organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-5′′-(4-chloro­benzyl­­idene)-4′-(4-chloro­phen­yl)-1′′-ethyl-1′-methyl­di­spiro­[indoline-3,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione

aSolid State Department, Physics Division, National Research Centre, Dokki, Giza, Egypt, bPesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, cPhysics Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 December 2013; accepted 6 December 2013; online 14 December 2013)

Two spiro links are found in the title compound, C31H28Cl3N3O2, one connecting the piperidine and pyrrolidine rings, and the other connecting the pyrrolidine ring and indole residue. The piperidine ring adopts a half-chair conformation, in which the C atom connected to the spiro-C atom lies 0.741 (3) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.053 Å). The pyrrolidine ring has an envelope conformation with the flap atom being the methyl­ene C atom. Centrosymmetric eight-membered {⋯HNCO}2 amide dimers are the most significant feature of the crystal packing. These are connected into layers parallel to (-120) by C—H⋯O and ππ inter­actions between pyrrolidine-bound benzene rings [inter-centroid distance = 3.8348 (15) Å]. Slipped face-to-face inter­actions between the edges of pyrrolidine-bound benzene [shortest C⋯C separation = 3.484 (4) Å] connect the layers into a three-dimensional architecture.

Related literature

For the biological activity of related spiro­pyrrolidine analogues, see: Girgis et al. (2012[Girgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50, 1-8.]); Kumar et al. (2008[Kumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731-5735.]). For related structural studies, see: Farag et al. (2013[Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o22-o23.]). For the synthesis of the precursor mol­ecule, see Al-Omary et al. (2012[Al-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65-72.]).

[Scheme 1]

Experimental

Crystal data
  • C31H28Cl3N3O2

  • Mr = 580.91

  • Triclinic, [P \overline 1]

  • a = 11.1901 (2) Å

  • b = 11.6434 (3) Å

  • c = 12.4270 (3) Å

  • α = 99.477 (2)°

  • β = 90.235 (2)°

  • γ = 114.893 (1)°

  • V = 1443.77 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 1.02 × 0.53 × 0.37 mm

Data collection
  • Nonius 590 KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.880, Tmax = 0.994

  • 11344 measured reflections

  • 6482 independent reflections

  • 4260 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.160

  • S = 1.00

  • 6482 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯O2i 0.86 2.03 2.883 (3) 170
C31—H31⋯O1ii 0.93 2.47 3.160 (4) 131
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

A mixture of equimolar amounts of 3E,5E-1-ethyl-3,5-bis­({4-chloro­phenyl)­methyl­idene)-4-piperidone (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I) as pale-yellow blocks. Reaction time 9 h. M.pt: 494–496 K. Yield 76%. Anal. Calcd. for C31H28Cl3N3O2 (580.95): C, 64.09; H, 4.86; N, 7.23. Found: C, 64.28; H, 5.02; N, 7.31. IR: νmax/cm-1: 3167 (N—H); 1689 (CO); 1591, 1480 (CC).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Results and discussion top

Spiro­pyrrolidine derivatives are known to have biological activity and the basic sketal structure has been well established by X-ray crystallography (Kumar et al. 2008). In continuation of our biological and crystallographic studies of such derivatives (Girgis et al. 2012; Farag et al. 2013), the title compound, (I), was synthesised and characterised crystallographically.

Two spiro links exist in (I), Fig. 1, namely where the piperidine and pyrrolidine rings are connected at C1, and where the pyrrolidine ring and indole residue are connected at C6. The phenyl­methyl­idene and pyrrolidine-bound aryl residues are connected to the piperidine ring at positions C4 and C8, respectively. The conformation about the C4C11 double bond is E. The sp3 character of the piperidine-N1 atom is confirmed by the sum of the angles about this atom, i.e. 335 °. The piperidine ring adopts a half-chair conformation where the C2 atom lies 0.741 (3) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0527 Å). The C6 and C8 atoms occupy axial and equatorial positions with respect to the piperidine ring, the phenyl­methyl­idene residue occupies an equatorial position, and the N-bound methyl substituent is equatorial. The pyrrolidine ring has an envelope conformation with the flap atom being the C7 atom which lies 0.607 (4) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.0536 Å).

Centrosymmetric eight-membered {···HNCO}2 synthons are found in the crystal structure of (I), Table 1. The carbonyl-O1 atom also participates in other significant inter­molecular inter­actions, forming (pyrrolidine-bound benzene)C—H···O1 inter­actions with centrosymmetrically related dimers to form 14-membered {···HC5O}2 synthons leading to supra­molecular chains, Table 1. The chains are connected into a layer approximately parallel to (-1 2 0) by ππ, face-to-face, inter­actions [inter-centroid distance = 3.8348 (15) Å for symmetry operation: 1-x, 1-y, 1-z] between centrosymmetrically related methyl­idene-benzene rings (Fig. 2). The closest inter­actions between layers appear to be slipped face-to-face inter­actions between the edges (atoms C28 and C29) of pyrrolidine-bound benzene rings with the shortest separation being 3.484 (4) Å for C28···C28i (symmetry operation i: -x, -1-z, 1-z); see Fig. 3.

Related literature top

For the biological activity of related spiropyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Farag et al. (2013). For the synthesis of the precursor molecule, see Al-Omary et al. (2012).

Structure description top

Spiro­pyrrolidine derivatives are known to have biological activity and the basic sketal structure has been well established by X-ray crystallography (Kumar et al. 2008). In continuation of our biological and crystallographic studies of such derivatives (Girgis et al. 2012; Farag et al. 2013), the title compound, (I), was synthesised and characterised crystallographically.

Two spiro links exist in (I), Fig. 1, namely where the piperidine and pyrrolidine rings are connected at C1, and where the pyrrolidine ring and indole residue are connected at C6. The phenyl­methyl­idene and pyrrolidine-bound aryl residues are connected to the piperidine ring at positions C4 and C8, respectively. The conformation about the C4C11 double bond is E. The sp3 character of the piperidine-N1 atom is confirmed by the sum of the angles about this atom, i.e. 335 °. The piperidine ring adopts a half-chair conformation where the C2 atom lies 0.741 (3) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0527 Å). The C6 and C8 atoms occupy axial and equatorial positions with respect to the piperidine ring, the phenyl­methyl­idene residue occupies an equatorial position, and the N-bound methyl substituent is equatorial. The pyrrolidine ring has an envelope conformation with the flap atom being the C7 atom which lies 0.607 (4) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.0536 Å).

Centrosymmetric eight-membered {···HNCO}2 synthons are found in the crystal structure of (I), Table 1. The carbonyl-O1 atom also participates in other significant inter­molecular inter­actions, forming (pyrrolidine-bound benzene)C—H···O1 inter­actions with centrosymmetrically related dimers to form 14-membered {···HC5O}2 synthons leading to supra­molecular chains, Table 1. The chains are connected into a layer approximately parallel to (-1 2 0) by ππ, face-to-face, inter­actions [inter-centroid distance = 3.8348 (15) Å for symmetry operation: 1-x, 1-y, 1-z] between centrosymmetrically related methyl­idene-benzene rings (Fig. 2). The closest inter­actions between layers appear to be slipped face-to-face inter­actions between the edges (atoms C28 and C29) of pyrrolidine-bound benzene rings with the shortest separation being 3.484 (4) Å for C28···C28i (symmetry operation i: -x, -1-z, 1-z); see Fig. 3.

For the biological activity of related spiropyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Farag et al. (2013). For the synthesis of the precursor molecule, see Al-Omary et al. (2012).

Synthesis and crystallization top

A mixture of equimolar amounts of 3E,5E-1-ethyl-3,5-bis­({4-chloro­phenyl)­methyl­idene)-4-piperidone (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I) as pale-yellow blocks. Reaction time 9 h. M.pt: 494–496 K. Yield 76%. Anal. Calcd. for C31H28Cl3N3O2 (580.95): C, 64.09; H, 4.86; N, 7.23. Found: C, 64.28; H, 5.02; N, 7.31. IR: νmax/cm-1: 3167 (N—H); 1689 (CO); 1591, 1480 (CC).

Refinement details top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the ac plane in the crystal structure of (I). The N—H···O, C—H···O and ππ interactions are shown as orange, blue and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view of the unit-cell contents in (I). One layer has been highlighted in space-filling mode. The N—H···O, C—H···O and ππ interactions are shown as orange, blue and purple dashed lines, respectively.
5-Chloro-5''-(4-chlorobenzylidene)-4'-(4-chlorophenyl)-1''-ethyl-1'-methyldispiro[indoline-3,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione top
Crystal data top
C31H28Cl3N3O2Z = 2
Mr = 580.91F(000) = 604
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1901 (2) ÅCell parameters from 7513 reflections
b = 11.6434 (3) Åθ = 2.9–27.9°
c = 12.4270 (3) ŵ = 0.35 mm1
α = 99.477 (2)°T = 293 K
β = 90.235 (2)°Block, pale-yellow
γ = 114.893 (1)°1.02 × 0.53 × 0.37 mm
V = 1443.77 (6) Å3
Data collection top
Nonius 590 KappaCCD
diffractometer
6482 independent reflections
Radiation source: fine-focus sealed tube4260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.880, Tmax = 0.994k = 1514
11344 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.8473P]
where P = (Fo2 + 2Fc2)/3
6482 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C31H28Cl3N3O2γ = 114.893 (1)°
Mr = 580.91V = 1443.77 (6) Å3
Triclinic, P1Z = 2
a = 11.1901 (2) ÅMo Kα radiation
b = 11.6434 (3) ŵ = 0.35 mm1
c = 12.4270 (3) ÅT = 293 K
α = 99.477 (2)°1.02 × 0.53 × 0.37 mm
β = 90.235 (2)°
Data collection top
Nonius 590 KappaCCD
diffractometer
6482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4260 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.994Rint = 0.043
11344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.00Δρmax = 0.72 e Å3
6482 reflectionsΔρmin = 0.73 e Å3
354 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75652 (9)0.88544 (7)0.62569 (9)0.0843 (3)
Cl20.18456 (16)0.46678 (12)0.97683 (11)0.1288 (5)
Cl30.08381 (9)0.48680 (8)0.27827 (7)0.0746 (3)
O10.13605 (17)0.13409 (17)0.65765 (16)0.0535 (5)
O20.37169 (18)0.08975 (17)0.88375 (15)0.0527 (5)
N10.48196 (18)0.11736 (18)0.73216 (16)0.0388 (4)
N20.11620 (19)0.05244 (19)0.87264 (16)0.0433 (5)
N30.4280 (2)0.1109 (2)0.98503 (17)0.0524 (5)
H3n0.49020.11391.02780.063*
C10.2438 (2)0.0150 (2)0.72095 (18)0.0352 (5)
C20.3678 (2)0.0046 (2)0.67812 (19)0.0388 (5)
H2A0.37130.07280.69380.047*
H2B0.36630.00060.59950.047*
C30.4971 (2)0.2310 (2)0.6878 (2)0.0427 (5)
H3A0.53150.22620.61650.051*
H3B0.56140.30720.73540.051*
C40.3699 (2)0.2447 (2)0.67642 (18)0.0381 (5)
C50.2403 (2)0.1327 (2)0.68197 (18)0.0375 (5)
C60.2491 (2)0.0382 (2)0.85091 (18)0.0370 (5)
C70.0761 (3)0.1661 (2)0.7874 (2)0.0485 (6)
H7A0.01800.22010.78490.058*
H7B0.12420.21640.79810.058*
C80.1119 (2)0.1086 (2)0.68402 (19)0.0407 (5)
H80.04490.07900.66820.049*
C90.6045 (3)0.0993 (3)0.7295 (3)0.0542 (7)
H9A0.63950.11140.65890.065*
H9B0.58410.01160.73730.065*
C100.7081 (3)0.1904 (3)0.8178 (3)0.0718 (9)
H10A0.73050.27740.80950.108*
H10B0.78540.17430.81250.108*
H10C0.67470.17780.88800.108*
C110.1021 (3)0.0799 (3)0.9836 (2)0.0609 (7)
H11A0.01060.13000.99250.091*
H11B0.13490.00041.03550.091*
H11C0.15170.12740.99590.091*
C120.3628 (3)0.3537 (2)0.66025 (19)0.0424 (5)
H120.27690.34640.65380.051*
C130.4638 (2)0.4803 (2)0.65098 (18)0.0405 (5)
C140.4248 (3)0.5800 (3)0.6556 (2)0.0534 (7)
H140.33660.56270.66420.064*
C150.5127 (3)0.7033 (3)0.6478 (3)0.0611 (8)
H150.48390.76790.65100.073*
C160.6433 (3)0.7303 (2)0.6353 (2)0.0537 (7)
C170.6857 (3)0.6346 (3)0.6289 (2)0.0538 (7)
H170.77400.65280.61980.065*
C180.5963 (3)0.5111 (2)0.6361 (2)0.0497 (6)
H180.62550.44660.63090.060*
C190.3588 (2)0.0111 (2)0.9046 (2)0.0441 (6)
C200.3866 (3)0.2094 (3)0.9908 (2)0.0519 (6)
C210.4321 (4)0.3248 (3)1.0627 (3)0.0784 (10)
H210.50320.34891.11380.094*
C220.3694 (5)0.4044 (3)1.0570 (3)0.0883 (12)
H220.39920.48361.10400.106*
C230.2635 (4)0.3662 (3)0.9821 (3)0.0741 (10)
C240.2167 (3)0.2502 (3)0.9093 (2)0.0527 (7)
H240.14430.22560.85940.063*
C250.2810 (2)0.1722 (2)0.91300 (19)0.0427 (6)
C260.1113 (2)0.2007 (2)0.5831 (2)0.0407 (5)
C270.1627 (3)0.2913 (2)0.5846 (2)0.0485 (6)
H270.20250.29330.64960.058*
C280.1555 (3)0.3778 (2)0.4911 (2)0.0518 (6)
H280.19060.43710.49320.062*
C290.0960 (3)0.3750 (2)0.3951 (2)0.0501 (6)
C300.0446 (3)0.2871 (3)0.3903 (2)0.0530 (6)
H300.00490.28580.32490.064*
C310.0529 (3)0.2008 (2)0.4842 (2)0.0479 (6)
H310.01840.14120.48100.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0726 (5)0.0396 (4)0.1372 (8)0.0211 (4)0.0221 (5)0.0141 (4)
Cl20.1991 (14)0.0931 (8)0.1389 (10)0.1089 (9)0.0425 (9)0.0100 (7)
Cl30.0954 (6)0.0525 (4)0.0640 (5)0.0258 (4)0.0110 (4)0.0047 (3)
O10.0433 (10)0.0552 (11)0.0732 (12)0.0273 (9)0.0027 (9)0.0251 (9)
O20.0540 (11)0.0530 (11)0.0630 (11)0.0307 (9)0.0014 (9)0.0207 (9)
N10.0349 (10)0.0363 (10)0.0505 (11)0.0202 (9)0.0005 (8)0.0086 (9)
N20.0421 (11)0.0459 (12)0.0451 (11)0.0204 (10)0.0071 (9)0.0121 (9)
N30.0534 (13)0.0570 (14)0.0457 (12)0.0222 (11)0.0104 (10)0.0108 (11)
C10.0361 (12)0.0351 (11)0.0389 (12)0.0194 (10)0.0001 (9)0.0066 (9)
C20.0422 (13)0.0370 (12)0.0413 (13)0.0218 (11)0.0008 (10)0.0048 (10)
C30.0439 (13)0.0359 (12)0.0521 (14)0.0196 (11)0.0036 (11)0.0113 (11)
C40.0454 (13)0.0388 (12)0.0351 (12)0.0223 (11)0.0018 (10)0.0087 (10)
C50.0426 (13)0.0408 (12)0.0340 (11)0.0224 (11)0.0001 (9)0.0074 (10)
C60.0375 (12)0.0370 (12)0.0397 (12)0.0182 (10)0.0004 (9)0.0091 (10)
C70.0411 (14)0.0407 (13)0.0587 (16)0.0120 (11)0.0032 (11)0.0114 (12)
C80.0367 (12)0.0389 (12)0.0485 (14)0.0185 (10)0.0033 (10)0.0064 (10)
C90.0404 (14)0.0482 (15)0.0819 (19)0.0249 (12)0.0036 (13)0.0162 (14)
C100.0414 (16)0.083 (2)0.094 (2)0.0232 (16)0.0001 (15)0.0325 (19)
C110.0635 (18)0.0696 (19)0.0572 (17)0.0301 (16)0.0193 (14)0.0268 (15)
C120.0490 (14)0.0449 (13)0.0405 (13)0.0261 (12)0.0026 (10)0.0102 (11)
C130.0508 (14)0.0392 (12)0.0368 (12)0.0242 (11)0.0013 (10)0.0072 (10)
C140.0502 (15)0.0458 (15)0.0723 (18)0.0274 (13)0.0013 (13)0.0133 (13)
C150.0601 (18)0.0401 (15)0.089 (2)0.0278 (14)0.0019 (15)0.0099 (14)
C160.0580 (17)0.0357 (13)0.0656 (17)0.0194 (12)0.0047 (13)0.0063 (12)
C170.0545 (16)0.0475 (15)0.0666 (17)0.0278 (13)0.0118 (13)0.0129 (13)
C180.0603 (16)0.0436 (14)0.0569 (16)0.0315 (13)0.0118 (13)0.0141 (12)
C190.0434 (14)0.0485 (14)0.0446 (14)0.0207 (12)0.0012 (11)0.0164 (12)
C200.0623 (17)0.0486 (15)0.0371 (13)0.0167 (13)0.0002 (12)0.0064 (11)
C210.105 (3)0.062 (2)0.0463 (17)0.020 (2)0.0093 (17)0.0034 (15)
C220.141 (4)0.054 (2)0.057 (2)0.036 (2)0.013 (2)0.0079 (16)
C230.118 (3)0.0525 (18)0.063 (2)0.047 (2)0.028 (2)0.0078 (15)
C240.0703 (18)0.0499 (15)0.0479 (15)0.0344 (14)0.0157 (13)0.0105 (12)
C250.0527 (15)0.0417 (13)0.0361 (12)0.0216 (12)0.0068 (10)0.0086 (10)
C260.0357 (12)0.0341 (12)0.0507 (14)0.0142 (10)0.0038 (10)0.0058 (10)
C270.0516 (15)0.0440 (14)0.0542 (15)0.0248 (12)0.0038 (12)0.0089 (12)
C280.0580 (16)0.0399 (14)0.0613 (17)0.0250 (13)0.0053 (13)0.0077 (12)
C290.0508 (15)0.0379 (13)0.0527 (15)0.0122 (12)0.0064 (12)0.0033 (11)
C300.0546 (16)0.0544 (16)0.0486 (15)0.0230 (13)0.0057 (12)0.0068 (12)
C310.0478 (14)0.0469 (14)0.0524 (15)0.0241 (12)0.0056 (11)0.0079 (12)
Geometric parameters (Å, º) top
Cl1—C161.740 (3)C10—H10B0.9600
Cl2—C231.747 (3)C10—H10C0.9600
Cl3—C291.745 (3)C11—H11A0.9600
O1—C51.211 (3)C11—H11B0.9600
O2—C191.229 (3)C11—H11C0.9600
N1—C21.448 (3)C12—C131.456 (3)
N1—C31.461 (3)C12—H120.9300
N1—C91.472 (3)C13—C181.392 (4)
N2—C71.453 (3)C13—C141.395 (3)
N2—C111.461 (3)C14—C151.377 (4)
N2—C61.475 (3)C14—H140.9300
N3—C191.343 (3)C15—C161.375 (4)
N3—C201.398 (3)C15—H150.9300
N3—H3n0.8600C16—C171.375 (4)
C1—C21.532 (3)C17—C181.382 (4)
C1—C51.543 (3)C17—H170.9300
C1—C81.565 (3)C18—H180.9300
C1—C61.589 (3)C20—C211.373 (4)
C2—H2A0.9700C20—C251.393 (4)
C2—H2B0.9700C21—C221.387 (5)
C3—C41.506 (3)C21—H210.9300
C3—H3A0.9700C22—C231.371 (5)
C3—H3B0.9700C22—H220.9300
C4—C121.351 (3)C23—C241.384 (4)
C4—C51.499 (3)C24—C251.381 (3)
C6—C251.514 (3)C24—H240.9300
C6—C191.561 (3)C26—C311.389 (3)
C7—C81.524 (3)C26—C271.401 (3)
C7—H7A0.9700C27—C281.384 (4)
C7—H7B0.9700C27—H270.9300
C8—C261.508 (3)C28—C291.376 (4)
C8—H80.9800C28—H280.9300
C9—C101.498 (4)C29—C301.378 (4)
C9—H9A0.9700C30—C311.384 (4)
C9—H9B0.9700C30—H300.9300
C10—H10A0.9600C31—H310.9300
C2—N1—C3110.85 (18)H11A—C11—H11B109.5
C2—N1—C9113.09 (19)N2—C11—H11C109.5
C3—N1—C9111.41 (19)H11A—C11—H11C109.5
C7—N2—C11114.2 (2)H11B—C11—H11C109.5
C7—N2—C6106.79 (18)C4—C12—C13132.3 (2)
C11—N2—C6115.8 (2)C4—C12—H12113.9
C19—N3—C20111.8 (2)C13—C12—H12113.9
C19—N3—H3n124.1C18—C13—C14116.6 (2)
C20—N3—H3n124.1C18—C13—C12125.9 (2)
C2—C1—C5106.00 (18)C14—C13—C12117.5 (2)
C2—C1—C8114.65 (18)C15—C14—C13122.0 (3)
C5—C1—C8111.33 (17)C15—C14—H14119.0
C2—C1—C6112.13 (17)C13—C14—H14119.0
C5—C1—C6108.72 (17)C16—C15—C14119.6 (2)
C8—C1—C6103.98 (17)C16—C15—H15120.2
N1—C2—C1107.91 (18)C14—C15—H15120.2
N1—C2—H2A110.1C15—C16—C17120.3 (3)
C1—C2—H2A110.1C15—C16—Cl1120.5 (2)
N1—C2—H2B110.1C17—C16—Cl1119.2 (2)
C1—C2—H2B110.1C16—C17—C18119.5 (3)
H2A—C2—H2B108.4C16—C17—H17120.3
N1—C3—C4113.32 (19)C18—C17—H17120.3
N1—C3—H3A108.9C17—C18—C13122.0 (2)
C4—C3—H3A108.9C17—C18—H18119.0
N1—C3—H3B108.9C13—C18—H18119.0
C4—C3—H3B108.9O2—C19—N3125.4 (2)
H3A—C3—H3B107.7O2—C19—C6125.6 (2)
C12—C4—C5115.8 (2)N3—C19—C6108.6 (2)
C12—C4—C3124.2 (2)C21—C20—C25121.6 (3)
C5—C4—C3120.06 (19)C21—C20—N3128.8 (3)
O1—C5—C4121.7 (2)C25—C20—N3109.6 (2)
O1—C5—C1120.7 (2)C20—C21—C22118.4 (3)
C4—C5—C1117.58 (18)C20—C21—H21120.8
N2—C6—C25110.00 (19)C22—C21—H21120.8
N2—C6—C19111.18 (18)C23—C22—C21119.9 (3)
C25—C6—C19100.62 (19)C23—C22—H22120.0
N2—C6—C1103.23 (17)C21—C22—H22120.0
C25—C6—C1118.74 (17)C22—C23—C24122.3 (3)
C19—C6—C1113.26 (18)C22—C23—Cl2119.4 (3)
N2—C7—C8102.53 (19)C24—C23—Cl2118.3 (3)
N2—C7—H7A111.3C25—C24—C23117.9 (3)
C8—C7—H7A111.3C25—C24—H24121.1
N2—C7—H7B111.3C23—C24—H24121.1
C8—C7—H7B111.3C24—C25—C20119.9 (2)
H7A—C7—H7B109.2C24—C25—C6130.6 (2)
C26—C8—C7115.4 (2)C20—C25—C6109.2 (2)
C26—C8—C1117.06 (19)C31—C26—C27117.5 (2)
C7—C8—C1103.79 (18)C31—C26—C8119.5 (2)
C26—C8—H8106.6C27—C26—C8122.9 (2)
C7—C8—H8106.6C28—C27—C26121.3 (2)
C1—C8—H8106.6C28—C27—H27119.4
N1—C9—C10112.9 (2)C26—C27—H27119.4
N1—C9—H9A109.0C29—C28—C27119.2 (2)
C10—C9—H9A109.0C29—C28—H28120.4
N1—C9—H9B109.0C27—C28—H28120.4
C10—C9—H9B109.0C28—C29—C30121.1 (2)
H9A—C9—H9B107.8C28—C29—Cl3119.0 (2)
C9—C10—H10A109.5C30—C29—Cl3119.8 (2)
C9—C10—H10B109.5C29—C30—C31119.1 (2)
H10A—C10—H10B109.5C29—C30—H30120.5
C9—C10—H10C109.5C31—C30—H30120.5
H10A—C10—H10C109.5C30—C31—C26121.8 (2)
H10B—C10—H10C109.5C30—C31—H31119.1
N2—C11—H11A109.5C26—C31—H31119.1
N2—C11—H11B109.5
C3—N1—C2—C174.5 (2)C13—C14—C15—C160.1 (5)
C9—N1—C2—C1159.54 (19)C14—C15—C16—C171.0 (5)
C5—C1—C2—N165.3 (2)C14—C15—C16—Cl1179.8 (2)
C8—C1—C2—N1171.45 (17)C15—C16—C17—C180.6 (4)
C6—C1—C2—N153.2 (2)Cl1—C16—C17—C18179.8 (2)
C2—N1—C3—C446.3 (3)C16—C17—C18—C130.7 (4)
C9—N1—C3—C4173.2 (2)C14—C13—C18—C171.5 (4)
N1—C3—C4—C12165.1 (2)C12—C13—C18—C17179.6 (2)
N1—C3—C4—C515.4 (3)C20—N3—C19—O2177.5 (2)
C12—C4—C5—O110.4 (3)C20—N3—C19—C63.7 (3)
C3—C4—C5—O1169.2 (2)N2—C6—C19—O260.9 (3)
C12—C4—C5—C1169.1 (2)C25—C6—C19—O2177.3 (2)
C3—C4—C5—C111.3 (3)C1—C6—C19—O254.8 (3)
C2—C1—C5—O1146.0 (2)N2—C6—C19—N3112.9 (2)
C8—C1—C5—O120.7 (3)C25—C6—C19—N33.6 (2)
C6—C1—C5—O193.2 (3)C1—C6—C19—N3131.4 (2)
C2—C1—C5—C434.5 (3)C19—N3—C20—C21179.0 (3)
C8—C1—C5—C4159.77 (19)C19—N3—C20—C252.2 (3)
C6—C1—C5—C486.3 (2)C25—C20—C21—C220.6 (5)
C7—N2—C6—C25162.75 (18)N3—C20—C21—C22175.8 (3)
C11—N2—C6—C2568.9 (3)C20—C21—C22—C231.0 (5)
C7—N2—C6—C1986.7 (2)C21—C22—C23—C241.0 (5)
C11—N2—C6—C1941.7 (3)C21—C22—C23—Cl2179.4 (3)
C7—N2—C6—C135.1 (2)C22—C23—C24—C250.5 (5)
C11—N2—C6—C1163.4 (2)Cl2—C23—C24—C25179.1 (2)
C2—C1—C6—N2134.84 (18)C23—C24—C25—C202.1 (4)
C5—C1—C6—N2108.29 (19)C23—C24—C25—C6175.3 (3)
C8—C1—C6—N210.4 (2)C21—C20—C25—C242.2 (4)
C2—C1—C6—C25103.2 (2)N3—C20—C25—C24174.9 (2)
C5—C1—C6—C2513.7 (3)C21—C20—C25—C6176.8 (3)
C8—C1—C6—C25132.4 (2)N3—C20—C25—C60.3 (3)
C2—C1—C6—C1914.5 (3)N2—C6—C25—C2458.7 (3)
C5—C1—C6—C19131.4 (2)C19—C6—C25—C24176.1 (2)
C8—C1—C6—C19109.9 (2)C1—C6—C25—C2459.8 (3)
C11—N2—C7—C8175.4 (2)N2—C6—C25—C20115.1 (2)
C6—N2—C7—C846.1 (2)C19—C6—C25—C202.3 (2)
N2—C7—C8—C26166.56 (19)C1—C6—C25—C20126.4 (2)
N2—C7—C8—C137.1 (2)C7—C8—C26—C31135.5 (2)
C2—C1—C8—C2621.6 (3)C1—C8—C26—C31101.9 (3)
C5—C1—C8—C2698.7 (2)C7—C8—C26—C2741.9 (3)
C6—C1—C8—C26144.36 (19)C1—C8—C26—C2780.7 (3)
C2—C1—C8—C7106.9 (2)C31—C26—C27—C280.1 (4)
C5—C1—C8—C7132.80 (19)C8—C26—C27—C28177.3 (2)
C6—C1—C8—C715.9 (2)C26—C27—C28—C290.4 (4)
C2—N1—C9—C10158.0 (2)C27—C28—C29—C300.6 (4)
C3—N1—C9—C1076.3 (3)C27—C28—C29—Cl3178.5 (2)
C5—C4—C12—C13179.6 (2)C28—C29—C30—C310.3 (4)
C3—C4—C12—C130.9 (4)Cl3—C29—C30—C31178.8 (2)
C4—C12—C13—C1813.4 (4)C29—C30—C31—C260.2 (4)
C4—C12—C13—C14167.7 (3)C27—C26—C31—C300.4 (4)
C18—C13—C14—C151.1 (4)C8—C26—C31—C30177.2 (2)
C12—C13—C14—C15179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···O2i0.862.032.883 (3)170
C31—H31···O1ii0.932.473.160 (4)131
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···O2i0.862.032.883 (3)170
C31—H31···O1ii0.932.473.160 (4)131
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: ibfarag2002@yahoo.com.

Acknowledgements

This study was supported financially by the Science and Technology Development Fund (STDF), Egypt (grant No. 1133).

References

First citationAl-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65–72.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o22–o23.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGirgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50, 1–8.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731–5735.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds