organic compounds
4-Nitrobenzoic acid–sulfathiazole (1/1)
aDepartment of Chemistry, NITK Surathkal, Mangalore 575 025, India
*Correspondence e-mail: darshak_rtrivedi@yahoo.co.in
In the 7H5NO4·C9H9N3O2S2, the sulfathiazole and 4-nitrobenzoic acid molecules are held together by short π–π contacts between the thiazole and nitrobenzene rings, with a centroid–centroid distance of 3.8226 (7) Å. The sulfathiazole molecules form dimers via N—H⋯N hydrogen bonds involving the thiazole and sulfonamide moieties, owing to the fact that sulfathizole exhibits amide–imide The N—H (amine) groups of two sulfathiazole molecules are linked to the two S=O groups of a sulfathiazole via N—H⋯O hydrogen bonds. Two molecules of coformer are held together by O—H⋯O hydrogen bonds. These units self-assemble, forming a three-dimensional network stabilized by (acid)C—H⋯π(sulfathiazole benzene ring) interactions.
of the title compound, CCCDC reference: 970540
Related literature
For ); Blagden et al. (1998); Hughes et al. (1999); For hydrogen bonding in see: Adsmond & Grant (2000). For the packing similarity of five polymorphs of sulfathiazole, see: Gelbrich et al. (2008). For solvates of sulfathiazole, see: Bingham et al. (2001). For co-crystals of sulfathiazole, see: Shefter & Sackman (1971); Drebushchak et al. (2006).
in sulfathiazole, see: Lagas & Lerk (1981Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and Mercury.
Supporting information
CCDC reference: 970540
https://doi.org/10.1107/S1600536813034004/ds2237sup1.cif
contains datablocks I, bl. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813034004/ds2237Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813034004/ds2237Isup3.cml
A mixture of (200 mg, 0.78 mmol) sulfathiazole and (130.9 mg, 0.78 mmol) 4-Nitrobenzoic acid were dissolved in (1:1) mixture (12 ml) of acetonitrile and ethanol, sonicated followed by mild heating. Yellow coloured needle shaped crystals were obtained in 7 days.
Sulfathiazole is an antimicrobial compound that belongs to the family of sulfa drugs (contains sulfonamide unit). The title compound crystallizes in P21/n 〈NHN 174 (2)] involving thiazole and sulfonamide moieties. Similarly two molecules of 4-Nitrobenzoic acid interact via O—H···O hydrogen bonds. The whole assembly repeats to form a three-dimensional network which is stabilized by C—H (acid)···π (benzene of sulfathizole) with a distance of 3.665 Å.
with one molecule each of sulfathiazole and 4-nitrobenzoic acid in the The two S=O (of sulfathiazole) are hydrogen bonded to the N—H (amine) of two other sulfathiazole molecules. The N of the thiazole is involved in the amide imide thus rendering the hydrogen bond donating and accepting ability to N—H (thiazole) and N (amide). Sulfathiazole molecules thus self-assemble to form dimers via N—H···N hydrogen bonds [N···N 2.852 (1) Å,For
in sulfathiazole, see: Lagas & Lerk (1981); Blagden et al. (1998); Hughes et al. (1999); For hydrogen bonding in see: Adsmond & Grant (2000). For the packing similarity of five polymorphs of sulfathiazole, see: Gelbrich et al. (2008). For solvates of sulfathiazole, see: Bingham et al. (2001). For co-crystals of sulfathiazole, see: Shefter & Sackman (1971); Drebushchak et al. (2006).Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).Fig. 1. The molecular structure of the title compound showing 50% displacement ellipsoids. | |
Fig. 2. The 3D network stabilized by C—H···π interactions. |
C7H5NO4·C9H9N3O2S2 | Z = 4 |
Mr = 422.45 | F(000) = 872 |
Monoclinic, P21/n | Dx = 1.600 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6309 (2) Å | µ = 0.35 mm−1 |
b = 15.0142 (6) Å | T = 296 K |
c = 17.7082 (7) Å | Needle, yellow |
β = 94.551 (1)° | 0.50 × 0.42 × 0.21 mm |
V = 1757.43 (11) Å3 |
Bruker APEXII CCD diffractometer | 3460 independent reflections |
Radiation source: fine-focus sealed tube | 3329 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
w scans | θmax = 26.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −8→8 |
Tmin = 0.291, Tmax = 0.482 | k = −18→18 |
17445 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | All H-atom parameters refined |
S = 0.89 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.4859P] where P = (Fo2 + 2Fc2)/3 |
3460 reflections | (Δ/σ)max = 0.001 |
309 parameters | Δρmax = 0.39 e Å−3 |
69 restraints | Δρmin = −0.44 e Å−3 |
C7H5NO4·C9H9N3O2S2 | V = 1757.43 (11) Å3 |
Mr = 422.45 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.6309 (2) Å | µ = 0.35 mm−1 |
b = 15.0142 (6) Å | T = 296 K |
c = 17.7082 (7) Å | 0.50 × 0.42 × 0.21 mm |
β = 94.551 (1)° |
Bruker APEXII CCD diffractometer | 3460 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 3329 reflections with I > 2σ(I) |
Tmin = 0.291, Tmax = 0.482 | Rint = 0.014 |
17445 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 69 restraints |
wR(F2) = 0.104 | All H-atom parameters refined |
S = 0.89 | Δρmax = 0.39 e Å−3 |
3460 reflections | Δρmin = −0.44 e Å−3 |
309 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S2 | 0.48584 (4) | 0.124204 (19) | 0.466507 (17) | 0.01376 (12) | |
S1 | 0.14759 (4) | 0.067179 (19) | 0.329580 (16) | 0.01280 (12) | |
O3 | 0.79216 (14) | 0.45216 (6) | 0.45069 (5) | 0.0192 (2) | |
O1 | 0.35756 (14) | 0.06086 (6) | 0.31268 (5) | 0.0177 (2) | |
O2 | 0.00325 (15) | 0.01141 (6) | 0.28659 (5) | 0.0205 (2) | |
O4 | 0.87828 (14) | 0.45703 (6) | 0.57587 (6) | 0.0207 (2) | |
O5 | −0.09352 (14) | 0.24225 (7) | 0.52201 (6) | 0.0238 (2) | |
O6 | −0.00680 (16) | 0.24314 (8) | 0.64238 (6) | 0.0288 (3) | |
N3 | 0.21354 (16) | 0.06402 (7) | 0.54483 (6) | 0.0131 (2) | |
N1 | −0.09830 (18) | 0.44403 (8) | 0.28520 (6) | 0.0168 (2) | |
N2 | 0.11857 (15) | 0.04399 (7) | 0.41709 (6) | 0.0136 (2) | |
N4 | 0.02308 (16) | 0.26183 (7) | 0.57682 (6) | 0.0169 (2) | |
C10 | 0.56484 (18) | 0.39184 (8) | 0.53399 (7) | 0.0127 (2) | |
C1 | −0.04137 (19) | 0.35734 (8) | 0.29501 (6) | 0.0138 (3) | |
C12 | 0.24664 (18) | 0.32664 (8) | 0.48782 (7) | 0.0140 (3) | |
C4 | 0.07641 (18) | 0.17915 (8) | 0.31658 (6) | 0.0124 (2) | |
C11 | 0.42711 (18) | 0.36829 (8) | 0.47388 (7) | 0.0135 (3) | |
C16 | 0.75894 (18) | 0.43659 (8) | 0.51864 (7) | 0.0128 (3) | |
C7 | 0.25113 (17) | 0.07326 (7) | 0.47175 (7) | 0.0119 (2) | |
C14 | 0.34332 (19) | 0.33362 (9) | 0.62365 (7) | 0.0174 (3) | |
C5 | 0.21340 (18) | 0.24129 (8) | 0.29195 (7) | 0.0142 (3) | |
C13 | 0.21044 (18) | 0.30973 (8) | 0.56242 (7) | 0.0139 (3) | |
C6 | 0.15541 (18) | 0.32935 (8) | 0.28082 (7) | 0.0148 (3) | |
C2 | −0.17804 (18) | 0.29326 (9) | 0.31906 (7) | 0.0154 (3) | |
C3 | −0.12052 (18) | 0.20556 (8) | 0.32984 (7) | 0.0148 (3) | |
C8 | 0.36390 (19) | 0.09498 (8) | 0.59690 (7) | 0.0152 (3) | |
C9 | 0.5208 (2) | 0.13065 (8) | 0.56467 (7) | 0.0163 (3) | |
C15 | 0.5226 (2) | 0.37525 (8) | 0.60900 (7) | 0.0162 (3) | |
H4 | 0.348 (2) | 0.2196 (10) | 0.2828 (8) | 0.015 (3)* | |
H2 | 0.241 (2) | 0.3722 (10) | 0.2601 (8) | 0.011 (4)* | |
H3 | −0.214 (2) | 0.1644 (11) | 0.3479 (9) | 0.018 (4)* | |
H1 | −0.309 (3) | 0.3095 (11) | 0.3254 (9) | 0.020 (4)* | |
H7 | 0.641 (2) | 0.1555 (11) | 0.5896 (9) | 0.020 (4)* | |
H6 | 0.349 (2) | 0.0888 (11) | 0.6484 (10) | 0.017 (4)* | |
H10 | 0.460 (3) | 0.3790 (11) | 0.4221 (10) | 0.021 (4)* | |
H13 | 0.611 (3) | 0.3917 (11) | 0.6479 (10) | 0.019 (4)* | |
H11 | 0.156 (3) | 0.3092 (12) | 0.4478 (10) | 0.025 (4)* | |
H12 | 0.320 (3) | 0.3195 (13) | 0.6759 (10) | 0.029 (4)* | |
H5 | 0.104 (3) | 0.0336 (12) | 0.5566 (10) | 0.027 (4)* | |
H9 | −0.220 (3) | 0.4583 (12) | 0.2857 (11) | 0.027 (4)* | |
H8 | −0.017 (3) | 0.4768 (13) | 0.2669 (11) | 0.031 (5)* | |
H14 | 1.001 (6) | 0.493 (2) | 0.561 (2) | 0.109 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.01302 (19) | 0.01389 (19) | 0.01468 (19) | −0.00210 (10) | 0.00299 (13) | 0.00102 (10) |
S1 | 0.0164 (2) | 0.01270 (19) | 0.00949 (19) | −0.00064 (10) | 0.00203 (13) | 0.00004 (10) |
O3 | 0.0198 (5) | 0.0193 (5) | 0.0197 (5) | −0.0013 (4) | 0.0093 (4) | 0.0007 (4) |
O1 | 0.0197 (5) | 0.0185 (5) | 0.0158 (5) | 0.0037 (3) | 0.0074 (4) | 0.0010 (3) |
O2 | 0.0281 (5) | 0.0176 (5) | 0.0152 (5) | −0.0048 (4) | −0.0027 (4) | −0.0023 (3) |
O4 | 0.0150 (5) | 0.0204 (5) | 0.0259 (5) | −0.0033 (4) | −0.0035 (4) | 0.0017 (4) |
O5 | 0.0178 (5) | 0.0270 (5) | 0.0261 (5) | −0.0070 (4) | −0.0006 (4) | 0.0014 (4) |
O6 | 0.0263 (5) | 0.0393 (6) | 0.0221 (5) | −0.0084 (4) | 0.0090 (4) | 0.0071 (4) |
N3 | 0.0136 (5) | 0.0136 (5) | 0.0121 (5) | −0.0014 (4) | 0.0017 (4) | 0.0018 (4) |
N1 | 0.0178 (6) | 0.0163 (5) | 0.0165 (6) | 0.0004 (4) | 0.0029 (4) | 0.0025 (4) |
N2 | 0.0153 (5) | 0.0150 (5) | 0.0107 (5) | −0.0025 (4) | 0.0015 (4) | 0.0020 (4) |
N4 | 0.0148 (5) | 0.0149 (5) | 0.0216 (6) | 0.0002 (4) | 0.0046 (4) | 0.0031 (4) |
C10 | 0.0128 (6) | 0.0112 (5) | 0.0144 (6) | 0.0015 (4) | 0.0028 (4) | 0.0004 (4) |
C1 | 0.0182 (6) | 0.0167 (6) | 0.0063 (5) | −0.0011 (5) | −0.0013 (4) | −0.0005 (4) |
C12 | 0.0141 (6) | 0.0133 (6) | 0.0143 (6) | 0.0005 (4) | 0.0000 (5) | −0.0012 (4) |
C4 | 0.0151 (6) | 0.0136 (6) | 0.0084 (5) | −0.0002 (4) | 0.0008 (4) | 0.0007 (4) |
C11 | 0.0153 (6) | 0.0130 (6) | 0.0125 (6) | 0.0015 (4) | 0.0028 (5) | −0.0001 (4) |
C16 | 0.0122 (6) | 0.0100 (6) | 0.0163 (6) | 0.0021 (4) | 0.0013 (5) | −0.0005 (4) |
C7 | 0.0135 (6) | 0.0092 (5) | 0.0133 (6) | 0.0015 (4) | 0.0020 (5) | 0.0017 (4) |
C14 | 0.0185 (6) | 0.0208 (6) | 0.0131 (6) | −0.0002 (5) | 0.0032 (5) | 0.0037 (5) |
C5 | 0.0134 (6) | 0.0187 (6) | 0.0104 (5) | −0.0009 (4) | 0.0006 (4) | 0.0013 (4) |
C13 | 0.0133 (6) | 0.0121 (6) | 0.0168 (6) | 0.0014 (4) | 0.0032 (4) | 0.0011 (4) |
C6 | 0.0154 (6) | 0.0165 (6) | 0.0125 (6) | −0.0027 (5) | 0.0008 (4) | 0.0034 (4) |
C2 | 0.0138 (6) | 0.0210 (6) | 0.0118 (6) | 0.0000 (5) | 0.0030 (4) | −0.0017 (5) |
C3 | 0.0159 (6) | 0.0172 (6) | 0.0118 (6) | −0.0037 (5) | 0.0033 (4) | 0.0003 (4) |
C8 | 0.0183 (6) | 0.0143 (6) | 0.0126 (6) | 0.0011 (5) | −0.0015 (5) | 0.0008 (5) |
C9 | 0.0172 (6) | 0.0151 (6) | 0.0164 (6) | −0.0008 (5) | −0.0012 (5) | −0.0010 (4) |
C15 | 0.0168 (6) | 0.0189 (6) | 0.0127 (6) | −0.0015 (5) | −0.0010 (5) | 0.0005 (4) |
S2—C9 | 1.7381 (14) | C1—C6 | 1.4122 (17) |
S2—C7 | 1.7433 (12) | C12—C13 | 1.3848 (17) |
S1—O2 | 1.4426 (10) | C12—C11 | 1.3896 (17) |
S1—O1 | 1.4502 (9) | C4—C5 | 1.3961 (17) |
S1—N2 | 1.6146 (10) | C4—C3 | 1.4022 (17) |
S1—C4 | 1.7563 (12) | C14—C15 | 1.3859 (18) |
O3—C16 | 1.2622 (16) | C14—C13 | 1.3890 (18) |
O4—C16 | 1.2729 (16) | C5—C6 | 1.3866 (17) |
O5—N4 | 1.2276 (16) | C2—C3 | 1.3798 (19) |
O6—N4 | 1.2257 (15) | C8—C9 | 1.3375 (18) |
N3—C7 | 1.3445 (16) | N1—H8 | 0.82 (2) |
N3—C8 | 1.3836 (16) | N1—H9 | 0.84 (2) |
N1—C1 | 1.3626 (17) | N3—H5 | 0.897 (19) |
N2—C7 | 1.3294 (16) | C2—H1 | 0.92 (2) |
N4—C13 | 1.4751 (16) | C3—H3 | 0.949 (15) |
C10—C11 | 1.3920 (17) | C5—H4 | 0.976 (14) |
C10—C15 | 1.4013 (17) | C6—H2 | 0.951 (14) |
C10—C16 | 1.4958 (16) | C8—H6 | 0.930 (18) |
C1—C2 | 1.4106 (17) | C9—H7 | 0.956 (15) |
C9—S2—C7 | 91.15 (6) | N3—C7—S2 | 109.33 (9) |
O2—S1—O1 | 117.43 (6) | C15—C14—C13 | 118.09 (11) |
O2—S1—N2 | 104.88 (5) | C6—C5—C4 | 120.11 (11) |
O1—S1—N2 | 111.93 (5) | C12—C13—C14 | 123.38 (11) |
O2—S1—C4 | 109.05 (6) | C12—C13—N4 | 117.81 (11) |
O1—S1—C4 | 106.74 (5) | C14—C13—N4 | 118.80 (11) |
N2—S1—C4 | 106.31 (5) | C5—C6—C1 | 120.54 (11) |
C7—N3—C8 | 115.34 (11) | C3—C2—C1 | 121.03 (11) |
C7—N2—S1 | 120.35 (9) | C2—C3—C4 | 119.84 (11) |
O6—N4—O5 | 123.71 (11) | C9—C8—N3 | 113.21 (11) |
O6—N4—C13 | 118.49 (11) | C8—C9—S2 | 110.97 (10) |
O5—N4—C13 | 117.80 (10) | C14—C15—C10 | 119.77 (12) |
C11—C10—C15 | 120.76 (12) | C1—N1—H8 | 116.2 (14) |
C11—C10—C16 | 119.79 (11) | C1—N1—H9 | 120.1 (13) |
C15—C10—C16 | 119.44 (11) | H8—N1—H9 | 121.3 (19) |
N1—C1—C2 | 120.80 (12) | C7—N3—H5 | 119.5 (11) |
N1—C1—C6 | 120.80 (12) | C8—N3—H5 | 124.8 (11) |
C2—C1—C6 | 118.40 (11) | C1—C2—H1 | 119.5 (10) |
C13—C12—C11 | 117.96 (11) | C3—C2—H1 | 119.4 (10) |
C5—C4—C3 | 120.06 (11) | C2—C3—H3 | 119.2 (9) |
C5—C4—S1 | 120.40 (9) | C4—C3—H3 | 121.0 (9) |
C3—C4—S1 | 119.53 (9) | C4—C5—H4 | 117.1 (9) |
C12—C11—C10 | 120.03 (11) | C6—C5—H4 | 122.8 (9) |
O3—C16—O4 | 124.74 (11) | C1—C6—H2 | 117.1 (9) |
O3—C16—C10 | 118.31 (11) | C5—C6—H2 | 122.2 (9) |
O4—C16—C10 | 116.95 (11) | N3—C8—H6 | 119.6 (9) |
N2—C7—N3 | 120.29 (11) | C9—C8—H6 | 127.3 (9) |
N2—C7—S2 | 130.38 (9) |
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H14···O3i | 1.03 (4) | 1.63 (4) | 2.6493 (13) | 172 (3) |
N1—H8···O1ii | 0.82 (2) | 2.22 (2) | 3.0113 (15) | 163.3 (18) |
N1—H9···O2iii | 0.838 (19) | 2.326 (19) | 3.0509 (15) | 145.0 (17) |
N3—H5···N2iv | 0.897 (19) | 1.96 (2) | 2.8583 (15) | 174.2 (16) |
C14—H12···Cg2v | 0.974 (18) | 2.867 (18) | 3.6648 (14) | 139.8 (15) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x−1/2, y+1/2, −z+1/2; (iv) −x, −y, −z+1; (v) x+1/2, −y+1/2, z+1/2. |
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H14···O3i | 1.03 (4) | 1.63 (4) | 2.6493 (13) | 172 (3) |
N1—H8···O1ii | 0.82 (2) | 2.22 (2) | 3.0113 (15) | 163.3 (18) |
N1—H9···O2iii | 0.838 (19) | 2.326 (19) | 3.0509 (15) | 145.0 (17) |
N3—H5···N2iv | 0.897 (19) | 1.96 (2) | 2.8583 (15) | 174.2 (16) |
C14—H12···Cg2v | 0.974 (18) | 2.867 (18) | 3.6648 (14) | 139.8 (15) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x−1/2, y+1/2, −z+1/2; (iv) −x, −y, −z+1; (v) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
MO is thankful to NITK Surathkal for a fellowship. The authors thank the DST (Department of Science and Technology, Government of India, New Delhi, India) for the SCXRD facility (procured under the FIST programme).
References
Adsmond, D. A. & Grant, D. J. W. (2000). J. Pharm. Sci. 90, 2058–2077. Web of Science CrossRef Google Scholar
Bingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Travener, S. & Threlfall, T. L. (2001). Chem. Commun. pp. 603–604. Web of Science CSD CrossRef Google Scholar
Blagden, N., Davey, R. J., Lieberman, H. F., Williams, L., Payne, R., Roberts, R., Rowe, R. & Docherty, R. (1998). J. Chem. Soc. Faraday Trans. 94, 1035–1044. Web of Science CrossRef CAS Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Drebushchak, T. N., Mikhailenko, M. A., Boldyreva, E. V. & Shakhtshneider, T. P. (2006). Acta Cryst. E62, o2669–o2671. CSD CrossRef IUCr Journals Google Scholar
Gelbrich, T., Hughes, D. S., Hursthouse, M. B. & Threlfall, T. L. (2008). CrystEngComm, 10, 1328–1334. Web of Science CSD CrossRef CAS Google Scholar
Hughes, D. S., Hursthouse, M. B., Threlfall, T. & Tavener, S. (1999). Acta Cryst. C55, 1831–1833. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lagas, M. & Lerk, C. F. (1981). Int. J. Pharm. 8, 11–24. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Shefter, E. & Sackman, P. (1971). J. Pharm. Sci. 60, 282–286. CSD CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sulfathiazole is an antimicrobial compound that belongs to the family of sulfa drugs (contains sulfonamide unit). The title compound crystallizes in P21/n space group with one molecule each of sulfathiazole and 4-nitrobenzoic acid in the asymmetric unit. The two S=O (of sulfathiazole) are hydrogen bonded to the N—H (amine) of two other sulfathiazole molecules. The N of the thiazole is involved in the amide imide tautomerism thus rendering the hydrogen bond donating and accepting ability to N—H (thiazole) and N (amide). Sulfathiazole molecules thus self-assemble to form dimers via N—H···N hydrogen bonds [N···N 2.852 (1) Å, 〈NHN 174 (2)] involving thiazole and sulfonamide moieties. Similarly two molecules of 4-Nitrobenzoic acid interact via O—H···O hydrogen bonds. The whole assembly repeats to form a three-dimensional network which is stabilized by C—H (acid)···π (benzene of sulfathizole) with a distance of 3.665 Å.