organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-5′′-[4-(di­methyl­amino)­benzyl­­idene]-4′-[4-(di­methyl­amino)­phen­yl]-1′,1′′-di­methyl­di­spiro­[indoline-3,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione

aSolid State Department, Physics Division, National Research Centre, Dokki, Giza, Egypt, bPesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, cPhysics Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 December 2013; accepted 13 December 2013; online 18 December 2013)

The title compound, C34H38ClN5O2, has spiro links connecting the pyrrolidine ring and indole residue, as well as the piperidine and pyrrolidine rings. A half-chair conformation is found for the piperidine ring with the C atom connected to the spiro-C atom lying 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). The methyl­ene C atom is the flap in the envelope conformation for the pyrrolidine ring. In the crystal, supra­molecular chains are sustained by alternating eight-membered {⋯HNCO}2 and 14-membered {⋯HC5O}2 synthons. Chains are connected into a three-dimensional network by (pyrrolidine-bound phenyl-meth­yl)C—H⋯π(pyrrolidine-bound phen­yl) edge-to-face inter­actions.

Related literature

For the biological activity of related spiro pyrrolidine analogues, see: Girgis et al. (2012[Girgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50, 1-8.]); Kumar et al. (2008[Kumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731-5735.]). For related structural studies, see: Ahmed Farag et al. (2013a[Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014a). Acta Cryst. E70, o22-o23.],b[Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014b). Acta Cryst. E70, o43-o44.]). For the synthesis of the precursor mol­ecule, see: Al-Omary et al. (2012[Al-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65-72.]).

[Scheme 1]

Experimental

Crystal data
  • C34H38ClN5O2

  • Mr = 584.14

  • Triclinic, [P \overline 1]

  • a = 11.5458 (5) Å

  • b = 12.2357 (5) Å

  • c = 12.5267 (7) Å

  • α = 64.341 (2)°

  • β = 84.286 (2)°

  • γ = 83.467 (2)°

  • V = 1582.29 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.31 × 0.18 × 0.13 mm

Data collection
  • Enraf–Nonius 590 KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 0.927

  • 13814 measured reflections

  • 7127 independent reflections

  • 2244 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.165

  • S = 0.91

  • 7127 reflections

  • 385 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C27–C32 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4n⋯O2i 0.86 2.00 2.853 (4) 169
C28—H28⋯O1ii 0.93 2.47 3.337 (4) 156
C33—H33c⋯Cg1iii 0.96 2.88 3.807 (5) 163
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

A mixture of equimolar amounts of 3E,5E-1-methyl-3,5-bis­(4-di­methyl­amino­phenyl­methyl­idene)-4-piperidones (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I). Reaction time 20 h. Yellow crystals. M.pt: 525–527 K. Yield 68%. Anal. Calcd. for C34H38ClN5O2 (584.17): C, 69.91; H, 6.56; N, 11.99. Found: C, 70.02; H, 6.68; N, 11.93. IR: νmax/cm-1: 3168 (N—H); 1692 (CO); 1613, 1566 (CC).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Results and discussion top

In continuation of our biological and crystallographic studies of spiro­pyrrolidine derivatives derivatives (Girgis et al. 2012; Ahmed Farag et al. 2013a), which are known to to have biological activity (Kumar et al. 2008), the title compound, (I), was synthesised and characterised crystallographically.

The molecular structure of (I) is shown in Fig. 1 which shows two spiro links, i.e. at atom C1, linking the piperidine and pyrrolidine rings, and at atom C6 where the pyrrolidine ring and indole residue are connected. The piperidine ring carries phenyl­methyl­idene and pyrrolidine-bound aryl residues at positions C4 and C8, respectively. An E conformation is found the C4C11 double bond. The piperidine-N1 atom has sp3 character as seen by the sum of the angles at this atom of 337 °. A half-chair conformation is found for the piperidine ring in which the C2 atom lies 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). With respect to the piperidine ring, both the N-bound methyl and phenyl­methyl­idene substituents occupy equatorial positions . An envelope conformation is found for the pyrrolidine ring with the C7 being the flap atom lying 0.547 (5) Å out of the plane of the remaining four atoms which have a r.m.s. deviation of 0.0906 Å. The similarity of the molecular structures of (I) and recently described derivatives (Ahmed Farag et al. 2013a,b), at least in terms of the cores of these, is emphasised in the overlay diagram, Fig. 2.

The crystal structure of (I) features centrosymmetric eight-membered {···HNCO}2 synthons, Table 1. These are linked into supra­molecular chains aligned in the (1 1 2) plane by 14-membered {···HC5O}2 synthons, Table 1. Chains are connected into the three-dimensional architecture by (pyrrolidine-bound phenyl-methyl)C–H···π(pyrrolidine-bound phenyl), edge-to-face, inter­actions, Fig. 3 and Table 1.

Related literature top

For the biological activity of related spiro pyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Ahmed Farag et al. (2013a); Ahmed Farag et al. (2013b). For the synthesis of the precursor molecule, see Al-Omary et al. (2012).

Structure description top

In continuation of our biological and crystallographic studies of spiro­pyrrolidine derivatives derivatives (Girgis et al. 2012; Ahmed Farag et al. 2013a), which are known to to have biological activity (Kumar et al. 2008), the title compound, (I), was synthesised and characterised crystallographically.

The molecular structure of (I) is shown in Fig. 1 which shows two spiro links, i.e. at atom C1, linking the piperidine and pyrrolidine rings, and at atom C6 where the pyrrolidine ring and indole residue are connected. The piperidine ring carries phenyl­methyl­idene and pyrrolidine-bound aryl residues at positions C4 and C8, respectively. An E conformation is found the C4C11 double bond. The piperidine-N1 atom has sp3 character as seen by the sum of the angles at this atom of 337 °. A half-chair conformation is found for the piperidine ring in which the C2 atom lies 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). With respect to the piperidine ring, both the N-bound methyl and phenyl­methyl­idene substituents occupy equatorial positions . An envelope conformation is found for the pyrrolidine ring with the C7 being the flap atom lying 0.547 (5) Å out of the plane of the remaining four atoms which have a r.m.s. deviation of 0.0906 Å. The similarity of the molecular structures of (I) and recently described derivatives (Ahmed Farag et al. 2013a,b), at least in terms of the cores of these, is emphasised in the overlay diagram, Fig. 2.

The crystal structure of (I) features centrosymmetric eight-membered {···HNCO}2 synthons, Table 1. These are linked into supra­molecular chains aligned in the (1 1 2) plane by 14-membered {···HC5O}2 synthons, Table 1. Chains are connected into the three-dimensional architecture by (pyrrolidine-bound phenyl-methyl)C–H···π(pyrrolidine-bound phenyl), edge-to-face, inter­actions, Fig. 3 and Table 1.

For the biological activity of related spiro pyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Ahmed Farag et al. (2013a); Ahmed Farag et al. (2013b). For the synthesis of the precursor molecule, see Al-Omary et al. (2012).

Synthesis and crystallization top

A mixture of equimolar amounts of 3E,5E-1-methyl-3,5-bis­(4-di­methyl­amino­phenyl­methyl­idene)-4-piperidones (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I). Reaction time 20 h. Yellow crystals. M.pt: 525–527 K. Yield 68%. Anal. Calcd. for C34H38ClN5O2 (584.17): C, 69.91; H, 6.56; N, 11.99. Found: C, 70.02; H, 6.68; N, 11.93. IR: νmax/cm-1: 3168 (N—H); 1692 (CO); 1613, 1566 (CC).

Refinement details top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the three recently determined compounds, drawn so that the central pyrrolidine rings are overlapped. Red image (Ahmed Farag et al., 2013a), green image (Ahmed Farag et al., 2013b) and blue image (present study).
[Figure 3] Fig. 3. A view of the unit-cell contents in projection down the a axis in (I). The N—H···O and ππ interactions are shown as orange and purple dashed lines, respectively.
5-Chloro-5''-[4-(dimethylamino)benzylidene]-4'-[4-(dimethylamino)phenyl]-1',1''-dimethyldispiro[indoline-3,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione top
Crystal data top
C34H38ClN5O2Z = 2
Mr = 584.14F(000) = 620
Triclinic, P1Dx = 1.226 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.5458 (5) ÅCell parameters from 5831 reflections
b = 12.2357 (5) Åθ = 2.9–27.5°
c = 12.5267 (7) ŵ = 0.16 mm1
α = 64.341 (2)°T = 293 K
β = 84.286 (2)°Block, orange
γ = 83.467 (2)°0.31 × 0.18 × 0.13 mm
V = 1582.29 (13) Å3
Data collection top
Enraf–Nonius 590 KappaCCD
diffractometer
7127 independent reflections
Radiation source: fine-focus sealed tube2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
φ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.782, Tmax = 0.927k = 1515
13814 measured reflectionsl = 1610
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
7127 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C34H38ClN5O2γ = 83.467 (2)°
Mr = 584.14V = 1582.29 (13) Å3
Triclinic, P1Z = 2
a = 11.5458 (5) ÅMo Kα radiation
b = 12.2357 (5) ŵ = 0.16 mm1
c = 12.5267 (7) ÅT = 293 K
α = 64.341 (2)°0.31 × 0.18 × 0.13 mm
β = 84.286 (2)°
Data collection top
Enraf–Nonius 590 KappaCCD
diffractometer
7127 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2244 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.927Rint = 0.081
13814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 0.91Δρmax = 0.15 e Å3
7127 reflectionsΔρmin = 0.20 e Å3
385 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00842 (11)0.90513 (9)0.33316 (9)0.1119 (5)
O10.3446 (2)0.59561 (19)0.5160 (2)0.0750 (8)
O20.1064 (2)0.4073 (2)0.9448 (2)0.0704 (7)
N10.2654 (2)0.6453 (2)0.8157 (2)0.0469 (7)
N20.1139 (3)0.4251 (3)0.6910 (2)0.0662 (9)
N30.3573 (3)1.3398 (2)0.3237 (2)0.0652 (8)
N40.0072 (3)0.5930 (3)0.8421 (3)0.0668 (9)
H4n0.03480.59790.90080.080*
N50.6847 (3)0.0837 (3)1.0145 (3)0.0800 (10)
C10.2785 (3)0.5106 (3)0.7211 (3)0.0504 (9)
C20.3223 (3)0.5320 (3)0.8207 (2)0.0482 (9)
H2A0.30380.46580.89680.058*
H2B0.40630.53620.81080.058*
C30.3109 (3)0.7505 (3)0.7153 (2)0.0494 (9)
H3A0.38520.76530.73460.059*
H3B0.25750.82150.70320.059*
C40.3277 (3)0.7353 (3)0.6021 (3)0.0452 (8)
C50.3213 (3)0.6136 (3)0.6040 (3)0.0507 (9)
C60.1383 (3)0.5203 (3)0.7259 (3)0.0560 (10)
C70.1985 (3)0.3228 (3)0.7457 (3)0.0749 (12)
H7A0.20220.26690.70900.090*
H7B0.17940.27920.83000.090*
C80.3149 (3)0.3828 (3)0.7230 (3)0.0613 (10)
H80.34350.39730.64200.074*
C90.2653 (3)0.6588 (3)0.9254 (3)0.0725 (11)
H9A0.22720.59340.98840.109*
H9B0.22440.73500.91600.109*
H9C0.34430.65700.94430.109*
C100.0077 (4)0.3941 (3)0.7112 (4)0.1041 (15)
H10A0.01660.33650.68000.156*
H10B0.05790.46630.67210.156*
H10C0.02830.35900.79480.156*
C110.3454 (2)0.8291 (3)0.4941 (3)0.0490 (9)
H110.35550.80610.43180.059*
C120.3515 (3)0.9578 (3)0.4575 (3)0.0474 (9)
C130.3543 (3)1.0342 (3)0.3361 (3)0.0551 (9)
H130.35400.99970.28300.066*
C140.3575 (3)1.1582 (3)0.2919 (3)0.0561 (10)
H140.35961.20470.21020.067*
C150.3576 (3)1.2159 (3)0.3670 (3)0.0500 (9)
C160.3594 (3)1.1397 (3)0.4884 (3)0.0530 (9)
H160.36231.17370.54150.064*
C170.3571 (3)1.0161 (3)0.5311 (3)0.0543 (10)
H170.35930.96900.61250.065*
C180.3406 (3)1.3962 (3)0.4056 (3)0.0846 (13)
H18A0.26611.37860.44800.127*
H18B0.34351.48260.36210.127*
H18C0.40131.36460.46070.127*
C190.3349 (3)1.4166 (3)0.2012 (3)0.0779 (12)
H19A0.39281.39610.15090.117*
H19B0.33821.50020.18590.117*
H19C0.25881.40470.18520.117*
C200.0856 (3)0.4990 (4)0.8513 (3)0.0599 (10)
C210.0032 (3)0.6814 (3)0.7249 (3)0.0568 (10)
C220.0627 (3)0.7898 (4)0.6808 (4)0.0724 (11)
H220.10860.81630.73160.087*
C230.0601 (3)0.8595 (4)0.5598 (4)0.0775 (12)
H230.10350.93420.52830.093*
C240.0067 (4)0.8180 (3)0.4863 (3)0.0696 (11)
C250.0755 (3)0.7089 (3)0.5291 (3)0.0667 (11)
H250.12040.68210.47800.080*
C260.0748 (3)0.6413 (3)0.6511 (3)0.0545 (9)
C270.4107 (4)0.3056 (3)0.8031 (3)0.0573 (10)
C280.5228 (4)0.2936 (3)0.7547 (3)0.0693 (11)
H280.53770.33690.67350.083*
C290.6123 (4)0.2206 (3)0.8222 (4)0.0689 (11)
H290.68510.21460.78520.083*
C300.5965 (4)0.1550 (3)0.9452 (4)0.0645 (11)
C310.4844 (4)0.1671 (3)0.9943 (3)0.0681 (11)
H310.46940.12451.07560.082*
C320.3959 (3)0.2404 (3)0.9255 (3)0.0669 (11)
H320.32310.24670.96230.080*
C330.6631 (4)0.0129 (3)1.1413 (4)0.0925 (13)
H33A0.62490.06491.17570.139*
H33B0.73600.02231.17730.139*
H33C0.61420.05061.15450.139*
C340.7943 (4)0.0575 (4)0.9629 (4)0.1278 (18)
H34A0.78170.01800.91390.192*
H34B0.84440.00491.02470.192*
H34C0.83010.13180.91550.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1734 (13)0.0715 (7)0.0785 (8)0.0019 (7)0.0476 (8)0.0139 (6)
O10.128 (2)0.0533 (14)0.0436 (15)0.0158 (14)0.0206 (15)0.0242 (12)
