organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,4-Di­nitro­phen­yl)-2-(3-eth­­oxy-4-hy­dr­oxy­benzyl­­idene)hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 16 December 2013; accepted 16 December 2013; online 24 December 2013)

The mol­ecule of the title hydrazine derivative, C15H14N4O6, is essentially planar, the dihedral angle between the substituted benzene rings being 2.25 (9)°. The eth­oxy and hy­droxy groups are almost coplanar with their bound benzene ring [r.m.s. deviation = 0.0153 (2) Å for the ten non-H atoms]. Intra­molecular N—H⋯O and O—H⋯Oeth­oxy hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, mol­ecules are linked by O—H⋯Onitro hydrogen bonds into chains propagating in [010]. Weak aromatic ππ inter­actions, with centroid–centroid distances of 3.8192 (19) and 4.0491 (19) Å, are also observed.

Related literature

For a related structure and background to hydrazones, see: Fun et al. (2013[Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203-o1204.]). For other related structures, see: Fun et al. (2011[Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.], 2012[Fun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144-o2145.]). For the measurement of anti-oxidant activity, see: Molyneux (2004[Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211-219.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4O6

  • Mr = 346.30

  • Monoclinic, P 21 /c

  • a = 10.245 (4) Å

  • b = 13.679 (5) Å

  • c = 14.184 (5) Å

  • β = 129.15 (2)°

  • V = 1541.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.52 × 0.37 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.992

  • 16113 measured reflections

  • 4060 independent reflections

  • 2183 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.01

  • 4060 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1O6⋯O2i 0.84 (3) 2.21 (3) 2.986 (2) 155 (3)
O6—H1O6⋯O5 0.84 (3) 2.19 (3) 2.663 (3) 116 (2)
N1—H1N1⋯O1 0.86 (2) 2.007 (18) 2.641 (2) 130.0 (18)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of our on-going research on diaryl-hydrazones with potential bioactivity, the title compound (I) was synthesized in order to study and compare its antioxidant activity with the other related compounds (Fun et al., 2011; 2012; 2013). In our antioxidant activity evaluation of (I) by DPPH scavenging (Molyneux, 2004) it was found that (I) possesses strong antioxidant activity with 82.71% inhibition, comparison with L-ascorbic acid as a standard (90.39 % inhibition). Herein we report the synthesis and crystal structure of (I).

In Fig. 1, the molecular structure of (I), C15H14N4O6, is essentially planar with the dihedral angle between the two substituted benzene rings being 2.25 (9)°. The mean plane through the bridge fragment (N1/N2/C7) makes the dihedral angles of 2.25 (19) and 2.30 (19)° with the C1–C6 and C8–C13 rings, respectively. Both nitro groups of the 2,4-dinitrophenyl are slightly deviated with respect to their attached ring [torsion angles O1—N3—C2—C1 = -8.3 (2)°, O2—N3—C2—C3 = -9.4 (2)°, O3—N4—C4—C3 = -7.0 (2)° and O4—N4—C4—C5 = -7.2 (2)°]. The substituted ethoxy and hydroxy groups are co-planar with the bound benzene ring with the r.m.s. deviation of 0.0153 (2) Å for the ten non H atoms and the torsion angles C9—C10—O5—C14 = -3.1 (2)° and C15—C14—O5—C10 = -178.05 (14)°. Intramolecular N1—H1N1···O1 hydrogen bond (Fig. 1 and Table 1) generates an S(6) ring motif whereas another intramolecular O6—H1O6—O5 hydrogen bond generates S(5) ring motif. These intramolecular hydrogen bonds help to stabilize the planarity of the molecule. Bond distances in (I) are comparable with those observed in the closely related structure (Fun et al., 2013).

In the crystal (Fig. 2), the molecules are linked by intermolecular O6—H1O6···O2 hydrogen bond (Table 1) into chains along [010]. There are weak ππ interactions (Fig. 3) with the distances of Cg1···Cg2ii = 3.8192 (19) Å and Cg1···Cg2iii = 4.0491 (19) Å [symmetry codes (ii) = 2-x, -1/2+y, 1/2-z (iii) 2-x, -y, -z]; Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 rings, respectively.

Related literature top

For a related structure and background to hydrazones, see: Fun et al. (2013). For other related structures, see: Fun et al. (2011, 2012). For the measurement of anti-oxidant activity, see: Molyneux (2004).

Experimental top

2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) was dissolved in ethanol (10 ml) and H2SO4 (conc.) (98 %, 0.50 ml) was added slowly with stirring. A solution of 3-ethoxy-4-hydroxybenzaldehyde (0.30 g, 2 mmol) in ethanol (20 ml) was then added to the solution with continuous stirring for 1 hr, yielding an orange solid which was filtered off and washed with methanol. Orange plates of (I) were recrystallized from acetone solution by slow evaporation of the solvent at room temperature over a few weeks, Mp. 515-516 K.

Refinement top

Hydrazine and hydroxy H atoms were located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for CH and aromatic, and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

As part of our on-going research on diaryl-hydrazones with potential bioactivity, the title compound (I) was synthesized in order to study and compare its antioxidant activity with the other related compounds (Fun et al., 2011; 2012; 2013). In our antioxidant activity evaluation of (I) by DPPH scavenging (Molyneux, 2004) it was found that (I) possesses strong antioxidant activity with 82.71% inhibition, comparison with L-ascorbic acid as a standard (90.39 % inhibition). Herein we report the synthesis and crystal structure of (I).

In Fig. 1, the molecular structure of (I), C15H14N4O6, is essentially planar with the dihedral angle between the two substituted benzene rings being 2.25 (9)°. The mean plane through the bridge fragment (N1/N2/C7) makes the dihedral angles of 2.25 (19) and 2.30 (19)° with the C1–C6 and C8–C13 rings, respectively. Both nitro groups of the 2,4-dinitrophenyl are slightly deviated with respect to their attached ring [torsion angles O1—N3—C2—C1 = -8.3 (2)°, O2—N3—C2—C3 = -9.4 (2)°, O3—N4—C4—C3 = -7.0 (2)° and O4—N4—C4—C5 = -7.2 (2)°]. The substituted ethoxy and hydroxy groups are co-planar with the bound benzene ring with the r.m.s. deviation of 0.0153 (2) Å for the ten non H atoms and the torsion angles C9—C10—O5—C14 = -3.1 (2)° and C15—C14—O5—C10 = -178.05 (14)°. Intramolecular N1—H1N1···O1 hydrogen bond (Fig. 1 and Table 1) generates an S(6) ring motif whereas another intramolecular O6—H1O6—O5 hydrogen bond generates S(5) ring motif. These intramolecular hydrogen bonds help to stabilize the planarity of the molecule. Bond distances in (I) are comparable with those observed in the closely related structure (Fun et al., 2013).

In the crystal (Fig. 2), the molecules are linked by intermolecular O6—H1O6···O2 hydrogen bond (Table 1) into chains along [010]. There are weak ππ interactions (Fig. 3) with the distances of Cg1···Cg2ii = 3.8192 (19) Å and Cg1···Cg2iii = 4.0491 (19) Å [symmetry codes (ii) = 2-x, -1/2+y, 1/2-z (iii) 2-x, -y, -z]; Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 rings, respectively.

For a related structure and background to hydrazones, see: Fun et al. (2013). For other related structures, see: Fun et al. (2011, 2012). For the measurement of anti-oxidant activity, see: Molyneux (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. Intramolecular N—H···O and O—H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the c axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. π-π interactions between aromatic rings. H-atoms are omitted for clarify.
(E)-1-(2,4-Dinitrophenyl)-2-(3-ethoxy-4-hydroxybenzylidene)hydrazine top
Crystal data top
C15H14N4O6F(000) = 720
Mr = 346.30Dx = 1.492 Mg m3
Monoclinic, P21/cMelting point = 515–516 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.245 (4) ÅCell parameters from 4060 reflections
b = 13.679 (5) Åθ = 2.4–29.0°
c = 14.184 (5) ŵ = 0.12 mm1
β = 129.15 (2)°T = 298 K
V = 1541.5 (11) Å3Plate, orange
Z = 40.52 × 0.37 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
4060 independent reflections
Radiation source: sealed tube2183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 29.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.941, Tmax = 0.992k = 1818
16113 measured reflectionsl = 1319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.0702P]
where P = (Fo2 + 2Fc2)/3
4060 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H14N4O6V = 1541.5 (11) Å3
Mr = 346.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.245 (4) ŵ = 0.12 mm1
b = 13.679 (5) ÅT = 298 K
c = 14.184 (5) Å0.52 × 0.37 × 0.07 mm
β = 129.15 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4060 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2183 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.992Rint = 0.036
16113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.16 e Å3
4060 reflectionsΔρmin = 0.22 e Å3
235 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.20079 (13)0.22891 (8)0.16025 (12)0.0622 (4)
O21.05019 (14)0.35272 (9)0.13142 (13)0.0736 (5)
O30.46877 (15)0.32518 (12)0.07366 (14)0.0814 (5)
O40.36011 (15)0.18505 (11)0.08629 (13)0.0767 (4)
O51.01832 (12)0.42468 (8)0.13492 (11)0.0532 (3)
O61.32309 (16)0.49799 (9)0.24070 (13)0.0580 (4)
H1O61.230 (3)0.5246 (19)0.209 (2)0.121 (10)*
N11.09605 (18)0.05017 (10)0.15152 (14)0.0489 (4)
H1N11.183 (2)0.0854 (13)0.1800 (17)0.065 (6)*
N21.10133 (17)0.05030 (9)0.15757 (13)0.0472 (4)
N31.06865 (16)0.26439 (10)0.13050 (13)0.0494 (4)
N40.47883 (17)0.23628 (13)0.05806 (14)0.0594 (4)
C10.94828 (19)0.09698 (11)0.10069 (14)0.0411 (4)
C20.93039 (18)0.19991 (11)0.09135 (14)0.0409 (4)
C30.77777 (19)0.24509 (12)0.04025 (14)0.0452 (4)
H3A0.76920.31290.03570.054*
C40.63954 (19)0.18842 (12)0.00355 (15)0.0463 (4)
C50.6511 (2)0.08732 (13)0.00279 (16)0.0523 (5)
H5A0.55580.04990.02840.063*
C60.8015 (2)0.04225 (12)0.05462 (16)0.0509 (4)
H6A0.80770.02560.05980.061*
C71.2451 (2)0.08997 (12)0.20969 (15)0.0474 (4)
H7A1.33880.05070.24190.057*
C81.26408 (19)0.19596 (11)0.21919 (14)0.0432 (4)
C91.12420 (19)0.25734 (11)0.17161 (15)0.0437 (4)
H9A1.01920.23010.13600.052*
C101.14273 (18)0.35742 (11)0.17773 (15)0.0432 (4)
C111.30253 (19)0.39867 (12)0.23335 (15)0.0448 (4)
C121.43888 (19)0.33878 (12)0.28036 (16)0.0510 (5)
H12A1.54420.36610.31720.061*
C131.42040 (19)0.23804 (12)0.27326 (15)0.0485 (4)
H13A1.51340.19820.30490.058*
C140.84992 (18)0.38972 (12)0.07237 (16)0.0509 (4)
H14A0.84450.34970.12630.061*
H14B0.81450.35040.00290.061*
C150.7378 (2)0.47736 (13)0.03131 (17)0.0573 (5)
H15A0.62490.45630.00710.086*
H15B0.73920.51430.02560.086*
H15C0.77750.51750.10030.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (7)0.0560 (8)0.0861 (10)0.0018 (5)0.0373 (7)0.0034 (7)
O20.0515 (8)0.0417 (8)0.1069 (12)0.0051 (6)0.0401 (8)0.0016 (7)
O30.0537 (8)0.0706 (10)0.1065 (12)0.0078 (7)0.0442 (9)0.0088 (9)
O40.0417 (7)0.0993 (11)0.0876 (11)0.0102 (7)0.0400 (8)0.0084 (8)
O50.0389 (6)0.0431 (6)0.0697 (8)0.0035 (5)0.0305 (6)0.0059 (6)
O60.0490 (7)0.0453 (7)0.0754 (9)0.0079 (6)0.0373 (7)0.0069 (6)
N10.0437 (8)0.0400 (8)0.0605 (10)0.0040 (6)0.0317 (8)0.0026 (7)
N20.0511 (8)0.0400 (8)0.0540 (9)0.0007 (6)0.0349 (8)0.0014 (6)
N30.0402 (8)0.0443 (9)0.0555 (9)0.0026 (6)0.0264 (7)0.0023 (7)
N40.0415 (8)0.0740 (11)0.0609 (10)0.0004 (8)0.0314 (8)0.0091 (9)
C10.0416 (9)0.0437 (9)0.0409 (9)0.0031 (7)0.0273 (8)0.0016 (7)
C20.0359 (8)0.0435 (9)0.0430 (9)0.0053 (7)0.0248 (8)0.0021 (7)
C30.0439 (9)0.0476 (9)0.0433 (10)0.0018 (7)0.0272 (8)0.0024 (8)
C40.0373 (8)0.0572 (11)0.0457 (10)0.0029 (7)0.0269 (8)0.0042 (8)
C50.0443 (10)0.0602 (12)0.0538 (11)0.0141 (8)0.0316 (9)0.0064 (9)
C60.0512 (10)0.0449 (10)0.0597 (12)0.0094 (8)0.0364 (10)0.0022 (8)
C70.0459 (9)0.0479 (10)0.0477 (10)0.0039 (7)0.0292 (9)0.0029 (8)
C80.0438 (9)0.0453 (10)0.0411 (9)0.0005 (7)0.0271 (8)0.0018 (7)
C90.0369 (8)0.0462 (10)0.0449 (10)0.0053 (7)0.0243 (8)0.0035 (8)
C100.0388 (8)0.0470 (10)0.0432 (10)0.0001 (7)0.0257 (8)0.0017 (8)
C110.0434 (9)0.0459 (10)0.0454 (10)0.0060 (7)0.0282 (8)0.0048 (8)
C120.0386 (9)0.0563 (11)0.0564 (12)0.0071 (8)0.0292 (9)0.0023 (9)
C130.0378 (9)0.0538 (10)0.0511 (11)0.0038 (7)0.0268 (8)0.0042 (8)
C140.0371 (9)0.0534 (10)0.0586 (11)0.0046 (7)0.0285 (9)0.0071 (9)
C150.0494 (10)0.0560 (11)0.0656 (13)0.0055 (8)0.0359 (10)0.0026 (9)
Geometric parameters (Å, º) top
O1—N31.2349 (16)C5—C61.366 (2)
O2—N31.2243 (17)C5—H5A0.9300
O3—N41.229 (2)C6—H6A0.9300
O4—N41.2312 (18)C7—C81.458 (2)
O5—C101.3647 (18)C7—H7A0.9300
O5—C141.4351 (18)C8—C131.390 (2)
O6—C111.369 (2)C8—C91.412 (2)
O6—H1O60.84 (3)C9—C101.377 (2)
N1—C11.358 (2)C9—H9A0.9300
N1—N21.3759 (18)C10—C111.411 (2)
N1—H1N10.858 (17)C11—C121.375 (2)
N2—C71.279 (2)C12—C131.386 (2)
N3—C21.4490 (19)C12—H12A0.9300
N4—C41.459 (2)C13—H13A0.9300
C1—C21.415 (2)C14—C151.500 (2)
C1—C61.417 (2)C14—H14A0.9700
C2—C31.386 (2)C14—H14B0.9700
C3—C41.372 (2)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.386 (2)C15—H15C0.9600
C10—O5—C14118.10 (12)C8—C7—H7A119.6
C11—O6—H1O6108.7 (18)C13—C8—C9119.05 (15)
C1—N1—N2119.40 (13)C13—C8—C7120.17 (15)
C1—N1—H1N1117.7 (12)C9—C8—C7120.77 (14)
N2—N1—H1N1122.9 (12)C10—C9—C8120.21 (14)
C7—N2—N1116.45 (14)C10—C9—H9A119.9
O2—N3—O1121.84 (13)C8—C9—H9A119.9
O2—N3—C2118.99 (13)O5—C10—C9126.10 (14)
O1—N3—C2119.17 (14)O5—C10—C11114.04 (14)
O3—N4—O4123.46 (15)C9—C10—C11119.86 (14)
O3—N4—C4118.54 (14)O6—C11—C12119.61 (14)
O4—N4—C4118.00 (17)O6—C11—C10120.53 (14)
N1—C1—C2123.64 (14)C12—C11—C10119.86 (15)
N1—C1—C6119.91 (15)C11—C12—C13120.44 (15)
C2—C1—C6116.45 (14)C11—C12—H12A119.8
C3—C2—C1121.96 (14)C13—C12—H12A119.8
C3—C2—N3115.85 (14)C12—C13—C8120.57 (15)
C1—C2—N3122.15 (13)C12—C13—H13A119.7
C4—C3—C2119.08 (16)C8—C13—H13A119.7
C4—C3—H3A120.5O5—C14—C15107.50 (14)
C2—C3—H3A120.5O5—C14—H14A110.2
C3—C4—C5120.88 (15)C15—C14—H14A110.2
C3—C4—N4118.90 (16)O5—C14—H14B110.2
C5—C4—N4120.22 (14)C15—C14—H14B110.2
C6—C5—C4120.41 (15)H14A—C14—H14B108.5
C6—C5—H5A119.8C14—C15—H15A109.5
C4—C5—H5A119.8C14—C15—H15B109.5
C5—C6—C1121.21 (16)H15A—C15—H15B109.5
C5—C6—H6A119.4C14—C15—H15C109.5
C1—C6—H6A119.4H15A—C15—H15C109.5
N2—C7—C8120.86 (15)H15B—C15—H15C109.5
N2—C7—H7A119.6
C1—N1—N2—C7177.98 (15)N1—C1—C6—C5179.86 (16)
N2—N1—C1—C2179.34 (15)C2—C1—C6—C50.8 (2)
N2—N1—C1—C60.0 (2)N1—N2—C7—C8178.99 (14)
N1—C1—C2—C3179.14 (16)N2—C7—C8—C13178.30 (15)
C6—C1—C2—C30.2 (2)N2—C7—C8—C90.3 (2)
N1—C1—C2—N33.1 (3)C13—C8—C9—C100.7 (2)
C6—C1—C2—N3177.54 (15)C7—C8—C9—C10177.94 (16)
O2—N3—C2—C39.4 (2)C14—O5—C10—C93.1 (2)
O1—N3—C2—C3169.55 (15)C14—O5—C10—C11177.49 (14)
O2—N3—C2—C1172.77 (16)C8—C9—C10—O5179.66 (15)
O1—N3—C2—C18.3 (2)C8—C9—C10—C110.9 (2)
C1—C2—C3—C40.6 (2)O5—C10—C11—O60.2 (2)
N3—C2—C3—C4177.29 (15)C9—C10—C11—O6179.65 (15)
C2—C3—C4—C50.0 (2)O5—C10—C11—C12179.98 (15)
C2—C3—C4—N4179.57 (15)C9—C10—C11—C120.5 (3)
O3—N4—C4—C37.0 (2)O6—C11—C12—C13179.69 (16)
O4—N4—C4—C3173.20 (15)C10—C11—C12—C130.1 (3)
O3—N4—C4—C5172.60 (17)C11—C12—C13—C80.4 (3)
O4—N4—C4—C57.2 (2)C9—C8—C13—C120.1 (2)
C3—C4—C5—C61.0 (3)C7—C8—C13—C12178.60 (16)
N4—C4—C5—C6179.47 (16)C10—O5—C14—C15178.05 (14)
C4—C5—C6—C11.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1O6···O2i0.84 (3)2.21 (3)2.986 (2)155 (3)
O6—H1O6···O50.84 (3)2.19 (3)2.663 (3)116 (2)
N1—H1N1···O10.86 (2)2.007 (18)2.641 (2)130.0 (18)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1O6···O2i0.84 (3)2.21 (3)2.986 (2)155 (3)
O6—H1O6···O50.84 (3)2.19 (3)2.663 (3)116 (2)
N1—H1N1···O10.86 (2)2.007 (18)2.641 (2)130.0 (18)
Symmetry code: (i) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Prince of Songkla University for generous support. CSCK thanks the Universiti Sains Malaysia for a postdoctoral research fellowship. The authors extend their appreciation to the Malaysian Government and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B. & Kobkeatthawin, T. (2012). Acta Cryst. E68, o2144–o2145.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202–o3203.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMolyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211–219.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds