organic compounds
5-Chloro-5′′-[4-(dimethylamino)benzylidene]-4′-[4-(dimethylamino)phenyl]-1′,1′′-dimethyldispiro[indoline-3,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione
aSolid State Department, Physics Division, National Research Centre, Dokki, Giza, Egypt, bPesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt, cPhysics Department, Faculty of Science, Helwan University, Helwan, Cairo, Egypt, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The title compound, C34H38ClN5O2, has spiro links connecting the pyrrolidine ring and indole residue, as well as the piperidine and pyrrolidine rings. A half-chair conformation is found for the piperidine ring with the C atom connected to the spiro-C atom lying 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). The methylene C atom is the flap in the for the pyrrolidine ring. In the crystal, supramolecular chains are sustained by alternating eight-membered {⋯HNCO}2 and 14-membered {⋯HC5O}2 synthons. Chains are connected into a three-dimensional network by (pyrrolidine-bound phenyl-methyl)C—H⋯π(pyrrolidine-bound phenyl) edge-to-face interactions.
CCDC reference: 917325
Related literature
For the biological activity of related spiro pyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Ahmed Farag et al. (2013a,b). For the synthesis of the precursor molecule, see: Al-Omary et al. (2012).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 917325
https://doi.org/10.1107/S1600536813033771/hg5368sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813033771/hg5368Isup2.hkl
A mixture of equimolar amounts of 3E,5E-1-methyl-3,5-bis(4-dimethylaminophenylmethylidene)-4-piperidones (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloroisatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I). Reaction time 20 h. Yellow crystals. M.pt: 525–527 K. Yield 68%. Anal. Calcd. for C34H38ClN5O2 (584.17): C, 69.91; H, 6.56; N, 11.99. Found: C, 70.02; H, 6.68; N, 11.93. IR: νmax/cm-1: 3168 (N—H); 1692 (C═O); 1613, 1566 (C═C).
The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).
In continuation of our biological and crystallographic studies of spiropyrrolidine derivatives derivatives (Girgis et al. 2012; Ahmed Farag et al. 2013a), which are known to to have biological activity (Kumar et al. 2008), the title compound, (I), was synthesised and characterised crystallographically.
The molecular structure of (I) is shown in Fig. 1 which shows two spiro links, i.e. at atom C1, linking the piperidine and pyrrolidine rings, and at atom C6 where the pyrrolidine ring and indole residue are connected. The piperidine ring carries phenylmethylidene and pyrrolidine-bound aryl residues at positions C4 and C8, respectively. An E conformation is found the C4═C11 double bond. The piperidine-N1 atom has sp3 character as seen by the sum of the angles at this atom of 337 °. A half-chair conformation is found for the piperidine ring in which the C2 atom lies 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). With respect to the piperidine ring, both the N-bound methyl and phenylmethylidene substituents occupy equatorial positions . An is found for the pyrrolidine ring with the C7 being the flap atom lying 0.547 (5) Å out of the plane of the remaining four atoms which have a r.m.s. deviation of 0.0906 Å. The similarity of the molecular structures of (I) and recently described derivatives (Ahmed Farag et al. 2013a,b), at least in terms of the cores of these, is emphasised in the overlay diagram, Fig. 2.
The π(pyrrolidine-bound phenyl), edge-to-face, interactions, Fig. 3 and Table 1.
of (I) features centrosymmetric eight-membered {···HNCO}2 synthons, Table 1. These are linked into supramolecular chains aligned in the (1 1 2) plane by 14-membered {···HC5O}2 synthons, Table 1. Chains are connected into the three-dimensional architecture by (pyrrolidine-bound phenyl-methyl)C–H···In continuation of our biological and crystallographic studies of spiropyrrolidine derivatives derivatives (Girgis et al. 2012; Ahmed Farag et al. 2013a), which are known to to have biological activity (Kumar et al. 2008), the title compound, (I), was synthesised and characterised crystallographically.
The molecular structure of (I) is shown in Fig. 1 which shows two spiro links, i.e. at atom C1, linking the piperidine and pyrrolidine rings, and at atom C6 where the pyrrolidine ring and indole residue are connected. The piperidine ring carries phenylmethylidene and pyrrolidine-bound aryl residues at positions C4 and C8, respectively. An E conformation is found the C4═C11 double bond. The piperidine-N1 atom has sp3 character as seen by the sum of the angles at this atom of 337 °. A half-chair conformation is found for the piperidine ring in which the C2 atom lies 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). With respect to the piperidine ring, both the N-bound methyl and phenylmethylidene substituents occupy equatorial positions . An is found for the pyrrolidine ring with the C7 being the flap atom lying 0.547 (5) Å out of the plane of the remaining four atoms which have a r.m.s. deviation of 0.0906 Å. The similarity of the molecular structures of (I) and recently described derivatives (Ahmed Farag et al. 2013a,b), at least in terms of the cores of these, is emphasised in the overlay diagram, Fig. 2.
The π(pyrrolidine-bound phenyl), edge-to-face, interactions, Fig. 3 and Table 1.
of (I) features centrosymmetric eight-membered {···HNCO}2 synthons, Table 1. These are linked into supramolecular chains aligned in the (1 1 2) plane by 14-membered {···HC5O}2 synthons, Table 1. Chains are connected into the three-dimensional architecture by (pyrrolidine-bound phenyl-methyl)C–H···For the biological activity of related spiro pyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Ahmed Farag et al. (2013a); Ahmed Farag et al. (2013b). For the synthesis of the precursor molecule, see Al-Omary et al. (2012).
A mixture of equimolar amounts of 3E,5E-1-methyl-3,5-bis(4-dimethylaminophenylmethylidene)-4-piperidones (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloroisatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I). Reaction time 20 h. Yellow crystals. M.pt: 525–527 K. Yield 68%. Anal. Calcd. for C34H38ClN5O2 (584.17): C, 69.91; H, 6.56; N, 11.99. Found: C, 70.02; H, 6.68; N, 11.93. IR: νmax/cm-1: 3168 (N—H); 1692 (C═O); 1613, 1566 (C═C).
detailsThe C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. | |
Fig. 2. Overlay diagram of the three recently determined compounds, drawn so that the central pyrrolidine rings are overlapped. Red image (Ahmed Farag et al., 2013a), green image (Ahmed Farag et al., 2013b) and blue image (present study). | |
Fig. 3. A view of the unit-cell contents in projection down the a axis in (I). The N—H···O and π—π interactions are shown as orange and purple dashed lines, respectively. |
C34H38ClN5O2 | Z = 2 |
Mr = 584.14 | F(000) = 620 |
Triclinic, P1 | Dx = 1.226 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5458 (5) Å | Cell parameters from 5831 reflections |
b = 12.2357 (5) Å | θ = 2.9–27.5° |
c = 12.5267 (7) Å | µ = 0.16 mm−1 |
α = 64.341 (2)° | T = 293 K |
β = 84.286 (2)° | Block, orange |
γ = 83.467 (2)° | 0.31 × 0.18 × 0.13 mm |
V = 1582.29 (13) Å3 |
Enraf–Nonius 590 KappaCCD diffractometer | 7127 independent reflections |
Radiation source: fine-focus sealed tube | 2244 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.081 |
φ and ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −14→14 |
Tmin = 0.782, Tmax = 0.927 | k = −15→15 |
13814 measured reflections | l = −16→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.055P)2] where P = (Fo2 + 2Fc2)/3 |
7127 reflections | (Δ/σ)max < 0.001 |
385 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C34H38ClN5O2 | γ = 83.467 (2)° |
Mr = 584.14 | V = 1582.29 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 11.5458 (5) Å | Mo Kα radiation |
b = 12.2357 (5) Å | µ = 0.16 mm−1 |
c = 12.5267 (7) Å | T = 293 K |
α = 64.341 (2)° | 0.31 × 0.18 × 0.13 mm |
β = 84.286 (2)° |
Enraf–Nonius 590 KappaCCD diffractometer | 7127 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2244 reflections with I > 2σ(I) |
Tmin = 0.782, Tmax = 0.927 | Rint = 0.081 |
13814 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.15 e Å−3 |
7127 reflections | Δρmin = −0.20 e Å−3 |
385 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.00842 (11) | 0.90513 (9) | 0.33316 (9) | 0.1119 (5) | |
O1 | 0.3446 (2) | 0.59561 (19) | 0.5160 (2) | 0.0750 (8) | |
O2 | 0.1064 (2) | 0.4073 (2) | 0.9448 (2) | 0.0704 (7) | |
N1 | 0.2654 (2) | 0.6453 (2) | 0.8157 (2) | 0.0469 (7) | |
N2 | 0.1139 (3) | 0.4251 (3) | 0.6910 (2) | 0.0662 (9) | |
N3 | 0.3573 (3) | 1.3398 (2) | 0.3237 (2) | 0.0652 (8) | |
N4 | 0.0072 (3) | 0.5930 (3) | 0.8421 (3) | 0.0668 (9) | |
H4n | −0.0348 | 0.5979 | 0.9008 | 0.080* | |
N5 | 0.6847 (3) | 0.0837 (3) | 1.0145 (3) | 0.0800 (10) | |
C1 | 0.2785 (3) | 0.5106 (3) | 0.7211 (3) | 0.0504 (9) | |
C2 | 0.3223 (3) | 0.5320 (3) | 0.8207 (2) | 0.0482 (9) | |
H2A | 0.3038 | 0.4658 | 0.8968 | 0.058* | |
H2B | 0.4063 | 0.5362 | 0.8108 | 0.058* | |
C3 | 0.3109 (3) | 0.7505 (3) | 0.7153 (2) | 0.0494 (9) | |
H3A | 0.3852 | 0.7653 | 0.7346 | 0.059* | |
H3B | 0.2575 | 0.8215 | 0.7032 | 0.059* | |
C4 | 0.3277 (3) | 0.7353 (3) | 0.6021 (3) | 0.0452 (8) | |
C5 | 0.3213 (3) | 0.6136 (3) | 0.6040 (3) | 0.0507 (9) | |
C6 | 0.1383 (3) | 0.5203 (3) | 0.7259 (3) | 0.0560 (10) | |
C7 | 0.1985 (3) | 0.3228 (3) | 0.7457 (3) | 0.0749 (12) | |
H7A | 0.2022 | 0.2669 | 0.7090 | 0.090* | |
H7B | 0.1794 | 0.2792 | 0.8300 | 0.090* | |
C8 | 0.3149 (3) | 0.3828 (3) | 0.7230 (3) | 0.0613 (10) | |
H8 | 0.3435 | 0.3973 | 0.6420 | 0.074* | |
C9 | 0.2653 (3) | 0.6588 (3) | 0.9254 (3) | 0.0725 (11) | |
H9A | 0.2272 | 0.5934 | 0.9884 | 0.109* | |
H9B | 0.2244 | 0.7350 | 0.9160 | 0.109* | |
H9C | 0.3443 | 0.6570 | 0.9443 | 0.109* | |
C10 | −0.0077 (4) | 0.3941 (3) | 0.7112 (4) | 0.1041 (15) | |
H10A | −0.0166 | 0.3365 | 0.6800 | 0.156* | |
H10B | −0.0579 | 0.4663 | 0.6721 | 0.156* | |
H10C | −0.0283 | 0.3590 | 0.7948 | 0.156* | |
C11 | 0.3454 (2) | 0.8291 (3) | 0.4941 (3) | 0.0490 (9) | |
H11 | 0.3555 | 0.8061 | 0.4318 | 0.059* | |
C12 | 0.3515 (3) | 0.9578 (3) | 0.4575 (3) | 0.0474 (9) | |
C13 | 0.3543 (3) | 1.0342 (3) | 0.3361 (3) | 0.0551 (9) | |
H13 | 0.3540 | 0.9997 | 0.2830 | 0.066* | |
C14 | 0.3575 (3) | 1.1582 (3) | 0.2919 (3) | 0.0561 (10) | |
H14 | 0.3596 | 1.2047 | 0.2102 | 0.067* | |
C15 | 0.3576 (3) | 1.2159 (3) | 0.3670 (3) | 0.0500 (9) | |
C16 | 0.3594 (3) | 1.1397 (3) | 0.4884 (3) | 0.0530 (9) | |
H16 | 0.3623 | 1.1737 | 0.5415 | 0.064* | |
C17 | 0.3571 (3) | 1.0161 (3) | 0.5311 (3) | 0.0543 (10) | |
H17 | 0.3593 | 0.9690 | 0.6125 | 0.065* | |
C18 | 0.3406 (3) | 1.3962 (3) | 0.4056 (3) | 0.0846 (13) | |
H18A | 0.2661 | 1.3786 | 0.4480 | 0.127* | |
H18B | 0.3435 | 1.4826 | 0.3621 | 0.127* | |
H18C | 0.4013 | 1.3646 | 0.4607 | 0.127* | |
C19 | 0.3349 (3) | 1.4166 (3) | 0.2012 (3) | 0.0779 (12) | |
H19A | 0.3928 | 1.3961 | 0.1509 | 0.117* | |
H19B | 0.3382 | 1.5002 | 0.1859 | 0.117* | |
H19C | 0.2588 | 1.4047 | 0.1852 | 0.117* | |
C20 | 0.0856 (3) | 0.4990 (4) | 0.8513 (3) | 0.0599 (10) | |
C21 | 0.0032 (3) | 0.6814 (3) | 0.7249 (3) | 0.0568 (10) | |
C22 | −0.0627 (3) | 0.7898 (4) | 0.6808 (4) | 0.0724 (11) | |
H22 | −0.1086 | 0.8163 | 0.7316 | 0.087* | |
C23 | −0.0601 (3) | 0.8595 (4) | 0.5598 (4) | 0.0775 (12) | |
H23 | −0.1035 | 0.9342 | 0.5283 | 0.093* | |
C24 | 0.0067 (4) | 0.8180 (3) | 0.4863 (3) | 0.0696 (11) | |
C25 | 0.0755 (3) | 0.7089 (3) | 0.5291 (3) | 0.0667 (11) | |
H25 | 0.1204 | 0.6821 | 0.4780 | 0.080* | |
C26 | 0.0748 (3) | 0.6413 (3) | 0.6511 (3) | 0.0545 (9) | |
C27 | 0.4107 (4) | 0.3056 (3) | 0.8031 (3) | 0.0573 (10) | |
C28 | 0.5228 (4) | 0.2936 (3) | 0.7547 (3) | 0.0693 (11) | |
H28 | 0.5377 | 0.3369 | 0.6735 | 0.083* | |
C29 | 0.6123 (4) | 0.2206 (3) | 0.8222 (4) | 0.0689 (11) | |
H29 | 0.6851 | 0.2146 | 0.7852 | 0.083* | |
C30 | 0.5965 (4) | 0.1550 (3) | 0.9452 (4) | 0.0645 (11) | |
C31 | 0.4844 (4) | 0.1671 (3) | 0.9943 (3) | 0.0681 (11) | |
H31 | 0.4694 | 0.1245 | 1.0756 | 0.082* | |
C32 | 0.3959 (3) | 0.2404 (3) | 0.9255 (3) | 0.0669 (11) | |
H32 | 0.3231 | 0.2467 | 0.9623 | 0.080* | |
C33 | 0.6631 (4) | 0.0129 (3) | 1.1413 (4) | 0.0925 (13) | |
H33A | 0.6249 | 0.0649 | 1.1757 | 0.139* | |
H33B | 0.7360 | −0.0223 | 1.1773 | 0.139* | |
H33C | 0.6142 | −0.0506 | 1.1545 | 0.139* | |
C34 | 0.7943 (4) | 0.0575 (4) | 0.9629 (4) | 0.1278 (18) | |
H34A | 0.7817 | 0.0180 | 0.9139 | 0.192* | |
H34B | 0.8444 | 0.0049 | 1.0247 | 0.192* | |
H34C | 0.8301 | 0.1318 | 0.9155 | 0.192* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1734 (13) | 0.0715 (7) | 0.0785 (8) | −0.0019 (7) | −0.0476 (8) | −0.0139 (6) |
O1 | 0.128 (2) | 0.0533 (14) | 0.0436 (15) | −0.0158 (14) | 0.0206 (15) | −0.0242 (12) |
O2 | 0.0789 (19) | 0.0616 (16) | 0.0541 (16) | −0.0088 (14) | 0.0129 (14) | −0.0119 (13) |
N1 | 0.067 (2) | 0.0403 (16) | 0.0340 (16) | −0.0073 (14) | 0.0040 (14) | −0.0171 (13) |
N2 | 0.084 (2) | 0.0508 (19) | 0.070 (2) | −0.0043 (19) | −0.0158 (18) | −0.0298 (16) |
N3 | 0.098 (2) | 0.0430 (18) | 0.0476 (19) | −0.0053 (16) | −0.0090 (17) | −0.0116 (16) |
N4 | 0.065 (2) | 0.065 (2) | 0.063 (2) | −0.0093 (18) | 0.0162 (17) | −0.0227 (18) |
N5 | 0.086 (3) | 0.078 (2) | 0.075 (3) | 0.005 (2) | −0.002 (2) | −0.035 (2) |
C1 | 0.070 (3) | 0.041 (2) | 0.039 (2) | −0.0017 (18) | 0.0080 (19) | −0.0191 (16) |
C2 | 0.062 (2) | 0.041 (2) | 0.038 (2) | −0.0047 (17) | 0.0013 (17) | −0.0141 (16) |
C3 | 0.061 (2) | 0.0426 (19) | 0.041 (2) | −0.0002 (17) | −0.0038 (17) | −0.0146 (16) |
C4 | 0.054 (2) | 0.045 (2) | 0.039 (2) | −0.0054 (17) | 0.0056 (17) | −0.0213 (17) |
C5 | 0.064 (2) | 0.046 (2) | 0.040 (2) | −0.0014 (18) | 0.0042 (19) | −0.0183 (18) |
C6 | 0.071 (3) | 0.050 (2) | 0.052 (2) | −0.010 (2) | 0.000 (2) | −0.0258 (19) |
C7 | 0.108 (3) | 0.054 (2) | 0.071 (3) | −0.011 (3) | −0.009 (2) | −0.032 (2) |
C8 | 0.089 (3) | 0.051 (2) | 0.045 (2) | 0.001 (2) | 0.006 (2) | −0.0245 (18) |
C9 | 0.118 (3) | 0.058 (2) | 0.042 (2) | −0.017 (2) | 0.008 (2) | −0.0220 (19) |
C10 | 0.102 (4) | 0.086 (3) | 0.140 (4) | −0.029 (3) | −0.031 (3) | −0.053 (3) |
C11 | 0.055 (2) | 0.049 (2) | 0.041 (2) | −0.0022 (18) | 0.0066 (17) | −0.0208 (17) |
C12 | 0.053 (2) | 0.045 (2) | 0.041 (2) | −0.0061 (17) | 0.0014 (17) | −0.0155 (18) |
C13 | 0.071 (3) | 0.054 (2) | 0.042 (2) | −0.0079 (19) | 0.0039 (18) | −0.0218 (18) |
C14 | 0.068 (3) | 0.055 (2) | 0.035 (2) | −0.0096 (19) | 0.0049 (18) | −0.0099 (18) |
C15 | 0.056 (2) | 0.046 (2) | 0.045 (2) | −0.0046 (18) | −0.0027 (18) | −0.0161 (19) |
C16 | 0.067 (3) | 0.048 (2) | 0.042 (2) | −0.0052 (19) | −0.0084 (18) | −0.0173 (18) |
C17 | 0.066 (3) | 0.049 (2) | 0.042 (2) | −0.0083 (19) | −0.0037 (18) | −0.0116 (18) |
C18 | 0.123 (4) | 0.053 (2) | 0.076 (3) | −0.010 (2) | 0.002 (3) | −0.027 (2) |
C19 | 0.100 (3) | 0.045 (2) | 0.069 (3) | −0.010 (2) | −0.015 (2) | −0.003 (2) |
C20 | 0.063 (3) | 0.058 (3) | 0.059 (3) | −0.015 (2) | 0.006 (2) | −0.025 (2) |
C21 | 0.052 (3) | 0.053 (2) | 0.065 (3) | −0.007 (2) | −0.002 (2) | −0.023 (2) |
C22 | 0.060 (3) | 0.070 (3) | 0.088 (3) | 0.000 (2) | 0.000 (2) | −0.037 (3) |
C23 | 0.070 (3) | 0.065 (3) | 0.097 (4) | 0.001 (2) | −0.024 (3) | −0.031 (3) |
C24 | 0.087 (3) | 0.050 (3) | 0.068 (3) | −0.009 (2) | −0.022 (3) | −0.017 (2) |
C25 | 0.085 (3) | 0.060 (3) | 0.060 (3) | −0.010 (2) | −0.015 (2) | −0.026 (2) |
C26 | 0.063 (3) | 0.047 (2) | 0.055 (3) | −0.0063 (19) | −0.006 (2) | −0.021 (2) |
C27 | 0.083 (3) | 0.041 (2) | 0.041 (2) | 0.005 (2) | 0.007 (2) | −0.0154 (18) |
C28 | 0.096 (3) | 0.051 (2) | 0.052 (3) | −0.011 (2) | 0.020 (3) | −0.017 (2) |
C29 | 0.075 (3) | 0.066 (3) | 0.064 (3) | −0.005 (2) | 0.014 (2) | −0.030 (2) |
C30 | 0.081 (3) | 0.047 (2) | 0.066 (3) | 0.006 (2) | −0.007 (3) | −0.026 (2) |
C31 | 0.094 (3) | 0.052 (2) | 0.048 (3) | 0.010 (2) | 0.004 (3) | −0.017 (2) |
C32 | 0.087 (3) | 0.058 (2) | 0.047 (3) | 0.002 (2) | 0.019 (2) | −0.021 (2) |
C33 | 0.122 (4) | 0.071 (3) | 0.085 (3) | 0.016 (3) | −0.029 (3) | −0.035 (3) |
C34 | 0.095 (4) | 0.143 (5) | 0.135 (5) | 0.033 (3) | −0.008 (4) | −0.060 (4) |
Cl1—C24 | 1.744 (4) | C11—H11 | 0.9300 |
O1—C5 | 1.214 (3) | C12—C13 | 1.398 (4) |
O2—C20 | 1.244 (4) | C12—C17 | 1.397 (4) |
N1—C2 | 1.444 (4) | C13—C14 | 1.375 (4) |
N1—C9 | 1.453 (4) | C13—H13 | 0.9300 |
N1—C3 | 1.461 (3) | C14—C15 | 1.400 (4) |
N2—C7 | 1.450 (4) | C14—H14 | 0.9300 |
N2—C10 | 1.465 (4) | C15—C16 | 1.399 (4) |
N2—C6 | 1.472 (4) | C16—C17 | 1.371 (4) |
N3—C15 | 1.370 (4) | C16—H16 | 0.9300 |
N3—C19 | 1.442 (4) | C17—H17 | 0.9300 |
N3—C18 | 1.452 (4) | C18—H18A | 0.9600 |
N4—C20 | 1.350 (4) | C18—H18B | 0.9600 |
N4—C21 | 1.398 (4) | C18—H18C | 0.9600 |
N4—H4n | 0.8600 | C19—H19A | 0.9600 |
N5—C30 | 1.368 (4) | C19—H19B | 0.9600 |
N5—C34 | 1.430 (5) | C19—H19C | 0.9600 |
N5—C33 | 1.453 (4) | C21—C22 | 1.365 (5) |
C1—C2 | 1.523 (4) | C21—C26 | 1.388 (4) |
C1—C5 | 1.542 (4) | C22—C23 | 1.379 (5) |
C1—C8 | 1.563 (4) | C22—H22 | 0.9300 |
C1—C6 | 1.606 (4) | C23—C24 | 1.369 (5) |
C2—H2A | 0.9700 | C23—H23 | 0.9300 |
C2—H2B | 0.9700 | C24—C25 | 1.387 (5) |
C3—C4 | 1.499 (4) | C25—C26 | 1.387 (4) |
C3—H3A | 0.9700 | C25—H25 | 0.9300 |
C3—H3B | 0.9700 | C27—C32 | 1.392 (4) |
C4—C11 | 1.358 (4) | C27—C28 | 1.393 (4) |
C4—C5 | 1.490 (4) | C28—C29 | 1.375 (5) |
C6—C26 | 1.515 (4) | C28—H28 | 0.9300 |
C6—C20 | 1.549 (4) | C29—C30 | 1.399 (5) |
C7—C8 | 1.547 (4) | C29—H29 | 0.9300 |
C7—H7A | 0.9700 | C30—C31 | 1.397 (5) |
C7—H7B | 0.9700 | C31—C32 | 1.375 (4) |
C8—C27 | 1.512 (4) | C31—H31 | 0.9300 |
C8—H8 | 0.9800 | C32—H32 | 0.9300 |
C9—H9A | 0.9600 | C33—H33A | 0.9600 |
C9—H9B | 0.9600 | C33—H33B | 0.9600 |
C9—H9C | 0.9600 | C33—H33C | 0.9600 |
C10—H10A | 0.9600 | C34—H34A | 0.9600 |
C10—H10B | 0.9600 | C34—H34B | 0.9600 |
C10—H10C | 0.9600 | C34—H34C | 0.9600 |
C11—C12 | 1.446 (4) | ||
C2—N1—C9 | 114.3 (3) | C12—C13—H13 | 118.6 |
C2—N1—C3 | 112.1 (2) | C13—C14—C15 | 121.5 (3) |
C9—N1—C3 | 110.9 (2) | C13—C14—H14 | 119.2 |
C7—N2—C10 | 114.6 (3) | C15—C14—H14 | 119.2 |
C7—N2—C6 | 107.0 (3) | N3—C15—C16 | 122.1 (3) |
C10—N2—C6 | 115.4 (3) | N3—C15—C14 | 121.8 (3) |
C15—N3—C19 | 120.4 (3) | C16—C15—C14 | 116.1 (3) |
C15—N3—C18 | 119.4 (3) | C17—C16—C15 | 121.7 (3) |
C19—N3—C18 | 117.1 (3) | C17—C16—H16 | 119.2 |
C20—N4—C21 | 111.3 (3) | C15—C16—H16 | 119.2 |
C20—N4—H4n | 124.4 | C16—C17—C12 | 122.8 (3) |
C21—N4—H4n | 124.4 | C16—C17—H17 | 118.6 |
C30—N5—C34 | 121.1 (4) | C12—C17—H17 | 118.6 |
C30—N5—C33 | 120.8 (4) | N3—C18—H18A | 109.5 |
C34—N5—C33 | 116.9 (4) | N3—C18—H18B | 109.5 |
C2—C1—C5 | 106.3 (2) | H18A—C18—H18B | 109.5 |
C2—C1—C8 | 115.7 (3) | N3—C18—H18C | 109.5 |
C5—C1—C8 | 111.4 (3) | H18A—C18—H18C | 109.5 |
C2—C1—C6 | 111.1 (3) | H18B—C18—H18C | 109.5 |
C5—C1—C6 | 108.0 (3) | N3—C19—H19A | 109.5 |
C8—C1—C6 | 104.1 (2) | N3—C19—H19B | 109.5 |
N1—C2—C1 | 107.8 (3) | H19A—C19—H19B | 109.5 |
N1—C2—H2A | 110.2 | N3—C19—H19C | 109.5 |
C1—C2—H2A | 110.2 | H19A—C19—H19C | 109.5 |
N1—C2—H2B | 110.2 | H19B—C19—H19C | 109.5 |
C1—C2—H2B | 110.2 | O2—C20—N4 | 125.1 (3) |
H2A—C2—H2B | 108.5 | O2—C20—C6 | 125.9 (4) |
N1—C3—C4 | 113.6 (2) | N4—C20—C6 | 108.9 (3) |
N1—C3—H3A | 108.9 | C22—C21—C26 | 121.5 (4) |
C4—C3—H3A | 108.9 | C22—C21—N4 | 128.7 (4) |
N1—C3—H3B | 108.9 | C26—C21—N4 | 109.7 (3) |
C4—C3—H3B | 108.9 | C21—C22—C23 | 119.1 (4) |
H3A—C3—H3B | 107.7 | C21—C22—H22 | 120.4 |
C11—C4—C5 | 116.6 (3) | C23—C22—H22 | 120.4 |
C11—C4—C3 | 123.2 (3) | C24—C23—C22 | 119.6 (4) |
C5—C4—C3 | 120.1 (2) | C24—C23—H23 | 120.2 |
O1—C5—C4 | 121.9 (3) | C22—C23—H23 | 120.2 |
O1—C5—C1 | 120.2 (3) | C23—C24—C25 | 122.3 (4) |
C4—C5—C1 | 117.8 (3) | C23—C24—Cl1 | 119.6 (4) |
N2—C6—C26 | 111.2 (3) | C25—C24—Cl1 | 118.1 (4) |
N2—C6—C20 | 112.8 (3) | C26—C25—C24 | 117.6 (4) |
C26—C6—C20 | 100.7 (3) | C26—C25—H25 | 121.2 |
N2—C6—C1 | 102.7 (3) | C24—C25—H25 | 121.2 |
C26—C6—C1 | 118.5 (3) | C25—C26—C21 | 119.8 (4) |
C20—C6—C1 | 111.4 (3) | C25—C26—C6 | 131.0 (4) |
N2—C7—C8 | 103.5 (3) | C21—C26—C6 | 109.1 (3) |
N2—C7—H7A | 111.1 | C32—C27—C28 | 115.3 (4) |
C8—C7—H7A | 111.1 | C32—C27—C8 | 124.8 (4) |
N2—C7—H7B | 111.1 | C28—C27—C8 | 120.0 (3) |
C8—C7—H7B | 111.1 | C29—C28—C27 | 122.7 (3) |
H7A—C7—H7B | 109.0 | C29—C28—H28 | 118.6 |
C27—C8—C7 | 115.2 (3) | C27—C28—H28 | 118.6 |
C27—C8—C1 | 117.2 (3) | C28—C29—C30 | 121.6 (4) |
C7—C8—C1 | 104.4 (3) | C28—C29—H29 | 119.2 |
C27—C8—H8 | 106.4 | C30—C29—H29 | 119.2 |
C7—C8—H8 | 106.4 | N5—C30—C31 | 121.3 (4) |
C1—C8—H8 | 106.4 | N5—C30—C29 | 122.7 (4) |
N1—C9—H9A | 109.5 | C31—C30—C29 | 116.0 (4) |
N1—C9—H9B | 109.5 | C32—C31—C30 | 121.6 (4) |
H9A—C9—H9B | 109.5 | C32—C31—H31 | 119.2 |
N1—C9—H9C | 109.5 | C30—C31—H31 | 119.2 |
H9A—C9—H9C | 109.5 | C31—C32—C27 | 122.8 (4) |
H9B—C9—H9C | 109.5 | C31—C32—H32 | 118.6 |
N2—C10—H10A | 109.5 | C27—C32—H32 | 118.6 |
N2—C10—H10B | 109.5 | N5—C33—H33A | 109.5 |
H10A—C10—H10B | 109.5 | N5—C33—H33B | 109.5 |
N2—C10—H10C | 109.5 | H33A—C33—H33B | 109.5 |
H10A—C10—H10C | 109.5 | N5—C33—H33C | 109.5 |
H10B—C10—H10C | 109.5 | H33A—C33—H33C | 109.5 |
C4—C11—C12 | 132.2 (3) | H33B—C33—H33C | 109.5 |
C4—C11—H11 | 113.9 | N5—C34—H34A | 109.5 |
C12—C11—H11 | 113.9 | N5—C34—H34B | 109.5 |
C13—C12—C17 | 115.1 (3) | H34A—C34—H34B | 109.5 |
C13—C12—C11 | 118.0 (3) | N5—C34—H34C | 109.5 |
C17—C12—C11 | 126.9 (3) | H34A—C34—H34C | 109.5 |
C14—C13—C12 | 122.7 (3) | H34B—C34—H34C | 109.5 |
C14—C13—H13 | 118.6 |
Cg1 is the centroid of the C27–C32 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4n···O2i | 0.86 | 2.00 | 2.853 (4) | 169 |
C28—H28···O1ii | 0.93 | 2.47 | 3.337 (4) | 156 |
C33—H33c···Cg1iii | 0.96 | 2.88 | 3.807 (5) | 163 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2. |
Cg1 is the centroid of the C27–C32 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4n···O2i | 0.86 | 2.00 | 2.853 (4) | 169 |
C28—H28···O1ii | 0.93 | 2.47 | 3.337 (4) | 156 |
C33—H33c···Cg1iii | 0.96 | 2.88 | 3.807 (5) | 163 |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2. |
Footnotes
‡Additional correspondence author, e-mail: ibfarag2002@yahoo.com.
Acknowledgements
This study was supported financially by the Science and Technology Development Fund (STDF), Egypt (grant No. 1133).
References
Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014a). Acta Cryst. E70, o22–o23. CSD CrossRef CAS IUCr Journals Google Scholar
Farag, I. S. A., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2014b). Acta Cryst. E70, o43–o44. CSD CrossRef CAS IUCr Journals Google Scholar
Al-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65–72. Web of Science CAS PubMed Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559. Web of Science CrossRef PubMed CAS Google Scholar
Girgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50, 1–8. Web of Science CrossRef CAS PubMed Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Kumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731–5735. Web of Science CSD CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1996). University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.