organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-12-methyl­sulfon­yl­oxy-[2.2]para­cyclo­phane

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Taian University, Taian 271021, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
*Correspondence e-mail: duanwenzeng@163.com

(Received 6 November 2013; accepted 30 November 2013; online 7 December 2013)

The title compound, C17H19NO3S, was synthesized from 4-benzhydryl­idene­amino-12-hy­droxy-[2.2]para­cyclo­phane and methane­sulfonyl chloride. In the mol­ecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. In the crystal, weak N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ac plane.

Related literature

For background to [2.2]para­cyclo­phane, see: Cram et al. (1959[Cram, D. J. (1959). Rec. Chem. Prog. 20, 71-93.]); Liebman & Greenberg (1976[Liebman, J. F. & Greenberg, A. (1976). Chem. Rev. 76, 311-365.]); Dyson et al. (1998[Dyson, P. J., Johnson, B. F. G. & Martin, C. M. (1998). Coord. Chem. Rev. 175, 59-89.]). For its synthesis and applications in catalysis, see: Hou et al. (2000[Hou, X. L., Wu, X. W., Dai, L. X., Cao, B. X. & Sun, J. (2000). Chem. Commun. pp. 1195-1196.]); Duan et al. (2008[Duan, W. Z., Ma, Y. D., Xia, H. Q., Liu, X. Y., Ma, Q. S. & Sun, J. S. (2008). J. Org. Chem. 73, 4330-4333.], 2012[Duan, W. Z., Ma, Y. D., Qu, B., Zhao, L., Chen, J. Q. & Song, C. (2012). Tetrahedron Asymmetry, 23, 1369-1375.]). For a related structure, see: Ma et al. (2012[Ma, K., Duan, W., He, F. & Ma, Y. (2012). Acta Cryst. E68, o1380.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO3S

  • Mr = 317.39

  • Orthorhombic, P 21 21 21

  • a = 8.017 (7) Å

  • b = 11.734 (9) Å

  • c = 16.131 (13) Å

  • V = 1517 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 273 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.978

  • 7769 measured reflections

  • 2676 independent reflections

  • 2266 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 1.04

  • 2676 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1122 Friedel pairs

  • Absolute structure parameter: 0.02 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.86 2.43 3.262 (3) 163
C10—H10B⋯O1ii 0.97 2.52 3.390 (4) 149
Symmetry codes: (i) [-x+{\script{5\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the first synthesis of [2.2]paracyclophane (Cram, 1959), its structure atrracted considerable interest (Liebman et al., 1976; Dyson et al., 1998). [2.2]Paracyclophane needs only one substituent to become planar chiral, so, there has been notable progress with regard to the synthesis of new derivatives and their applications in asymmetric catalysis(Hou et al., 2000; Duan et al., 2008).

In the title compound (Fig. 1), all bond lengths and angles are normal and in agreement with those observed in the related structure (Ma et al., 2012). In the molecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. The crystal packing exhibits weak intermolecular N—H···O and C—H···O hydrogen bonds (Table 1), which link the molecules into layers parallel to the ac plane.

Related literature top

For background to [2.2]paracyclophane, see: Cram et al. (1959); Liebman & Greenberg (1976); Dyson et al. (1998). For its synthesis and applications in catalysis, see: Hou et al. (2000); Duan et al. (2008, 2012). For a related structure, see: Ma et al. (2012).

Experimental top

The title compound was prepared by the method reported by Duan et al. (2012). The crystals were obtained by recrystallization from hexane and ethyl acetate.

Refinement top

All the H atoms were located in difference maps, but placed in idealized positions (N—H 0.86 Å, C—H 0.93–0.97 Å), and refined as riding, with with Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Structure description top

Since the first synthesis of [2.2]paracyclophane (Cram, 1959), its structure atrracted considerable interest (Liebman et al., 1976; Dyson et al., 1998). [2.2]Paracyclophane needs only one substituent to become planar chiral, so, there has been notable progress with regard to the synthesis of new derivatives and their applications in asymmetric catalysis(Hou et al., 2000; Duan et al., 2008).

In the title compound (Fig. 1), all bond lengths and angles are normal and in agreement with those observed in the related structure (Ma et al., 2012). In the molecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. The crystal packing exhibits weak intermolecular N—H···O and C—H···O hydrogen bonds (Table 1), which link the molecules into layers parallel to the ac plane.

For background to [2.2]paracyclophane, see: Cram et al. (1959); Liebman & Greenberg (1976); Dyson et al. (1998). For its synthesis and applications in catalysis, see: Hou et al. (2000); Duan et al. (2008, 2012). For a related structure, see: Ma et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme and 50% probability displacement ellipsoids.
4-Amino-12-methylsulfonyloxy-[2.2]paracyclophane top
Crystal data top
C17H19NO3SF(000) = 672
Mr = 317.39Dx = 1.389 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2210 reflections
a = 8.017 (7) Åθ = 2.8–23.1°
b = 11.734 (9) ŵ = 0.23 mm1
c = 16.131 (13) ÅT = 273 K
V = 1517 (2) Å3Block, colourless
Z = 40.13 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2676 independent reflections
Radiation source: fine-focus sealed tube2266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.971, Tmax = 0.978k = 1313
7769 measured reflectionsl = 1119
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.0218P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2676 reflectionsΔρmax = 0.15 e Å3
200 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1122 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (9)
Crystal data top
C17H19NO3SV = 1517 (2) Å3
Mr = 317.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.017 (7) ŵ = 0.23 mm1
b = 11.734 (9) ÅT = 273 K
c = 16.131 (13) Å0.13 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2676 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2266 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.978Rint = 0.037
7769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.15 e Å3
S = 1.04Δρmin = 0.23 e Å3
2676 reflectionsAbsolute structure: Flack (1983), 1122 Friedel pairs
200 parametersAbsolute structure parameter: 0.02 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0276 (4)0.2690 (2)0.10319 (15)0.0464 (7)
H1C1.03580.19050.08490.056*
H1D1.13860.30190.10190.056*
C20.9100 (3)0.3373 (2)0.04181 (16)0.0484 (7)
H2A0.97810.37850.00220.058*
H2B0.84110.28390.01130.058*
C30.7987 (3)0.4208 (2)0.08747 (14)0.0386 (6)
C40.6334 (4)0.3938 (2)0.10371 (16)0.0478 (7)
H40.57850.34390.06820.057*
C50.5469 (3)0.4382 (2)0.17062 (18)0.0492 (7)
H50.43570.41880.17940.059*
C60.6281 (3)0.5120 (2)0.22456 (16)0.0412 (6)
C70.7798 (3)0.5569 (2)0.19893 (15)0.0402 (6)
H70.82570.61750.22830.048*
C80.8654 (3)0.5139 (2)0.13052 (15)0.0376 (6)
C90.5778 (4)0.5230 (3)0.31434 (17)0.0551 (8)
H9A0.45710.52060.31800.066*
H9B0.61400.59670.33480.066*
C100.6529 (3)0.4269 (2)0.37183 (16)0.0491 (7)
H10A0.70880.46250.41850.059*
H10B0.56240.38080.39350.059*
C110.7741 (3)0.3510 (2)0.32766 (15)0.0359 (6)
C120.7184 (3)0.2616 (2)0.27724 (15)0.0425 (7)
H120.61590.22800.28860.051*
C130.8110 (3)0.2222 (2)0.21135 (16)0.0432 (7)
H130.77160.16120.18020.052*
C140.9620 (3)0.27203 (19)0.19075 (14)0.0358 (6)
C151.0336 (3)0.34300 (19)0.24992 (15)0.0336 (6)
H151.14370.36660.24400.040*
C160.9421 (3)0.37825 (19)0.31712 (14)0.0304 (6)
C171.0148 (4)0.3455 (2)0.51017 (17)0.0548 (8)
H17A0.96490.28120.48300.082*
H17B0.92870.39530.53030.082*
H17C1.08160.31960.55580.082*
N11.0226 (3)0.5546 (2)0.11279 (15)0.0610 (7)
H1A1.06680.60600.14380.073*
H1B1.07640.52860.07070.073*
O11.2545 (2)0.34091 (17)0.40407 (12)0.0602 (6)
O21.2004 (2)0.52194 (15)0.47560 (11)0.0553 (5)
O31.0125 (2)0.46195 (13)0.37118 (10)0.0355 (4)
S11.14007 (8)0.41905 (5)0.43999 (4)0.03807 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0554 (18)0.0443 (15)0.0395 (15)0.0054 (14)0.0040 (13)0.0094 (12)
C20.059 (2)0.0540 (16)0.0325 (15)0.0026 (14)0.0012 (12)0.0085 (12)
C30.0400 (15)0.0459 (14)0.0298 (13)0.0008 (13)0.0051 (10)0.0041 (11)
C40.0484 (17)0.0558 (17)0.0393 (15)0.0035 (15)0.0172 (14)0.0016 (12)
C50.0306 (15)0.0631 (18)0.0538 (17)0.0011 (14)0.0059 (13)0.0068 (14)
C60.0382 (16)0.0432 (15)0.0421 (15)0.0115 (13)0.0007 (13)0.0056 (11)
C70.0513 (17)0.0289 (13)0.0404 (15)0.0050 (12)0.0003 (12)0.0003 (10)
C80.0431 (15)0.0360 (13)0.0338 (13)0.0012 (12)0.0014 (12)0.0090 (10)
C90.056 (2)0.0561 (17)0.0530 (18)0.0177 (16)0.0161 (14)0.0021 (14)
C100.0341 (14)0.0767 (19)0.0365 (14)0.0078 (15)0.0061 (12)0.0012 (14)
C110.0330 (15)0.0466 (15)0.0281 (13)0.0016 (12)0.0026 (11)0.0087 (11)
C120.0351 (15)0.0496 (16)0.0429 (16)0.0107 (13)0.0067 (12)0.0127 (12)
C130.0544 (19)0.0347 (14)0.0404 (15)0.0060 (13)0.0051 (13)0.0017 (11)
C140.0388 (16)0.0315 (12)0.0372 (14)0.0068 (12)0.0027 (11)0.0004 (11)
C150.0270 (14)0.0386 (13)0.0353 (13)0.0041 (11)0.0025 (11)0.0011 (11)
C160.0300 (14)0.0328 (12)0.0283 (13)0.0000 (11)0.0044 (11)0.0015 (10)
C170.064 (2)0.0572 (17)0.0435 (17)0.0100 (16)0.0063 (14)0.0125 (13)
N10.0609 (17)0.0645 (16)0.0575 (15)0.0188 (14)0.0172 (13)0.0116 (12)
O10.0347 (11)0.0791 (13)0.0669 (14)0.0165 (11)0.0073 (10)0.0073 (10)
O20.0593 (13)0.0522 (11)0.0543 (12)0.0180 (10)0.0204 (9)0.0005 (9)
O30.0377 (10)0.0345 (8)0.0344 (9)0.0015 (8)0.0078 (8)0.0002 (7)
S10.0327 (3)0.0438 (3)0.0377 (3)0.0030 (3)0.0080 (3)0.0024 (3)
Geometric parameters (Å, º) top
C1—C141.508 (4)C10—H10A0.9700
C1—C21.585 (4)C10—H10B0.9700
C1—H1C0.9700C11—C161.394 (3)
C1—H1D0.9700C11—C121.401 (4)
C2—C31.516 (4)C12—C131.377 (4)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.384 (4)
C3—C41.387 (4)C13—H130.9300
C3—C81.400 (3)C14—C151.391 (3)
C4—C51.385 (4)C15—C161.373 (3)
C4—H40.9300C15—H150.9300
C5—C61.390 (4)C16—O31.430 (3)
C5—H50.9300C17—S11.742 (3)
C6—C71.389 (4)C17—H17A0.9600
C6—C91.509 (4)C17—H17B0.9600
C7—C81.394 (4)C17—H17C0.9600
C7—H70.9300N1—H1A0.8600
C8—N11.377 (3)N1—H1B0.8600
C9—C101.579 (4)O1—S11.421 (2)
C9—H9A0.9700O2—S11.422 (2)
C9—H9B0.9700O3—S11.5908 (18)
C10—C111.499 (4)
C14—C1—C2111.5 (2)C9—C10—H10A109.0
C14—C1—H1C109.3C11—C10—H10B109.0
C2—C1—H1C109.3C9—C10—H10B109.0
C14—C1—H1D109.3H10A—C10—H10B107.8
C2—C1—H1D109.3C16—C11—C12114.1 (2)
H1C—C1—H1D108.0C16—C11—C10123.2 (2)
C3—C2—C1111.9 (2)C12—C11—C10120.9 (2)
C3—C2—H2A109.2C13—C12—C11121.9 (2)
C1—C2—H2A109.2C13—C12—H12119.1
C3—C2—H2B109.2C11—C12—H12119.1
C1—C2—H2B109.2C12—C13—C14121.0 (2)
H2A—C2—H2B107.9C12—C13—H13119.5
C4—C3—C8116.7 (2)C14—C13—H13119.5
C4—C3—C2120.4 (2)C13—C14—C15116.7 (2)
C8—C3—C2121.3 (2)C13—C14—C1121.3 (2)
C5—C4—C3122.7 (3)C15—C14—C1120.9 (2)
C5—C4—H4118.7C16—C15—C14120.1 (2)
C3—C4—H4118.7C16—C15—H15119.9
C4—C5—C6119.2 (3)C14—C15—H15120.0
C4—C5—H5120.4C15—C16—C11122.9 (2)
C6—C5—H5120.4C15—C16—O3118.5 (2)
C5—C6—C7117.4 (2)C11—C16—O3117.7 (2)
C5—C6—C9122.0 (3)S1—C17—H17A109.5
C7—C6—C9119.2 (3)S1—C17—H17B109.5
C6—C7—C8122.0 (3)H17A—C17—H17B109.5
C6—C7—H7119.0S1—C17—H17C109.5
C8—C7—H7119.0H17A—C17—H17C109.5
N1—C8—C7119.3 (2)H17B—C17—H17C109.5
N1—C8—C3121.1 (2)C8—N1—H1A120.0
C7—C8—C3119.1 (3)C8—N1—H1B120.0
C6—C9—C10113.6 (2)H1A—N1—H1B120.0
C6—C9—H9A108.8C16—O3—S1117.52 (14)
C10—C9—H9A108.8O1—S1—O2119.55 (14)
C6—C9—H9B108.8O1—S1—O3109.55 (12)
C10—C9—H9B108.8O2—S1—O3103.40 (10)
H9A—C9—H9B107.7O1—S1—C17108.54 (14)
C11—C10—C9113.1 (2)O2—S1—C17110.74 (14)
C11—C10—H10A109.0O3—S1—C17103.86 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.433.262 (3)163
C10—H10B···O1ii0.972.523.390 (4)149
Symmetry codes: (i) x+5/2, y+1, z1/2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.433.262 (3)163
C10—H10B···O1ii0.972.523.390 (4)149
Symmetry codes: (i) x+5/2, y+1, z1/2; (ii) x1, y, z.
 

Acknowledgements

Financial support from Shandong Province Natural Science Foundation (ZR2012BL08) is gratefully acknowledged.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCram, D. J. (1959). Rec. Chem. Prog. 20, 71–93.  CAS Google Scholar
First citationDuan, W. Z., Ma, Y. D., Qu, B., Zhao, L., Chen, J. Q. & Song, C. (2012). Tetrahedron Asymmetry, 23, 1369–1375.  Web of Science CrossRef CAS Google Scholar
First citationDuan, W. Z., Ma, Y. D., Xia, H. Q., Liu, X. Y., Ma, Q. S. & Sun, J. S. (2008). J. Org. Chem. 73, 4330–4333.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDyson, P. J., Johnson, B. F. G. & Martin, C. M. (1998). Coord. Chem. Rev. 175, 59–89.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHou, X. L., Wu, X. W., Dai, L. X., Cao, B. X. & Sun, J. (2000). Chem. Commun. pp. 1195–1196.  Web of Science CSD CrossRef Google Scholar
First citationLiebman, J. F. & Greenberg, A. (1976). Chem. Rev. 76, 311–365.  CrossRef CAS Web of Science Google Scholar
First citationMa, K., Duan, W., He, F. & Ma, Y. (2012). Acta Cryst. E68, o1380.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds