organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Benzyl­­idene-2-chloro-N-(4-chloro­phen­yl)acetohydrazide

aDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: dr@physics.uni-mysore.ac.in

(Received 2 December 2013; accepted 3 December 2013; online 11 December 2013)

In the title compound, C15H12Cl2N2O, the atoms not making up the chloro­benzene ring are approximately coplanar (r.m.s. deviation = 0.073 Å). The dihedral angle between these 13 atoms and the chloro­benzene ring is 67.37 (10)°. The C=O and Csp2—Cl groups are almost eclipsed [Cl—C—C=O = −6.5 (3)°]. In the crystal, C(6) chains linked by C—H⋯O hydrogen bonds result in [100] chains.

Related literature

For background to Schiff bases, see: Nithinchandra et al. (2013[Nithinchandra, Kalluraya, B., Shobhitha, S. & Babu, M. (2013). J. Chem. Pharm. Res. 5, 307-313.]); Shyma et al. (2013[Shyma, P. C., Kalluraya, B., Peethambar, S. K., Telkar, S. & Arulmoli, T. (2013). Eur. J. Med. Chem. 68, 394-404.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Cl2N2O

  • Mr = 307.17

  • Monoclinic, P 21 /c

  • a = 5.8548 (5) Å

  • b = 8.8892 (7) Å

  • c = 28.273 (2) Å

  • β = 93.574 (4)°

  • V = 1468.6 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.95 mm−1

  • T = 296 K

  • 0.24 × 0.23 × 0.23 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.451, Tmax = 0.464

  • 10066 measured reflections

  • 2424 independent reflections

  • 2059 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.145

  • S = 1.04

  • 2424 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.40 3.256 (3) 154
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are important class of compounds in medicinal chemistry, showing e.g.: antimicrobal (Shyma et al., 2013), and anticonvulsant (Nithinchandra et al., 2013) activities. As part of our studies in this area, we now describe the structure of the title compound, (I), (Fig. 1).

The dihedral angle between the benzene ring is 63.18° (13) and the molecules are linked to one another with hydrogen bonds C3—H3···O1 (Table 1, Fig. 2) along a-axis.

Related literature top

For background to Schiff bases, see: Nithinchandra et al. (2013); Shyma et al. (2013).

Experimental top

4-Chlorophenylhydrazine (0.01 mol) was stirred with benzaldehyde (0.01 mol) in methanol (10 mL) in presence of few drops of acetic acid. The resulting precipitate was filtered and washed with chilled methanol and dried. The resulting Schiff base, 1-benzylidene-2-(4-chlorophenyl)hydrazine (0.01 mol) and triethylamine (0.01 mol) was taken in dioxane solvent. Chloroacetylchloride (0.01 mol) was added to the above mixture at 0–5°C. After completion of the reaction, the mixture was poured on to ice cold water. The precipitated solid was filtered, washed with water and recrystallized from ethanol. Brown blocks were obtained from a 1:2 mixture of DMF and ethanol solution by slow evaporation.

Refinement top

All the H atoms were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) =1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Structure description top

Schiff bases are important class of compounds in medicinal chemistry, showing e.g.: antimicrobal (Shyma et al., 2013), and anticonvulsant (Nithinchandra et al., 2013) activities. As part of our studies in this area, we now describe the structure of the title compound, (I), (Fig. 1).

The dihedral angle between the benzene ring is 63.18° (13) and the molecules are linked to one another with hydrogen bonds C3—H3···O1 (Table 1, Fig. 2) along a-axis.

For background to Schiff bases, see: Nithinchandra et al. (2013); Shyma et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability ellipsoids.
N'-Benzylidene-2-chloro-N-(4-chlorophenyl)acetohydrazide top
Crystal data top
C15H12Cl2N2OF(000) = 632
Mr = 307.17Dx = 1.389 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2424 reflections
a = 5.8548 (5) Åθ = 3.1–64.9°
b = 8.8892 (7) ŵ = 3.95 mm1
c = 28.273 (2) ÅT = 296 K
β = 93.574 (4)°Block, brown
V = 1468.6 (2) Å30.24 × 0.23 × 0.23 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2424 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2059 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.061
Detector resolution: 10.7 pixels mm-1θmax = 64.9°, θmin = 3.1°
φ and ω scansh = 36
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1010
Tmin = 0.451, Tmax = 0.464l = 3232
10066 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0867P)2 + 0.4858P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2424 reflectionsΔρmax = 0.46 e Å3
182 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0091 (10)
Crystal data top
C15H12Cl2N2OV = 1468.6 (2) Å3
Mr = 307.17Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.8548 (5) ŵ = 3.95 mm1
b = 8.8892 (7) ÅT = 296 K
c = 28.273 (2) Å0.24 × 0.23 × 0.23 mm
β = 93.574 (4)°
Data collection top
Bruker X8 Proteum
diffractometer
2424 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2059 reflections with I > 2σ(I)
Tmin = 0.451, Tmax = 0.464Rint = 0.061
10066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
2424 reflectionsΔρmin = 0.45 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.88967 (18)1.37204 (11)0.24673 (3)0.0826 (4)
Cl20.20082 (12)0.83970 (9)0.00451 (2)0.0605 (3)
O10.3525 (3)1.0325 (2)0.07342 (7)0.0507 (6)
N10.6637 (3)0.9050 (2)0.10193 (7)0.0379 (6)
N20.8010 (3)0.7816 (2)0.09360 (7)0.0374 (6)
C10.8254 (5)1.2311 (3)0.20500 (9)0.0492 (9)
C20.9644 (5)1.2137 (3)0.16799 (9)0.0474 (8)
C30.9104 (4)1.1056 (3)0.13393 (9)0.0428 (8)
C40.7207 (4)1.0156 (3)0.13769 (8)0.0365 (7)
C50.5846 (5)1.0340 (3)0.17556 (9)0.0483 (8)
C60.6354 (5)1.1429 (3)0.20918 (10)0.0563 (10)
C70.4802 (4)0.9266 (3)0.06984 (8)0.0372 (7)
C80.4559 (4)0.8111 (3)0.03078 (9)0.0433 (8)
C90.9704 (4)0.7535 (3)0.12257 (8)0.0419 (8)
C101.1217 (4)0.6259 (3)0.11428 (9)0.0394 (7)
C111.0788 (5)0.5252 (3)0.07751 (9)0.0472 (8)
C121.2319 (5)0.4110 (3)0.07002 (12)0.0588 (10)
C131.4303 (5)0.3975 (3)0.09870 (13)0.0617 (10)
C141.4735 (5)0.4958 (3)0.13506 (12)0.0611 (10)
C151.3196 (5)0.6093 (3)0.14347 (10)0.0501 (9)
H21.093301.273900.165900.0570*
H31.002001.093700.108500.0510*
H50.457900.972300.178300.0580*
H60.542401.156400.234300.0680*
H8A0.455100.711100.044500.0520*
H8B0.585700.818100.011200.0520*
H90.998600.814100.149100.0500*
H110.946400.534500.057800.0570*
H121.201300.342800.045500.0710*
H131.534300.321400.093200.0740*
H141.607300.486500.154400.0730*
H151.348800.674800.168800.0600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1113 (8)0.0867 (6)0.0492 (5)0.0170 (5)0.0013 (4)0.0269 (4)
Cl20.0502 (5)0.0824 (6)0.0476 (4)0.0035 (3)0.0079 (3)0.0018 (3)
O10.0393 (10)0.0575 (11)0.0555 (11)0.0166 (9)0.0053 (8)0.0058 (8)
N10.0360 (11)0.0419 (11)0.0361 (10)0.0096 (9)0.0041 (8)0.0049 (8)
N20.0371 (11)0.0385 (10)0.0374 (10)0.0085 (9)0.0078 (8)0.0007 (8)
C10.0585 (17)0.0553 (15)0.0333 (12)0.0032 (13)0.0010 (11)0.0035 (11)
C20.0422 (15)0.0547 (15)0.0451 (14)0.0037 (12)0.0022 (11)0.0007 (11)
C30.0374 (14)0.0517 (14)0.0406 (13)0.0050 (11)0.0124 (10)0.0020 (10)
C40.0366 (13)0.0412 (12)0.0320 (11)0.0071 (10)0.0049 (9)0.0017 (9)
C50.0489 (15)0.0581 (16)0.0395 (13)0.0045 (12)0.0150 (11)0.0031 (11)
C60.0636 (19)0.0707 (18)0.0363 (13)0.0025 (15)0.0164 (12)0.0100 (12)
C70.0316 (13)0.0444 (13)0.0366 (12)0.0043 (11)0.0109 (9)0.0023 (10)
C80.0421 (14)0.0516 (14)0.0366 (12)0.0030 (11)0.0061 (10)0.0022 (10)
C90.0455 (14)0.0452 (13)0.0352 (12)0.0088 (11)0.0033 (10)0.0027 (10)
C100.0369 (13)0.0397 (12)0.0420 (13)0.0076 (10)0.0060 (10)0.0035 (10)
C110.0434 (15)0.0474 (14)0.0510 (15)0.0059 (12)0.0035 (11)0.0056 (11)
C120.0563 (18)0.0488 (15)0.0724 (19)0.0063 (13)0.0139 (15)0.0121 (13)
C130.0497 (18)0.0458 (15)0.091 (2)0.0124 (13)0.0147 (16)0.0043 (15)
C140.0450 (16)0.0559 (16)0.081 (2)0.0102 (14)0.0062 (14)0.0127 (15)
C150.0516 (17)0.0460 (14)0.0519 (15)0.0089 (12)0.0042 (12)0.0031 (11)
Geometric parameters (Å, º) top
Cl1—C11.746 (3)C11—C121.379 (4)
Cl2—C81.762 (3)C12—C131.380 (4)
O1—C71.210 (3)C13—C141.361 (5)
N1—N21.389 (3)C14—C151.383 (4)
N1—C41.435 (3)C2—H20.9300
N1—C71.376 (3)C3—H30.9300
N2—C91.271 (3)C5—H50.9300
C1—C21.374 (4)C6—H60.9300
C1—C61.372 (4)C8—H8A0.9700
C2—C31.383 (4)C8—H8B0.9700
C3—C41.378 (3)C9—H90.9300
C4—C51.384 (4)C11—H110.9300
C5—C61.376 (4)C12—H120.9300
C7—C81.508 (4)C13—H130.9300
C9—C101.467 (4)C14—H140.9300
C10—C111.383 (4)C15—H150.9300
C10—C151.388 (4)
N2—N1—C4123.31 (18)C10—C15—C14120.3 (3)
N2—N1—C7115.78 (19)C1—C2—H2120.00
C4—N1—C7120.46 (19)C3—C2—H2120.00
N1—N2—C9118.9 (2)C2—C3—H3120.00
Cl1—C1—C2118.9 (2)C4—C3—H3120.00
Cl1—C1—C6119.6 (2)C4—C5—H5120.00
C2—C1—C6121.6 (3)C6—C5—H5120.00
C1—C2—C3119.2 (3)C1—C6—H6121.00
C2—C3—C4120.0 (2)C5—C6—H6120.00
N1—C4—C3119.8 (2)Cl2—C8—H8A109.00
N1—C4—C5120.4 (2)Cl2—C8—H8B110.00
C3—C4—C5119.8 (2)C7—C8—H8A109.00
C4—C5—C6120.5 (3)C7—C8—H8B109.00
C1—C6—C5118.9 (3)H8A—C8—H8B108.00
O1—C7—N1121.0 (2)N2—C9—H9120.00
O1—C7—C8124.1 (2)C10—C9—H9120.00
N1—C7—C8115.0 (2)C10—C11—H11120.00
Cl2—C8—C7110.76 (17)C12—C11—H11120.00
N2—C9—C10120.2 (2)C11—C12—H12120.00
C9—C10—C11122.5 (2)C13—C12—H12120.00
C9—C10—C15118.5 (2)C12—C13—H13120.00
C11—C10—C15118.9 (2)C14—C13—H13120.00
C10—C11—C12120.2 (3)C13—C14—H14120.00
C11—C12—C13120.3 (3)C15—C14—H14120.00
C12—C13—C14119.9 (3)C10—C15—H15120.00
C13—C14—C15120.4 (3)C14—C15—H15120.00
C4—N1—N2—C99.3 (3)C2—C3—C4—C50.1 (4)
C7—N1—N2—C9178.4 (2)N1—C4—C5—C6178.2 (2)
N2—N1—C4—C365.1 (3)C3—C4—C5—C60.9 (4)
N2—N1—C4—C5115.8 (3)C4—C5—C6—C11.2 (4)
C7—N1—C4—C3106.8 (3)O1—C7—C8—Cl26.5 (3)
C7—N1—C4—C572.3 (3)N1—C7—C8—Cl2174.25 (17)
N2—N1—C7—O1178.6 (2)N2—C9—C10—C115.1 (4)
N2—N1—C7—C80.6 (3)N2—C9—C10—C15172.5 (2)
C4—N1—C7—O16.1 (3)C9—C10—C11—C12177.1 (3)
C4—N1—C7—C8173.1 (2)C15—C10—C11—C120.4 (4)
N1—N2—C9—C10178.7 (2)C9—C10—C15—C14176.1 (3)
Cl1—C1—C2—C3177.9 (2)C11—C10—C15—C141.5 (4)
C6—C1—C2—C30.6 (4)C10—C11—C12—C130.9 (4)
Cl1—C1—C6—C5178.9 (2)C11—C12—C13—C141.1 (5)
C2—C1—C6—C50.4 (4)C12—C13—C14—C150.0 (5)
C1—C2—C3—C40.8 (4)C13—C14—C15—C101.3 (4)
C2—C3—C4—N1179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.403.256 (3)154
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.403.256 (3)154
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are thankful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility. VN is grateful to the UGC for the award of an RFSMS Fellowship. RD acknowledges the UGC, New Delhi, for financial support under the Major Research Project Scheme [UGC MRP No. F.41–882/2012 (SR) dated 01/07/2012].

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNithinchandra, Kalluraya, B., Shobhitha, S. & Babu, M. (2013). J. Chem. Pharm. Res. 5, 307–313.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShyma, P. C., Kalluraya, B., Peethambar, S. K., Telkar, S. & Arulmoli, T. (2013). Eur. J. Med. Chem. 68, 394–404.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds