organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­benzoic acid–sulfa­thia­zole (1/1)

aDepartment of Chemistry, NITK Surathkal, Mangalore 575 025, India
*Correspondence e-mail: darshak_rtrivedi@yahoo.co.in

(Received 21 November 2013; accepted 17 December 2013; online 21 December 2013)

In the crystal structure of the title compound, C7H5NO4·C9H9N3O2S2, the sulfa­thia­zole and 4-nitro­benzoic acid mol­ecules are held together by short ππ contacts between the thia­zole and nitro­benzene rings, with a centroid–centroid distance of 3.8226 (7) Å. The sulfa­thia­zole mol­ecules form dimers via N—H⋯N hydrogen bonds involving the thia­zole and sulfonamide moieties, owing to the fact that sulfathizole exhibits amide–imide tautomerism. The N—H (amine) groups of two sulfathiazole molecules are linked to the two S=O groups of a sulfathiazole via N—H⋯O hydrogen bonds. Two mol­ecules of coformer are held together by O—H⋯O hydrogen bonds. These units self-assemble, forming a three-dimensional network stabilized by (acid)C—H⋯π(sulfa­thia­zole benzene ring) inter­actions.

Related literature

For polymorphism in sulfa­thia­zole, see: Lagas & Lerk (1981[Lagas, M. & Lerk, C. F. (1981). Int. J. Pharm. 8, 11-24.]); Blagden et al. (1998[Blagden, N., Davey, R. J., Lieberman, H. F., Williams, L., Payne, R., Roberts, R., Rowe, R. & Docherty, R. (1998). J. Chem. Soc. Faraday Trans. 94, 1035-1044.]); Hughes et al. (1999[Hughes, D. S., Hursthouse, M. B., Threlfall, T. & Tavener, S. (1999). Acta Cryst. C55, 1831-1833.]); For hydrogen bonding in sulfonamides, see: Adsmond & Grant (2000[Adsmond, D. A. & Grant, D. J. W. (2000). J. Pharm. Sci. 90, 2058-2077.]). For the packing similarity of five polymorphs of sulfa­thia­zole, see: Gelbrich et al. (2008[Gelbrich, T., Hughes, D. S., Hursthouse, M. B. & Threlfall, T. L. (2008). CrystEngComm, 10, 1328-1334.]). For solvates of sulfa­thia­zole, see: Bingham et al. (2001[Bingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Travener, S. & Threlfall, T. L. (2001). Chem. Commun. pp. 603-604.]). For co-crystals of sulfa­thia­zole, see: Shefter & Sackman (1971[Shefter, E. & Sackman, P. (1971). J. Pharm. Sci. 60, 282-286.]); Drebushchak et al. (2006[Drebushchak, T. N., Mikhailenko, M. A., Boldyreva, E. V. & Shakhtshneider, T. P. (2006). Acta Cryst. E62, o2669-o2671.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NO4·C9H9N3O2S2

  • Mr = 422.45

  • Monoclinic, P 21 /n

  • a = 6.6309 (2) Å

  • b = 15.0142 (6) Å

  • c = 17.7082 (7) Å

  • β = 94.551 (1)°

  • V = 1757.43 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.50 × 0.42 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.291, Tmax = 0.482

  • 17445 measured reflections

  • 3460 independent reflections

  • 3329 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.104

  • S = 0.89

  • 3460 reflections

  • 309 parameters

  • 69 restraints

  • All H-atom parameters refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H14⋯O3i 1.03 (4) 1.63 (4) 2.6493 (13) 172 (3)
N1—H8⋯O1ii 0.82 (2) 2.22 (2) 3.0113 (15) 163.3 (18)
N1—H9⋯O2iii 0.838 (19) 2.326 (19) 3.0509 (15) 145.0 (17)
N3—H5⋯N2iv 0.897 (19) 1.96 (2) 2.8583 (15) 174.2 (16)
C14—H12⋯Cg2v 0.974 (18) 2.867 (18) 3.6648 (14) 139.8 (15)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y, -z+1; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and Mercury.

Supporting information


Comment top

Sulfathiazole is an antimicrobial compound that belongs to the family of sulfa drugs (contains sulfonamide unit). The title compound crystallizes in P21/n space group with one molecule each of sulfathiazole and 4-nitrobenzoic acid in the asymmetric unit. The two S=O (of sulfathiazole) are hydrogen bonded to the N—H (amine) of two other sulfathiazole molecules. The N of the thiazole is involved in the amide imide tautomerism thus rendering the hydrogen bond donating and accepting ability to N—H (thiazole) and N (amide). Sulfathiazole molecules thus self-assemble to form dimers via N—H···N hydrogen bonds [N···N 2.852 (1) Å, NHN 174 (2)] involving thiazole and sulfonamide moieties. Similarly two molecules of 4-Nitrobenzoic acid interact via O—H···O hydrogen bonds. The whole assembly repeats to form a three-dimensional network which is stabilized by C—H (acid)···π (benzene of sulfathizole) with a distance of 3.665 Å.

Related literature top

For polymorphism in sulfathiazole, see: Lagas & Lerk (1981); Blagden et al. (1998); Hughes et al. (1999); For hydrogen bonding in sulfonamides, see: Adsmond & Grant (2000). For the packing similarity of five polymorphs of sulfathiazole, see: Gelbrich et al. (2008). For solvates of sulfathiazole, see: Bingham et al. (2001). For co-crystals of sulfathiazole, see: Shefter & Sackman (1971); Drebushchak et al. (2006).

Experimental top

A mixture of (200 mg, 0.78 mmol) sulfathiazole and (130.9 mg, 0.78 mmol) 4-Nitrobenzoic acid were dissolved in (1:1) mixture (12 ml) of acetonitrile and ethanol, sonicated followed by mild heating. Yellow coloured needle shaped crystals were obtained in 7 days.

Structure description top

Sulfathiazole is an antimicrobial compound that belongs to the family of sulfa drugs (contains sulfonamide unit). The title compound crystallizes in P21/n space group with one molecule each of sulfathiazole and 4-nitrobenzoic acid in the asymmetric unit. The two S=O (of sulfathiazole) are hydrogen bonded to the N—H (amine) of two other sulfathiazole molecules. The N of the thiazole is involved in the amide imide tautomerism thus rendering the hydrogen bond donating and accepting ability to N—H (thiazole) and N (amide). Sulfathiazole molecules thus self-assemble to form dimers via N—H···N hydrogen bonds [N···N 2.852 (1) Å, NHN 174 (2)] involving thiazole and sulfonamide moieties. Similarly two molecules of 4-Nitrobenzoic acid interact via O—H···O hydrogen bonds. The whole assembly repeats to form a three-dimensional network which is stabilized by C—H (acid)···π (benzene of sulfathizole) with a distance of 3.665 Å.

For polymorphism in sulfathiazole, see: Lagas & Lerk (1981); Blagden et al. (1998); Hughes et al. (1999); For hydrogen bonding in sulfonamides, see: Adsmond & Grant (2000). For the packing similarity of five polymorphs of sulfathiazole, see: Gelbrich et al. (2008). For solvates of sulfathiazole, see: Bingham et al. (2001). For co-crystals of sulfathiazole, see: Shefter & Sackman (1971); Drebushchak et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. The 3D network stabilized by C—H···π interactions.
4-Amino-N-(1,3-thiazol-2-yl)benzenesulfonamide–4-nitrobenzoic acid (1/1) top
Crystal data top
C7H5NO4·C9H9N3O2S2Z = 4
Mr = 422.45F(000) = 872
Monoclinic, P21/nDx = 1.600 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.6309 (2) ŵ = 0.35 mm1
b = 15.0142 (6) ÅT = 296 K
c = 17.7082 (7) ÅNeedle, yellow
β = 94.551 (1)°0.50 × 0.42 × 0.21 mm
V = 1757.43 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3460 independent reflections
Radiation source: fine-focus sealed tube3329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
w scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 88
Tmin = 0.291, Tmax = 0.482k = 1818
17445 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104All H-atom parameters refined
S = 0.89 w = 1/[σ2(Fo2) + (0.1P)2 + 0.4859P]
where P = (Fo2 + 2Fc2)/3
3460 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.39 e Å3
69 restraintsΔρmin = 0.44 e Å3
Crystal data top
C7H5NO4·C9H9N3O2S2V = 1757.43 (11) Å3
Mr = 422.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6309 (2) ŵ = 0.35 mm1
b = 15.0142 (6) ÅT = 296 K
c = 17.7082 (7) Å0.50 × 0.42 × 0.21 mm
β = 94.551 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3460 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3329 reflections with I > 2σ(I)
Tmin = 0.291, Tmax = 0.482Rint = 0.014
17445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02669 restraints
wR(F2) = 0.104All H-atom parameters refined
S = 0.89Δρmax = 0.39 e Å3
3460 reflectionsΔρmin = 0.44 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.48584 (4)0.124204 (19)0.466507 (17)0.01376 (12)
S10.14759 (4)0.067179 (19)0.329580 (16)0.01280 (12)
O30.79216 (14)0.45216 (6)0.45069 (5)0.0192 (2)
O10.35756 (14)0.06086 (6)0.31268 (5)0.0177 (2)
O20.00325 (15)0.01141 (6)0.28659 (5)0.0205 (2)
O40.87828 (14)0.45703 (6)0.57587 (6)0.0207 (2)
O50.09352 (14)0.24225 (7)0.52201 (6)0.0238 (2)
O60.00680 (16)0.24314 (8)0.64238 (6)0.0288 (3)
N30.21354 (16)0.06402 (7)0.54483 (6)0.0131 (2)
N10.09830 (18)0.44403 (8)0.28520 (6)0.0168 (2)
N20.11857 (15)0.04399 (7)0.41709 (6)0.0136 (2)
N40.02308 (16)0.26183 (7)0.57682 (6)0.0169 (2)
C100.56484 (18)0.39184 (8)0.53399 (7)0.0127 (2)
C10.04137 (19)0.35734 (8)0.29501 (6)0.0138 (3)
C120.24664 (18)0.32664 (8)0.48782 (7)0.0140 (3)
C40.07641 (18)0.17915 (8)0.31658 (6)0.0124 (2)
C110.42711 (18)0.36829 (8)0.47388 (7)0.0135 (3)
C160.75894 (18)0.43659 (8)0.51864 (7)0.0128 (3)
C70.25113 (17)0.07326 (7)0.47175 (7)0.0119 (2)
C140.34332 (19)0.33362 (9)0.62365 (7)0.0174 (3)
C50.21340 (18)0.24129 (8)0.29195 (7)0.0142 (3)
C130.21044 (18)0.30973 (8)0.56242 (7)0.0139 (3)
C60.15541 (18)0.32935 (8)0.28082 (7)0.0148 (3)
C20.17804 (18)0.29326 (9)0.31906 (7)0.0154 (3)
C30.12052 (18)0.20556 (8)0.32984 (7)0.0148 (3)
C80.36390 (19)0.09498 (8)0.59690 (7)0.0152 (3)
C90.5208 (2)0.13065 (8)0.56467 (7)0.0163 (3)
C150.5226 (2)0.37525 (8)0.60900 (7)0.0162 (3)
H40.348 (2)0.2196 (10)0.2828 (8)0.015 (3)*
H20.241 (2)0.3722 (10)0.2601 (8)0.011 (4)*
H30.214 (2)0.1644 (11)0.3479 (9)0.018 (4)*
H10.309 (3)0.3095 (11)0.3254 (9)0.020 (4)*
H70.641 (2)0.1555 (11)0.5896 (9)0.020 (4)*
H60.349 (2)0.0888 (11)0.6484 (10)0.017 (4)*
H100.460 (3)0.3790 (11)0.4221 (10)0.021 (4)*
H130.611 (3)0.3917 (11)0.6479 (10)0.019 (4)*
H110.156 (3)0.3092 (12)0.4478 (10)0.025 (4)*
H120.320 (3)0.3195 (13)0.6759 (10)0.029 (4)*
H50.104 (3)0.0336 (12)0.5566 (10)0.027 (4)*
H90.220 (3)0.4583 (12)0.2857 (11)0.027 (4)*
H80.017 (3)0.4768 (13)0.2669 (11)0.031 (5)*
H141.001 (6)0.493 (2)0.561 (2)0.109 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.01302 (19)0.01389 (19)0.01468 (19)0.00210 (10)0.00299 (13)0.00102 (10)
S10.0164 (2)0.01270 (19)0.00949 (19)0.00064 (10)0.00203 (13)0.00004 (10)
O30.0198 (5)0.0193 (5)0.0197 (5)0.0013 (4)0.0093 (4)0.0007 (4)
O10.0197 (5)0.0185 (5)0.0158 (5)0.0037 (3)0.0074 (4)0.0010 (3)
O20.0281 (5)0.0176 (5)0.0152 (5)0.0048 (4)0.0027 (4)0.0023 (3)
O40.0150 (5)0.0204 (5)0.0259 (5)0.0033 (4)0.0035 (4)0.0017 (4)
O50.0178 (5)0.0270 (5)0.0261 (5)0.0070 (4)0.0006 (4)0.0014 (4)
O60.0263 (5)0.0393 (6)0.0221 (5)0.0084 (4)0.0090 (4)0.0071 (4)
N30.0136 (5)0.0136 (5)0.0121 (5)0.0014 (4)0.0017 (4)0.0018 (4)
N10.0178 (6)0.0163 (5)0.0165 (6)0.0004 (4)0.0029 (4)0.0025 (4)
N20.0153 (5)0.0150 (5)0.0107 (5)0.0025 (4)0.0015 (4)0.0020 (4)
N40.0148 (5)0.0149 (5)0.0216 (6)0.0002 (4)0.0046 (4)0.0031 (4)
C100.0128 (6)0.0112 (5)0.0144 (6)0.0015 (4)0.0028 (4)0.0004 (4)
C10.0182 (6)0.0167 (6)0.0063 (5)0.0011 (5)0.0013 (4)0.0005 (4)
C120.0141 (6)0.0133 (6)0.0143 (6)0.0005 (4)0.0000 (5)0.0012 (4)
C40.0151 (6)0.0136 (6)0.0084 (5)0.0002 (4)0.0008 (4)0.0007 (4)
C110.0153 (6)0.0130 (6)0.0125 (6)0.0015 (4)0.0028 (5)0.0001 (4)
C160.0122 (6)0.0100 (6)0.0163 (6)0.0021 (4)0.0013 (5)0.0005 (4)
C70.0135 (6)0.0092 (5)0.0133 (6)0.0015 (4)0.0020 (5)0.0017 (4)
C140.0185 (6)0.0208 (6)0.0131 (6)0.0002 (5)0.0032 (5)0.0037 (5)
C50.0134 (6)0.0187 (6)0.0104 (5)0.0009 (4)0.0006 (4)0.0013 (4)
C130.0133 (6)0.0121 (6)0.0168 (6)0.0014 (4)0.0032 (4)0.0011 (4)
C60.0154 (6)0.0165 (6)0.0125 (6)0.0027 (5)0.0008 (4)0.0034 (4)
C20.0138 (6)0.0210 (6)0.0118 (6)0.0000 (5)0.0030 (4)0.0017 (5)
C30.0159 (6)0.0172 (6)0.0118 (6)0.0037 (5)0.0033 (4)0.0003 (4)
C80.0183 (6)0.0143 (6)0.0126 (6)0.0011 (5)0.0015 (5)0.0008 (5)
C90.0172 (6)0.0151 (6)0.0164 (6)0.0008 (5)0.0012 (5)0.0010 (4)
C150.0168 (6)0.0189 (6)0.0127 (6)0.0015 (5)0.0010 (5)0.0005 (4)
Geometric parameters (Å, º) top
S2—C91.7381 (14)C1—C61.4122 (17)
S2—C71.7433 (12)C12—C131.3848 (17)
S1—O21.4426 (10)C12—C111.3896 (17)
S1—O11.4502 (9)C4—C51.3961 (17)
S1—N21.6146 (10)C4—C31.4022 (17)
S1—C41.7563 (12)C14—C151.3859 (18)
O3—C161.2622 (16)C14—C131.3890 (18)
O4—C161.2729 (16)C5—C61.3866 (17)
O5—N41.2276 (16)C2—C31.3798 (19)
O6—N41.2257 (15)C8—C91.3375 (18)
N3—C71.3445 (16)N1—H80.82 (2)
N3—C81.3836 (16)N1—H90.84 (2)
N1—C11.3626 (17)N3—H50.897 (19)
N2—C71.3294 (16)C2—H10.92 (2)
N4—C131.4751 (16)C3—H30.949 (15)
C10—C111.3920 (17)C5—H40.976 (14)
C10—C151.4013 (17)C6—H20.951 (14)
C10—C161.4958 (16)C8—H60.930 (18)
C1—C21.4106 (17)C9—H70.956 (15)
C9—S2—C791.15 (6)N3—C7—S2109.33 (9)
O2—S1—O1117.43 (6)C15—C14—C13118.09 (11)
O2—S1—N2104.88 (5)C6—C5—C4120.11 (11)
O1—S1—N2111.93 (5)C12—C13—C14123.38 (11)
O2—S1—C4109.05 (6)C12—C13—N4117.81 (11)
O1—S1—C4106.74 (5)C14—C13—N4118.80 (11)
N2—S1—C4106.31 (5)C5—C6—C1120.54 (11)
C7—N3—C8115.34 (11)C3—C2—C1121.03 (11)
C7—N2—S1120.35 (9)C2—C3—C4119.84 (11)
O6—N4—O5123.71 (11)C9—C8—N3113.21 (11)
O6—N4—C13118.49 (11)C8—C9—S2110.97 (10)
O5—N4—C13117.80 (10)C14—C15—C10119.77 (12)
C11—C10—C15120.76 (12)C1—N1—H8116.2 (14)
C11—C10—C16119.79 (11)C1—N1—H9120.1 (13)
C15—C10—C16119.44 (11)H8—N1—H9121.3 (19)
N1—C1—C2120.80 (12)C7—N3—H5119.5 (11)
N1—C1—C6120.80 (12)C8—N3—H5124.8 (11)
C2—C1—C6118.40 (11)C1—C2—H1119.5 (10)
C13—C12—C11117.96 (11)C3—C2—H1119.4 (10)
C5—C4—C3120.06 (11)C2—C3—H3119.2 (9)
C5—C4—S1120.40 (9)C4—C3—H3121.0 (9)
C3—C4—S1119.53 (9)C4—C5—H4117.1 (9)
C12—C11—C10120.03 (11)C6—C5—H4122.8 (9)
O3—C16—O4124.74 (11)C1—C6—H2117.1 (9)
O3—C16—C10118.31 (11)C5—C6—H2122.2 (9)
O4—C16—C10116.95 (11)N3—C8—H6119.6 (9)
N2—C7—N3120.29 (11)C9—C8—H6127.3 (9)
N2—C7—S2130.38 (9)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O4—H14···O3i1.03 (4)1.63 (4)2.6493 (13)172 (3)
N1—H8···O1ii0.82 (2)2.22 (2)3.0113 (15)163.3 (18)
N1—H9···O2iii0.838 (19)2.326 (19)3.0509 (15)145.0 (17)
N3—H5···N2iv0.897 (19)1.96 (2)2.8583 (15)174.2 (16)
C14—H12···Cg2v0.974 (18)2.867 (18)3.6648 (14)139.8 (15)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O4—H14···O3i1.03 (4)1.63 (4)2.6493 (13)172 (3)
N1—H8···O1ii0.82 (2)2.22 (2)3.0113 (15)163.3 (18)
N1—H9···O2iii0.838 (19)2.326 (19)3.0509 (15)145.0 (17)
N3—H5···N2iv0.897 (19)1.96 (2)2.8583 (15)174.2 (16)
C14—H12···Cg2v0.974 (18)2.867 (18)3.6648 (14)139.8 (15)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x, y, z+1; (v) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

MO is thankful to NITK Surathkal for a fellowship. The authors thank the DST (Department of Science and Technology, Government of India, New Delhi, India) for the SCXRD facility (procured under the FIST programme).

References

First citationAdsmond, D. A. & Grant, D. J. W. (2000). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef Google Scholar
First citationBingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Travener, S. & Threlfall, T. L. (2001). Chem. Commun. pp. 603–604.  Web of Science CSD CrossRef Google Scholar
First citationBlagden, N., Davey, R. J., Lieberman, H. F., Williams, L., Payne, R., Roberts, R., Rowe, R. & Docherty, R. (1998). J. Chem. Soc. Faraday Trans. 94, 1035–1044.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrebushchak, T. N., Mikhailenko, M. A., Boldyreva, E. V. & Shakhtshneider, T. P. (2006). Acta Cryst. E62, o2669–o2671.  CSD CrossRef IUCr Journals Google Scholar
First citationGelbrich, T., Hughes, D. S., Hursthouse, M. B. & Threlfall, T. L. (2008). CrystEngComm, 10, 1328–1334.  Web of Science CSD CrossRef CAS Google Scholar
First citationHughes, D. S., Hursthouse, M. B., Threlfall, T. & Tavener, S. (1999). Acta Cryst. C55, 1831–1833.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLagas, M. & Lerk, C. F. (1981). Int. J. Pharm. 8, 11–24.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShefter, E. & Sackman, P. (1971). J. Pharm. Sci. 60, 282–286.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds