., 2008).
In the title compound (Fig. 1), all bond lengths and angles are normal and in agreement with those observed in the related structure (Ma et al., 2012). In the molecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. The crystal packing exhibits weak intermolecular N—H···O and C—H···O hydrogen bonds (Table 1), which link the molecules into layers parallel to the ac plane.