O20.0789 (19)0.0616 (16)0.0541 (16)0.0088 (14)0.0129 (14)0.0119 (13)
N10.067 (2)0.0403 (16)0.0340 (16)0.0073 (14)0.0040 (14)0.0171 (13)
N20.084 (2)0.0508 (19)0.070 (2)0.0043 (19)0.0158 (18)0.0298 (16)
N30.098 (2)0.0430 (18)0.0476 (19)0.0053 (16)0.0090 (17)0.0116 (16)
N40.065 (2)0.065 (2)0.063 (2)0.0093 (18)0.0162 (17)0.0227 (18)
N50.086 (3)0.078 (2)0.075 (3)0.005 (2)0.002 (2)0.035 (2)
C10.070 (3)0.041 (2)0.039 (2)0.0017 (18)0.0080 (19)0.0191 (16)
C20.062 (2)0.041 (2)0.038 (2)0.0047 (17)0.0013 (17)0.0141 (16)
C30.061 (2)0.0426 (19)0.041 (2)0.0002 (17)0.0038 (17)0.0146 (16)
C40.054 (2)0.045 (2)0.039 (2)0.0054 (17)0.0056 (17)0.0213 (17)
C50.064 (2)0.046 (2)0.040 (2)0.0014 (18)0.0042 (19)0.0183 (18)
C60.071 (3)0.050 (2)0.052 (2)0.010 (2)0.000 (2)0.0258 (19)
C70.108 (3)0.054 (2)0.071 (3)0.011 (3)0.009 (2)0.032 (2)
C80.089 (3)0.051 (2)0.045 (2)0.001 (2)0.006 (2)0.0245 (18)
C90.118 (3)0.058 (2)0.042 (2)0.017 (2)0.008 (2)0.0220 (19)
C100.102 (4)0.086 (3)0.140 (4)0.029 (3)0.031 (3)0.053 (3)
C110.055 (2)0.049 (2)0.041 (2)0.0022 (18)0.0066 (17)0.0208 (17)
C120.053 (2)0.045 (2)0.041 (2)0.0061 (17)0.0014 (17)0.0155 (18)
C130.071 (3)0.054 (2)0.042 (2)0.0079 (19)0.0039 (18)0.0218 (18)
C140.068 (3)0.055 (2)0.035 (2)0.0096 (19)0.0049 (18)0.0099 (18)
C150.056 (2)0.046 (2)0.045 (2)0.0046 (18)0.0027 (18)0.0161 (19)
C160.067 (3)0.048 (2)0.042 (2)0.0052 (19)0.0084 (18)0.0173 (18)
C170.066 (3)0.049 (2)0.042 (2)0.0083 (19)0.0037 (18)0.0116 (18)
C180.123 (4)0.053 (2)0.076 (3)0.010 (2)0.002 (3)0.027 (2)
C190.100 (3)0.045 (2)0.069 (3)0.010 (2)0.015 (2)0.003 (2)
C200.063 (3)0.058 (3)0.059 (3)0.015 (2)0.006 (2)0.025 (2)
C210.052 (3)0.053 (2)0.065 (3)0.007 (2)0.002 (2)0.023 (2)
C220.060 (3)0.070 (3)0.088 (3)0.000 (2)0.000 (2)0.037 (3)
C230.070 (3)0.065 (3)0.097 (4)0.001 (2)0.024 (3)0.031 (3)
C240.087 (3)0.050 (3)0.068 (3)0.009 (2)0.022 (3)0.017 (2)
C250.085 (3)0.060 (3)0.060 (3)0.010 (2)0.015 (2)0.026 (2)
C260.063 (3)0.047 (2)0.055 (3)0.0063 (19)0.006 (2)0.021 (2)
C270.083 (3)0.041 (2)0.041 (2)0.005 (2)0.007 (2)0.0154 (18)
C280.096 (3)0.051 (2)0.052 (3)0.011 (2)0.020 (3)0.017 (2)
C290.075 (3)0.066 (3)0.064 (3)0.005 (2)0.014 (2)0.030 (2)
C300.081 (3)0.047 (2)0.066 (3)0.006 (2)0.007 (3)0.026 (2)
C310.094 (3)0.052 (2)0.048 (3)0.010 (2)0.004 (3)0.017 (2)
C320.087 (3)0.058 (2)0.047 (3)0.002 (2)0.019 (2)0.021 (2)
C330.122 (4)0.071 (3)0.085 (3)0.016 (3)0.029 (3)0.035 (3)
C340.095 (4)0.143 (5)0.135 (5)0.033 (3)0.008 (4)0.060 (4)
Geometric parameters (Å, º) top
Cl1—C241.744 (4)C11—H110.9300
O1—C51.214 (3)C12—C131.398 (4)
O2—C201.244 (4)C12—C171.397 (4)
N1—C21.444 (4)C13—C141.375 (4)
N1—C91.453 (4)C13—H130.9300
N1—C31.461 (3)C14—C151.400 (4)
N2—C71.450 (4)C14—H140.9300
N2—C101.465 (4)C15—C161.399 (4)
N2—C61.472 (4)C16—C171.371 (4)
N3—C151.370 (4)C16—H160.9300
N3—C191.442 (4)C17—H170.9300
N3—C181.452 (4)C18—H18A0.9600
N4—C201.350 (4)C18—H18B0.9600
N4—C211.398 (4)C18—H18C0.9600
N4—H4n0.8600C19—H19A0.9600
N5—C301.368 (4)C19—H19B0.9600
N5—C341.430 (5)C19—H19C0.9600
N5—C331.453 (4)C21—C221.365 (5)
C1—C21.523 (4)C21—C261.388 (4)
C1—C51.542 (4)C22—C231.379 (5)
C1—C81.563 (4)C22—H220.9300
C1—C61.606 (4)C23—C241.369 (5)
C2—H2A0.9700C23—H230.9300
C2—H2B0.9700C24—C251.387 (5)
C3—C41.499 (4)C25—C261.387 (4)
C3—H3A0.9700C25—H250.9300
C3—H3B0.9700C27—C321.392 (4)
C4—C111.358 (4)C27—C281.393 (4)
C4—C51.490 (4)C28—C291.375 (5)
C6—C261.515 (4)C28—H280.9300
C6—C201.549 (4)C29—C301.399 (5)
C7—C81.547 (4)C29—H290.9300
C7—H7A0.9700C30—C311.397 (5)
C7—H7B0.9700C31—C321.375 (4)
C8—C271.512 (4)C31—H310.9300
C8—H80.9800C32—H320.9300
C9—H9A0.9600C33—H33A0.9600
C9—H9B0.9600C33—H33B0.9600
C9—H9C0.9600C33—H33C0.9600
C10—H10A0.9600C34—H34A0.9600
C10—H10B0.9600C34—H34B0.9600
C10—H10C0.9600C34—H34C0.9600
C11—C121.446 (4)
C2—N1—C9114.3 (3)C12—C13—H13118.6
C2—N1—C3112.1 (2)C13—C14—C15121.5 (3)
C9—N1—C3110.9 (2)C13—C14—H14119.2
C7—N2—C10114.6 (3)C15—C14—H14119.2
C7—N2—C6107.0 (3)N3—C15—C16122.1 (3)
C10—N2—C6115.4 (3)N3—C15—C14121.8 (3)
C15—N3—C19120.4 (3)C16—C15—C14116.1 (3)
C15—N3—C18119.4 (3)C17—C16—C15121.7 (3)
C19—N3—C18117.1 (3)C17—C16—H16119.2
C20—N4—C21111.3 (3)C15—C16—H16119.2
C20—N4—H4n124.4C16—C17—C12122.8 (3)
C21—N4—H4n124.4C16—C17—H17118.6
C30—N5—C34121.1 (4)C12—C17—H17118.6
C30—N5—C33120.8 (4)N3—C18—H18A109.5
C34—N5—C33116.9 (4)N3—C18—H18B109.5
C2—C1—C5106.3 (2)H18A—C18—H18B109.5
C2—C1—C8115.7 (3)N3—C18—H18C109.5
C5—C1—C8111.4 (3)H18A—C18—H18C109.5
C2—C1—C6111.1 (3)H18B—C18—H18C109.5
C5—C1—C6108.0 (3)N3—C19—H19A109.5
C8—C1—C6104.1 (2)N3—C19—H19B109.5
N1—C2—C1107.8 (3)H19A—C19—H19B109.5
N1—C2—H2A110.2N3—C19—H19C109.5
C1—C2—H2A110.2H19A—C19—H19C109.5
N1—C2—H2B110.2H19B—C19—H19C109.5
C1—C2—H2B110.2O2—C20—N4125.1 (3)
H2A—C2—H2B108.5O2—C20—C6125.9 (4)
N1—C3—C4113.6 (2)N4—C20—C6108.9 (3)
N1—C3—H3A108.9C22—C21—C26121.5 (4)
C4—C3—H3A108.9C22—C21—N4128.7 (4)
N1—C3—H3B108.9C26—C21—N4109.7 (3)
C4—C3—H3B108.9C21—C22—C23119.1 (4)
H3A—C3—H3B107.7C21—C22—H22120.4
C11—C4—C5116.6 (3)C23—C22—H22120.4
C11—C4—C3123.2 (3)C24—C23—C22119.6 (4)
C5—C4—C3120.1 (2)C24—C23—H23120.2
O1—C5—C4121.9 (3)C22—C23—H23120.2
O1—C5—C1120.2 (3)C23—C24—C25122.3 (4)
C4—C5—C1117.8 (3)C23—C24—Cl1119.6 (4)
N2—C6—C26111.2 (3)C25—C24—Cl1118.1 (4)
N2—C6—C20112.8 (3)C26—C25—C24117.6 (4)
C26—C6—C20100.7 (3)C26—C25—H25121.2
N2—C6—C1102.7 (3)C24—C25—H25121.2
C26—C6—C1118.5 (3)C25—C26—C21119.8 (4)
C20—C6—C1111.4 (3)C25—C26—C6131.0 (4)
N2—C7—C8103.5 (3)C21—C26—C6109.1 (3)
N2—C7—H7A111.1C32—C27—C28115.3 (4)
C8—C7—H7A111.1C32—C27—C8124.8 (4)
N2—C7—H7B111.1C28—C27—C8120.0 (3)
C8—C7—H7B111.1C29—C28—C27122.7 (3)
H7A—C7—H7B109.0C29—C28—H28118.6
C27—C8—C7115.2 (3)C27—C28—H28118.6
C27—C8—C1117.2 (3)C28—C29—C30121.6 (4)
C7—C8—C1104.4 (3)C28—C29—H29119.2
C27—C8—H8106.4C30—C29—H29119.2
C7—C8—H8106.4N5—C30—C31121.3 (4)
C1—C8—H8106.4N5—C30—C29122.7 (4)
N1—C9—H9A109.5C31—C30—C29116.0 (4)
N1—C9—H9B109.5C32—C31—C30121.6 (4)
H9A—C9—H9B109.5C32—C31—H31119.2
N1—C9—H9C109.5C30—C31—H31119.2
H9A—C9—H9C109.5C31—C32—C27122.8 (4)
H9B—C9—H9C109.5C31—C32—H32118.6
N2—C10—H10A109.5C27—C32—H32118.6
N2—C10—H10B109.5N5—C33—H33A109.5
H10A—C10—H10B109.5N5—C33—H33B109.5
N2—C10—H10C109.5H33A—C33—H33B109.5
H10A—C10—H10C109.5N5—C33—H33C109.5
H10B—C10—H10C109.5H33A—C33—H33C109.5
C4—C11—C12132.2 (3)H33B—C33—H33C109.5
C4—C11—H11113.9N5—C34—H34A109.5
C12—C11—H11113.9N5—C34—H34B109.5
C13—C12—C17115.1 (3)H34A—C34—H34B109.5
C13—C12—C11118.0 (3)N5—C34—H34C109.5
C17—C12—C11126.9 (3)H34A—C34—H34C109.5
C14—C13—C12122.7 (3)H34B—C34—H34C109.5
C14—C13—H13118.6
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4n···O2i0.862.002.853 (4)169
C28—H28···O1ii0.932.473.337 (4)156
C33—H33c···Cg1iii0.962.883.807 (5)163
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4n···O2i0.862.002.853 (4)169
C28—H28···O1ii0.932.473.337 (4)156
C33—H33c···Cg1iii0.962.883.807 (5)163
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2.
 

Footnotes

Additional correspondence author, e-mail: ibfarag2002@yahoo.com.

Acknowledgements

This study was supported financially by the Science and Technology Development Fund (STDF), Egypt (grant No. 1133).

References

First citationFarag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014a). Acta Cryst. E70, o22–o23.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014b). Acta Cryst. E70, o43–o44.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAl-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65–72.  Web of Science CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGirgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50, 1–8.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731–5735.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1996). University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds