organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′′-Benzyl­­idene-5-chloro-1′,1′′-di­methyl-4′-phenyl­di­spiro­[indoline-3,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione

aSolid State Department, Physics Division, National Research Centre, Dokki, Giza, Egypt, bPesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, cPhysics Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 2 December 2013; accepted 2 December 2013; online 7 December 2013)

The title compound, C30H28ClN3O2, features two spiro links, one connecting the piperidine and pyrrolidine rings, and the other connecting the pyrrolidine ring and indole residue. The configuration about the ethene bond is E. The piperidine ring adopts a half-chair conformation where the C atom connected to the spiro-C atom lies 0.713 (3) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.086 Å). The pyrrolidine ring has an envelope conformation with the flap atom being the methyl­ene C atom. Centrosymmetric eight-membered {⋯HNCO}2 amide synthons feature in the crystal packing. These are consolidated into a three-dimensional architecture by phen­yl–pyrrolidine C—H⋯N and chloro­benzene–pyrrolidine-bound phenyl C—H⋯π inter­actions.

Related literature

For the biological activity of related spiro­pyrrolidine analogues, see: Girgis et al. (2012[Girgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50 1-8.]); Kumar et al. (2008[Kumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731-5735.]). For related structural studies, see: Moustafa et al. (2012[Moustafa, A. M., Girgis, A. S., Shalaby, S. M. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2197-o2198.]). For the synthesis of the precursor mol­ecule, see: Al-Omary et al. (2012[Al-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65-72.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28ClN3O2

  • Mr = 498.00

  • Monoclinic, P 21 /n

  • a = 10.5028 (3) Å

  • b = 20.4117 (6) Å

  • c = 11.9951 (4) Å

  • β = 94.877 (1)°

  • V = 2562.20 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.52 × 0.22 × 0.15 mm

Data collection
  • Nonius 590 KappaCCD diffractometer

  • 10395 measured reflections

  • 5842 independent reflections

  • 2547 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 0.94

  • 5842 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C25–C30 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯O2i 0.86 2.01 2.854 (3) 165
C14—H14⋯N2ii 0.93 2.58 3.480 (4) 163
C20—H20⋯Cg1iii 0.93 2.70 3.268 (3) 121
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

A mixture of equimolar amounts of 3E,5E-1-methyl-3,5-bis­(phenyl­methyl­idene)-4-piperidone (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I). Reaction time 9 h. Colourless crystals. M.pt: 512–514 K. Yield 88%. Anal. Calcd. for C30H28ClN3O2 (498.03): C, 72.35; H, 5.67; N, 8.44. Found: C, 72.56; H, 5.81; N, 8.67. IR: νmax/cm-1: 3168 (N—H); 1688 (CO); 1597, 1457 (CC).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atoms were treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Results and discussion top

In connection with on-going studies of spiro­pyrrolidine derivatives (Girgis et al. 2012; Moustafa et al. 2012), the title compound, (I), was synthesised and characterised crystallographically. These compounds have biological activity and the structure of the skeltal structure is well established (Kumar et al. 2008).

There are two spiro links in the molecule, Fig. 1, i) where the piperidine and pyrrolidine rings are connected at C1, and ii) where the pyrrolidine ring and indole residue are connected at C6. The phenyl­methyl­idene functional group is connected to the piperidine ring at position C4 while the pyrrolidine-bound aryl ring is attached at C8. The conformation about the C4C11 double bond is E. The sum of the angles around the piperidine-N1 atom is approximately 333° confirming its sp3 character. The piperidine ring adopts a half-chair conformation where the C2 atom lies 0.713 (3) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.086 Å). The C6 and C8 atoms occupy axial and equatorial positions with respect to the piperidine ring, the phenyl­methyl­idene residue occupies an equatorial position, and the N-bound methyl substituent is equatorial. The pyrrolidine ring has an envelope conformation with the flap atom being the C7 atom which lies 0.648 (3) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.026 Å). Finally, the indole fused ring system is planar with a r.m.s. deviation = 0.051 Å.

The most prominent feature of the crystal packing of is the formation of centrosymmetric eight-membered {···HNCO}2 synthons owing to the self-association of molecules via hydrogen bonding between amide groups, Table 1. The dimers are connected into a supra­molecular chain parallel to the b axis by phenyl-C–H···N (pyrrolidine) inter­actions and these are consolidated into a three-dimensional architecture by (chloro­benzene)C—H···π (pyrrolidine-bound phenyl), edge-to-face, inter­actions; a view of the unit cell contents is shown in Fig. 2.

Related literature top

For the biological activity of related spiropyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Moustafa et al. (2012). For the synthesis of the precursor molecule, see: Al-Omary et al. (2012).

Structure description top

In connection with on-going studies of spiro­pyrrolidine derivatives (Girgis et al. 2012; Moustafa et al. 2012), the title compound, (I), was synthesised and characterised crystallographically. These compounds have biological activity and the structure of the skeltal structure is well established (Kumar et al. 2008).

There are two spiro links in the molecule, Fig. 1, i) where the piperidine and pyrrolidine rings are connected at C1, and ii) where the pyrrolidine ring and indole residue are connected at C6. The phenyl­methyl­idene functional group is connected to the piperidine ring at position C4 while the pyrrolidine-bound aryl ring is attached at C8. The conformation about the C4C11 double bond is E. The sum of the angles around the piperidine-N1 atom is approximately 333° confirming its sp3 character. The piperidine ring adopts a half-chair conformation where the C2 atom lies 0.713 (3) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.086 Å). The C6 and C8 atoms occupy axial and equatorial positions with respect to the piperidine ring, the phenyl­methyl­idene residue occupies an equatorial position, and the N-bound methyl substituent is equatorial. The pyrrolidine ring has an envelope conformation with the flap atom being the C7 atom which lies 0.648 (3) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.026 Å). Finally, the indole fused ring system is planar with a r.m.s. deviation = 0.051 Å.

The most prominent feature of the crystal packing of is the formation of centrosymmetric eight-membered {···HNCO}2 synthons owing to the self-association of molecules via hydrogen bonding between amide groups, Table 1. The dimers are connected into a supra­molecular chain parallel to the b axis by phenyl-C–H···N (pyrrolidine) inter­actions and these are consolidated into a three-dimensional architecture by (chloro­benzene)C—H···π (pyrrolidine-bound phenyl), edge-to-face, inter­actions; a view of the unit cell contents is shown in Fig. 2.

For the biological activity of related spiropyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Moustafa et al. (2012). For the synthesis of the precursor molecule, see: Al-Omary et al. (2012).

Synthesis and crystallization top

A mixture of equimolar amounts of 3E,5E-1-methyl-3,5-bis­(phenyl­methyl­idene)-4-piperidone (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I). Reaction time 9 h. Colourless crystals. M.pt: 512–514 K. Yield 88%. Anal. Calcd. for C30H28ClN3O2 (498.03): C, 72.35; H, 5.67; N, 8.44. Found: C, 72.56; H, 5.81; N, 8.67. IR: νmax/cm-1: 3168 (N—H); 1688 (CO); 1597, 1457 (CC).

Refinement details top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atoms were treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents for (I). The N—H···O, C—H···N and C—H···π interactions are shown as orange, blue and purple dashed lines, respectively.
5''-Benzylidene-5-chloro-1',1''-dimethyl-4'-phenyldispiro[indoline-3,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione top
Crystal data top
C30H28ClN3O2F(000) = 1048
Mr = 498.00Dx = 1.291 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5029 reflections
a = 10.5028 (3) Åθ = 2.9–27.5°
b = 20.4117 (6) ŵ = 0.18 mm1
c = 11.9951 (4) ÅT = 293 K
β = 94.877 (1)°Block, colourless
V = 2562.20 (14) Å30.52 × 0.22 × 0.15 mm
Z = 4
Data collection top
Nonius 590 KappaCCD
diffractometer
2547 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
φ and ω scansh = 1313
10395 measured reflectionsk = 2426
5842 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0569P)2]
where P = (Fo2 + 2Fc2)/3
5842 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C30H28ClN3O2V = 2562.20 (14) Å3
Mr = 498.00Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5028 (3) ŵ = 0.18 mm1
b = 20.4117 (6) ÅT = 293 K
c = 11.9951 (4) Å0.52 × 0.22 × 0.15 mm
β = 94.877 (1)°
Data collection top
Nonius 590 KappaCCD
diffractometer
2547 reflections with I > 2σ(I)
10395 measured reflectionsRint = 0.066
5842 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.94Δρmax = 0.18 e Å3
5842 reflectionsΔρmin = 0.35 e Å3
327 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.05716 (7)0.16826 (4)0.06845 (7)0.0777 (3)
O10.70008 (15)0.22207 (8)0.17686 (15)0.0518 (5)
O20.83631 (15)0.01572 (8)0.45243 (14)0.0501 (5)
N10.87248 (16)0.16478 (9)0.47693 (16)0.0395 (5)
N20.73065 (16)0.03868 (9)0.21124 (16)0.0425 (5)
N31.01454 (17)0.04625 (9)0.36752 (17)0.0441 (5)
H3n1.07110.02860.41420.053*
C10.72419 (19)0.13839 (11)0.31799 (19)0.0354 (6)
C20.7398 (2)0.14837 (11)0.44474 (19)0.0389 (6)
H2A0.68450.18350.46590.047*
H2B0.71650.10860.48250.047*
C30.8953 (2)0.23259 (11)0.4469 (2)0.0425 (6)
H3A0.98550.24230.46180.051*
H3B0.84850.26120.49350.051*
C40.8552 (2)0.24660 (11)0.32605 (19)0.0370 (6)
C50.7557 (2)0.20414 (11)0.2654 (2)0.0377 (6)
C60.81725 (19)0.08258 (11)0.27869 (19)0.0364 (6)
C70.6081 (2)0.04033 (11)0.2593 (2)0.0463 (7)
H7A0.61210.01770.33070.056*
H7B0.54090.02120.20910.056*
C80.58871 (19)0.11328 (11)0.2732 (2)0.0391 (6)
H80.57100.13150.19790.047*
C90.9106 (2)0.15392 (13)0.5956 (2)0.0562 (7)
H9A0.85540.17840.64010.084*
H9B0.99720.16810.61240.084*
H9C0.90410.10810.61240.084*
C100.7805 (2)0.02622 (13)0.1881 (2)0.0615 (8)
H10A0.86150.02190.15730.092*
H10B0.72160.04850.13540.092*
H10C0.79110.05100.25620.092*
C110.9050 (2)0.29475 (11)0.2683 (2)0.0423 (6)
H110.87400.29750.19350.051*
C121.0017 (2)0.34419 (11)0.3053 (2)0.0408 (6)
C131.0215 (2)0.36746 (13)0.4136 (2)0.0546 (7)
H130.97090.35190.46780.066*
C141.1149 (3)0.41337 (14)0.4432 (3)0.0657 (8)
H141.12730.42790.51680.079*
C151.1892 (3)0.43743 (14)0.3646 (3)0.0658 (8)
H151.25370.46740.38490.079*
C161.1685 (3)0.41725 (14)0.2555 (3)0.0667 (9)
H161.21690.43470.20120.080*
C171.0760 (2)0.37125 (12)0.2266 (2)0.0540 (7)
H171.06270.35790.15240.065*
C180.8882 (2)0.04577 (11)0.3795 (2)0.0407 (6)
C191.0428 (2)0.07885 (11)0.2700 (2)0.0385 (6)
C201.1587 (2)0.08588 (12)0.2266 (2)0.0485 (7)
H201.23360.07170.26620.058*
C211.1613 (2)0.11466 (12)0.1225 (2)0.0524 (7)
H211.23880.12010.09150.063*
C221.0499 (2)0.13532 (12)0.0645 (2)0.0478 (7)
C230.9324 (2)0.12955 (11)0.1090 (2)0.0435 (6)
H230.85770.14400.06930.052*
C240.9298 (2)0.10180 (11)0.2136 (2)0.0368 (6)
C250.4792 (2)0.13400 (12)0.3399 (2)0.0394 (6)
C260.4383 (2)0.09737 (14)0.4274 (2)0.0544 (7)
H260.47930.05820.44770.065*
C270.3363 (2)0.11858 (17)0.4853 (2)0.0652 (8)
H270.30940.09350.54360.078*
C280.2756 (3)0.17634 (18)0.4566 (3)0.0722 (9)
H280.20830.19070.49590.087*
C290.3145 (3)0.21279 (15)0.3698 (3)0.0701 (9)
H290.27310.25180.34970.084*
C300.4153 (2)0.19161 (13)0.3119 (2)0.0553 (7)
H300.44060.21670.25290.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0823 (5)0.0892 (6)0.0655 (6)0.0142 (4)0.0285 (4)0.0289 (4)
O10.0515 (10)0.0547 (11)0.0467 (12)0.0077 (8)0.0102 (9)0.0147 (9)
O20.0486 (10)0.0543 (11)0.0466 (12)0.0018 (9)0.0003 (9)0.0159 (9)
N10.0364 (11)0.0465 (13)0.0341 (13)0.0047 (9)0.0047 (9)0.0055 (10)
N20.0362 (11)0.0430 (13)0.0475 (14)0.0005 (10)0.0004 (10)0.0057 (10)
N30.0350 (11)0.0538 (14)0.0420 (14)0.0067 (10)0.0051 (10)0.0087 (10)
C10.0314 (12)0.0416 (15)0.0326 (15)0.0011 (11)0.0019 (10)0.0045 (12)
C20.0385 (13)0.0408 (15)0.0369 (16)0.0052 (11)0.0010 (11)0.0029 (12)
C30.0380 (13)0.0440 (16)0.0445 (17)0.0070 (11)0.0019 (11)0.0012 (13)
C40.0345 (13)0.0433 (15)0.0328 (15)0.0015 (11)0.0004 (11)0.0029 (12)
C50.0338 (13)0.0426 (15)0.0365 (17)0.0044 (11)0.0027 (12)0.0039 (13)
C60.0344 (12)0.0389 (14)0.0349 (15)0.0007 (11)0.0032 (11)0.0030 (11)
C70.0381 (14)0.0516 (17)0.0479 (17)0.0072 (12)0.0034 (12)0.0004 (13)
C80.0333 (12)0.0450 (16)0.0378 (15)0.0002 (11)0.0033 (11)0.0037 (12)
C90.0597 (16)0.0632 (19)0.0434 (19)0.0088 (14)0.0096 (13)0.0069 (14)
C100.0593 (17)0.0547 (19)0.070 (2)0.0006 (14)0.0051 (15)0.0124 (15)
C110.0415 (14)0.0472 (16)0.0379 (16)0.0002 (13)0.0014 (12)0.0011 (13)
C120.0403 (13)0.0411 (15)0.0405 (17)0.0034 (12)0.0010 (12)0.0031 (13)
C130.0698 (18)0.0511 (17)0.0429 (19)0.0159 (15)0.0052 (14)0.0042 (14)
C140.085 (2)0.060 (2)0.049 (2)0.0203 (17)0.0112 (16)0.0024 (16)
C150.0552 (18)0.060 (2)0.080 (3)0.0204 (14)0.0069 (17)0.0028 (18)
C160.0612 (18)0.066 (2)0.076 (3)0.0189 (16)0.0223 (17)0.0040 (18)
C170.0590 (16)0.0555 (17)0.0490 (19)0.0108 (15)0.0136 (14)0.0047 (15)
C180.0404 (15)0.0385 (15)0.0424 (17)0.0005 (12)0.0014 (12)0.0041 (13)
C190.0393 (14)0.0391 (15)0.0363 (16)0.0001 (11)0.0004 (12)0.0020 (12)
C200.0363 (14)0.0548 (17)0.0537 (19)0.0049 (12)0.0003 (13)0.0009 (14)
C210.0422 (15)0.0568 (18)0.060 (2)0.0043 (13)0.0140 (14)0.0018 (15)
C220.0522 (16)0.0494 (17)0.0430 (18)0.0022 (13)0.0120 (14)0.0046 (13)
C230.0407 (14)0.0439 (16)0.0450 (17)0.0038 (12)0.0009 (12)0.0048 (13)
C240.0375 (13)0.0371 (14)0.0354 (16)0.0005 (11)0.0001 (11)0.0005 (12)
C250.0291 (12)0.0450 (16)0.0430 (17)0.0059 (12)0.0040 (11)0.0003 (13)
C260.0436 (15)0.0665 (19)0.0527 (19)0.0041 (14)0.0013 (14)0.0088 (15)
C270.0514 (17)0.095 (3)0.050 (2)0.0111 (17)0.0109 (15)0.0051 (17)
C280.0448 (17)0.096 (3)0.077 (3)0.0018 (18)0.0135 (16)0.030 (2)
C290.0516 (18)0.063 (2)0.097 (3)0.0026 (15)0.0102 (18)0.0110 (19)
C300.0409 (15)0.0537 (18)0.071 (2)0.0044 (14)0.0042 (14)0.0004 (15)
Geometric parameters (Å, º) top
Cl1—C221.738 (3)C10—H10C0.9600
O1—C51.224 (3)C11—C121.473 (3)
O2—C181.232 (3)C11—H110.9300
N1—C21.453 (3)C12—C131.382 (3)
N1—C31.455 (3)C12—C171.390 (3)
N1—C91.463 (3)C13—C141.381 (4)
N2—C71.454 (3)C13—H130.9300
N2—C101.460 (3)C14—C151.366 (4)
N2—C61.470 (3)C14—H140.9300
N3—C181.347 (3)C15—C161.371 (4)
N3—C191.400 (3)C15—H150.9300
N3—H3n0.8600C16—C171.374 (3)
C1—C51.531 (3)C16—H160.9300
C1—C21.529 (3)C17—H170.9300
C1—C81.564 (3)C19—C201.371 (3)
C1—C61.598 (3)C19—C241.396 (3)
C2—H2A0.9700C20—C211.382 (3)
C2—H2B0.9700C20—H200.9300
C3—C41.502 (3)C21—C221.375 (3)
C3—H3A0.9700C21—H210.9300
C3—H3B0.9700C22—C231.391 (3)
C4—C111.334 (3)C23—C241.380 (3)
C4—C51.498 (3)C23—H230.9300
C6—C241.522 (3)C25—C301.381 (3)
C6—C181.559 (3)C25—C261.386 (3)
C7—C81.514 (3)C26—C271.394 (3)
C7—H7A0.9700C26—H260.9300
C7—H7B0.9700C27—C281.370 (4)
C8—C251.516 (3)C27—H270.9300
C8—H80.9800C28—C291.370 (4)
C9—H9A0.9600C28—H280.9300
C9—H9B0.9600C29—C301.384 (4)
C9—H9C0.9600C29—H290.9300
C10—H10A0.9600C30—H300.9300
C10—H10B0.9600
C2—N1—C3109.14 (18)H10B—C10—H10C109.5
C2—N1—C9113.61 (17)C4—C11—C12129.7 (2)
C3—N1—C9110.35 (18)C4—C11—H11115.2
C7—N2—C10116.12 (18)C12—C11—H11115.2
C7—N2—C6107.14 (17)C13—C12—C17117.0 (2)
C10—N2—C6116.30 (18)C13—C12—C11124.3 (2)
C18—N3—C19111.96 (19)C17—C12—C11118.7 (2)
C18—N3—H3n124.0C14—C13—C12121.5 (2)
C19—N3—H3n124.0C14—C13—H13119.3
C5—C1—C2106.50 (19)C12—C13—H13119.3
C5—C1—C8111.60 (18)C15—C14—C13120.1 (3)
C2—C1—C8113.73 (17)C15—C14—H14120.0
C5—C1—C6110.15 (16)C13—C14—H14120.0
C2—C1—C6111.83 (18)C14—C15—C16119.8 (3)
C8—C1—C6103.10 (17)C14—C15—H15120.1
N1—C2—C1108.31 (17)C16—C15—H15120.1
N1—C2—H2A110.0C15—C16—C17119.9 (3)
C1—C2—H2A110.0C15—C16—H16120.1
N1—C2—H2B110.0C17—C16—H16120.1
C1—C2—H2B110.0C16—C17—C12121.7 (3)
H2A—C2—H2B108.4C16—C17—H17119.2
N1—C3—C4112.41 (19)C12—C17—H17119.2
N1—C3—H3A109.1O2—C18—N3125.4 (2)
C4—C3—H3A109.1O2—C18—C6125.4 (2)
N1—C3—H3B109.1N3—C18—C6108.9 (2)
C4—C3—H3B109.1C20—C19—C24121.8 (2)
H3A—C3—H3B107.9C20—C19—N3128.7 (2)
C11—C4—C5117.5 (2)C24—C19—N3109.40 (19)
C11—C4—C3123.4 (2)C19—C20—C21118.2 (2)
C5—C4—C3119.0 (2)C19—C20—H20120.9
O1—C5—C4120.7 (2)C21—C20—H20120.9
O1—C5—C1121.0 (2)C22—C21—C20120.4 (2)
C4—C5—C1118.3 (2)C22—C21—H21119.8
N2—C6—C24110.25 (18)C20—C21—H21119.8
N2—C6—C18111.47 (18)C21—C22—C23121.6 (2)
C24—C6—C18100.44 (17)C21—C22—Cl1118.77 (19)
N2—C6—C1103.40 (16)C23—C22—Cl1119.6 (2)
C24—C6—C1119.26 (18)C24—C23—C22118.1 (2)
C18—C6—C1112.25 (18)C24—C23—H23121.0
N2—C7—C8101.46 (17)C22—C23—H23121.0
N2—C7—H7A111.5C23—C24—C19119.8 (2)
C8—C7—H7A111.5C23—C24—C6130.4 (2)
N2—C7—H7B111.5C19—C24—C6109.3 (2)
C8—C7—H7B111.5C30—C25—C26117.9 (2)
H7A—C7—H7B109.3C30—C25—C8118.9 (2)
C7—C8—C25116.62 (19)C26—C25—C8123.2 (2)
C7—C8—C1103.47 (17)C25—C26—C27120.7 (3)
C25—C8—C1115.89 (19)C25—C26—H26119.7
C7—C8—H8106.7C27—C26—H26119.7
C25—C8—H8106.7C28—C27—C26120.2 (3)
C1—C8—H8106.7C28—C27—H27119.9
N1—C9—H9A109.5C26—C27—H27119.9
N1—C9—H9B109.5C29—C28—C27119.7 (3)
H9A—C9—H9B109.5C29—C28—H28120.1
N1—C9—H9C109.5C27—C28—H28120.1
H9A—C9—H9C109.5C28—C29—C30120.1 (3)
H9B—C9—H9C109.5C28—C29—H29119.9
N2—C10—H10A109.5C30—C29—H29119.9
N2—C10—H10B109.5C25—C30—C29121.4 (3)
H10A—C10—H10B109.5C25—C30—H30119.3
N2—C10—H10C109.5C29—C30—H30119.3
H10A—C10—H10C109.5
C3—N1—C2—C176.1 (2)C11—C12—C13—C14179.2 (2)
C9—N1—C2—C1160.35 (19)C12—C13—C14—C150.8 (4)
C5—C1—C2—N162.7 (2)C13—C14—C15—C161.8 (4)
C8—C1—C2—N1173.98 (18)C14—C15—C16—C172.2 (4)
C6—C1—C2—N157.7 (2)C15—C16—C17—C120.0 (4)
C2—N1—C3—C453.4 (2)C13—C12—C17—C162.4 (4)
C9—N1—C3—C4178.89 (18)C11—C12—C17—C16179.5 (2)
N1—C3—C4—C11155.0 (2)C19—N3—C18—O2173.4 (2)
N1—C3—C4—C524.1 (3)C19—N3—C18—C60.1 (3)
C11—C4—C5—O117.4 (3)N2—C6—C18—O256.8 (3)
C3—C4—C5—O1163.4 (2)C24—C6—C18—O2173.6 (2)
C11—C4—C5—C1163.4 (2)C1—C6—C18—O258.7 (3)
C3—C4—C5—C115.7 (3)N2—C6—C18—N3116.7 (2)
C2—C1—C5—O1145.8 (2)C24—C6—C18—N30.0 (2)
C8—C1—C5—O121.2 (3)C1—C6—C18—N3127.80 (19)
C6—C1—C5—O192.7 (2)C18—N3—C19—C20175.8 (2)
C2—C1—C5—C433.3 (2)C18—N3—C19—C240.3 (3)
C8—C1—C5—C4157.97 (19)C24—C19—C20—C212.2 (4)
C6—C1—C5—C488.1 (2)N3—C19—C20—C21173.5 (2)
C7—N2—C6—C24160.87 (19)C19—C20—C21—C220.2 (4)
C10—N2—C6—C2467.3 (3)C20—C21—C22—C231.6 (4)
C7—N2—C6—C1888.5 (2)C20—C21—C22—Cl1177.5 (2)
C10—N2—C6—C1843.3 (3)C21—C22—C23—C240.5 (4)
C7—N2—C6—C132.3 (2)Cl1—C22—C23—C24178.52 (19)
C10—N2—C6—C1164.09 (19)C22—C23—C24—C191.8 (3)
C5—C1—C6—N2114.14 (19)C22—C23—C24—C6173.0 (2)
C2—C1—C6—N2127.64 (18)C20—C19—C24—C233.2 (3)
C8—C1—C6—N25.1 (2)N3—C19—C24—C23173.2 (2)
C5—C1—C6—C248.6 (3)C20—C19—C24—C6176.1 (2)
C2—C1—C6—C24109.6 (2)N3—C19—C24—C60.3 (3)
C8—C1—C6—C24127.8 (2)N2—C6—C24—C2354.4 (3)
C5—C1—C6—C18125.6 (2)C18—C6—C24—C23172.1 (2)
C2—C1—C6—C187.4 (2)C1—C6—C24—C2364.9 (3)
C8—C1—C6—C18115.19 (19)N2—C6—C24—C19117.5 (2)
C10—N2—C7—C8179.1 (2)C18—C6—C24—C190.2 (2)
C6—N2—C7—C847.2 (2)C1—C6—C24—C19123.2 (2)
N2—C7—C8—C25170.10 (19)C7—C8—C25—C30147.6 (2)
N2—C7—C8—C141.6 (2)C1—C8—C25—C3090.2 (3)
C5—C1—C8—C7140.24 (19)C7—C8—C25—C2631.5 (3)
C2—C1—C8—C799.2 (2)C1—C8—C25—C2690.7 (3)
C6—C1—C8—C722.0 (2)C30—C25—C26—C270.4 (4)
C5—C1—C8—C2590.8 (2)C8—C25—C26—C27179.5 (2)
C2—C1—C8—C2529.7 (3)C25—C26—C27—C280.4 (4)
C6—C1—C8—C25150.97 (19)C26—C27—C28—C290.8 (4)
C5—C4—C11—C12179.0 (2)C27—C28—C29—C300.5 (4)
C3—C4—C11—C121.9 (4)C26—C25—C30—C290.7 (4)
C4—C11—C12—C1328.2 (4)C8—C25—C30—C29179.9 (2)
C4—C11—C12—C17153.9 (2)C28—C29—C30—C250.3 (4)
C17—C12—C13—C142.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C25–C30 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3n···O2i0.862.012.854 (3)165
C14—H14···N2ii0.932.583.480 (4)163
C20—H20···Cg1iii0.932.703.268 (3)121
Symmetry codes: (i) x+2, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C25–C30 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3n···O2i0.862.012.854 (3)165
C14—H14···N2ii0.932.583.480 (4)163
C20—H20···Cg1iii0.932.703.268 (3)121
Symmetry codes: (i) x+2, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: ibfarag2002@yahoo.com.

Acknowledgements

This study was supported financially by the Science and Technology Development Fund (STDF), Egypt (grant No. 1133).

References

First citationAl-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65–72.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGirgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50 1–8.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731–5735.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoustafa, A. M., Girgis, A. S., Shalaby, S. M. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2197–o2198.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds