organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6a-Nitro-6-(2,2,7,7-tetra­methyl­tetra­hydro-3aH-bis­­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)-6a,6b,7,8,9,11a-hexa­hydro-6H-spiro­[chromeno[3,4-a]pyrrolizine-11,11′-indeno­[1,2-b]quinoxaline]

aPost Graduate & Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 18 September 2013; accepted 28 November 2013; online 14 December 2013)

In the title compound, C39H38N4O8, the quinoxaline and indene subunits are essentially planar, with maximum deviations of 0.071 (2) and 0.009 (2) Å, respectively. The indeno­quinoxaline system forms a dihedral angle of 72.81 (3)° with the chromenopyrrolizine system. The two dioxolane rings, as well as the pyran ring of the chromeno group and the terminal pyrrolizine, each adopt an envelope conformation with O and C as flap atoms. The central pyrrolizine ring adopts a twisted conformation. Intra­molecular C—H⋯O and C—H⋯N hydrogen bonds occur. The crystal structure exhibits C—H⋯O hydrogen bonds, and is further stablized by C—H⋯π inter­actions, forming a two-dimensional network along the bc plane.

Related literature

For some spiro compounds of biological importance, see: Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617-6622.]); James et al. (1991[James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137-1140.]). For the pharmaceutical importance of quinoxaline derivatives, see: Seitz et al. (2002[Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604-5606.]); He et al. (2003[He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]). For conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C39H38N4O8

  • Mr = 690.73

  • Orthorhombic, P 21 21 21

  • a = 11.3150 (9) Å

  • b = 15.629 (2) Å

  • c = 19.419 (2) Å

  • V = 3434.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.991

  • 15819 measured reflections

  • 6671 independent reflections

  • 3789 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.124

  • S = 0.97

  • 6671 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2933 Friedel pairs

  • Absolute structure parameter: 0.30 (13)

Table 1
Hydrogen-bond geometry (Å, °)

Cg8 is the centroid of the N1/C7/C14/N2/C13/C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C35—H35⋯O2i 0.98 2.41 3.390 (4) 177
C16—H16A⋯O3 0.97 2.59 3.237 (5) 124
C21—H21⋯N2 0.98 2.48 3.305 (4) 141
C30—H30⋯Cg8ii 0.98 2.93 3.895 (4) 168
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Spiro compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). Quinoxaline derivatives are an important class of benzoheterocycles. They have found applications as anticancer, antiviral, and antibacterial agents (Seitz et al., 2002; He et al., 2003).

In the title compound, C39H38N4O8, the quinoxaline (C7—C14\N1\N2) and indene (C1—C7\C14\C15) subunits are essentially planar with maximum deviations of -0.071 (2) Å for C14 and -0.009 (1) Å for C9, respectively. The dihedral angle between the chromeno-pyrrolizine (C15—C28\N2\N3\O1) and indeno-quinoxaline (C—C15\N1\N2) systems is 72.81 (3)° showing their almost orthogonal arrangement relative to each other.

The two dioxolane rings (C30—C32\O5\O6,C33—C35\O7\O8) which are fused with a pyran ring adopt an envelope conformation with O6 and C34 atoms as the flap. Puckering parameters are q2 = 0.3089 (1) Å, Φ2 = 108.05 (2)° and q2 = 0.2905 (1) Å, Φ2 = 324.14 (2)°, respectively. The pyran ring (C20—C22\C27\C28\O1) of the chromeno group and the pyrrolizine ring (C16—C19\N3) also adopt envelope conformations with O1 and C16 atoms as the flap. Puckering parameters are q2 = 0.3895 (1) Å, q3 = -0.2566 Å, Φ2 = 235.74 (2)°, Θ = 123.38° for the pyran and q2 = 0.3781 (1) Å, Φ2 = 213.99 (4)° for the pyrrolizine system, respectively. The pyrrolizine ring fused with the pyran ring adopts a twisted conformation along N3—C15 with puckering parameters of q2 = 0.301 (1) Å, Φ2 = 200.75 (2)° (Cremer & Pople, 1975).

The structure is stabilized by an intermolecular C—H···O hydrogen bond and additional intramolecular C—H···O and C—H···N hydrogen bonds (Table 1). The crystal structure is further consolidated by C—H ···Cg8 interactions where Cg8 is the centroid of C7\C8\C13\C14\N1\N2 ring.

Related literature top

For some spiro compounds of biological importance, see: Kobayashi et al. (1991); James et al. (1991). For the pharmaceutical importance of quinoxaline derivatives, see: Seitz et al. (2002); He et al. (2003). For conformation analysis, see: Cremer & Pople (1975).

Experimental top

To a solution of 11H-indeno[1,2-b]quinoxalin-11-one (0.3 g, 1.29 mmol) and proline (0.208 g, 1.8 mmol) in dry acetonitrile, was added 2,2,7,7-tetramethyl-5-(3-nitro-2H-chromen-2-yl)tetrahydro-3aH-bis[1,3] dioxolo[4,5 - b:4',5'-d]pyran (0.52 g, 1.29 mmol) under a nitrogen atmosphere. The reaction mixture was refluxed for 16 h in a Dean-Stark apparatus to give the cycloadduct. After completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure. The crude product was extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate and concentrated in vacuo. Then the crude product was purified by column chromatography using hexane/EtOAc (7:3) as eluent (yield: 0.7 g, 80%). Colourless block shaped crystals were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms.

Structure description top

Spiro compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). Quinoxaline derivatives are an important class of benzoheterocycles. They have found applications as anticancer, antiviral, and antibacterial agents (Seitz et al., 2002; He et al., 2003).

In the title compound, C39H38N4O8, the quinoxaline (C7—C14\N1\N2) and indene (C1—C7\C14\C15) subunits are essentially planar with maximum deviations of -0.071 (2) Å for C14 and -0.009 (1) Å for C9, respectively. The dihedral angle between the chromeno-pyrrolizine (C15—C28\N2\N3\O1) and indeno-quinoxaline (C—C15\N1\N2) systems is 72.81 (3)° showing their almost orthogonal arrangement relative to each other.

The two dioxolane rings (C30—C32\O5\O6,C33—C35\O7\O8) which are fused with a pyran ring adopt an envelope conformation with O6 and C34 atoms as the flap. Puckering parameters are q2 = 0.3089 (1) Å, Φ2 = 108.05 (2)° and q2 = 0.2905 (1) Å, Φ2 = 324.14 (2)°, respectively. The pyran ring (C20—C22\C27\C28\O1) of the chromeno group and the pyrrolizine ring (C16—C19\N3) also adopt envelope conformations with O1 and C16 atoms as the flap. Puckering parameters are q2 = 0.3895 (1) Å, q3 = -0.2566 Å, Φ2 = 235.74 (2)°, Θ = 123.38° for the pyran and q2 = 0.3781 (1) Å, Φ2 = 213.99 (4)° for the pyrrolizine system, respectively. The pyrrolizine ring fused with the pyran ring adopts a twisted conformation along N3—C15 with puckering parameters of q2 = 0.301 (1) Å, Φ2 = 200.75 (2)° (Cremer & Pople, 1975).

The structure is stabilized by an intermolecular C—H···O hydrogen bond and additional intramolecular C—H···O and C—H···N hydrogen bonds (Table 1). The crystal structure is further consolidated by C—H ···Cg8 interactions where Cg8 is the centroid of C7\C8\C13\C14\N1\N2 ring.

For some spiro compounds of biological importance, see: Kobayashi et al. (1991); James et al. (1991). For the pharmaceutical importance of quinoxaline derivatives, see: Seitz et al. (2002); He et al. (2003). For conformation analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of packing of the molecules with hydrogen bonds (dashed lines).
6a-Nitro-6-(2,2,7,7-tetramethyltetrahydro-3aH-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)-6a,6b,7,8,9,11a-hexahydro-6H-spiro[chromeno[3,4-a]pyrrolizine-11,11'-indeno[1,2-b]quinoxaline] top
Crystal data top
C39H38N4O8F(000) = 1456
Mr = 690.73Dx = 1.336 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8626 reflections
a = 11.3150 (9) Åθ = 1.7–28.4°
b = 15.629 (2) ŵ = 0.09 mm1
c = 19.419 (2) ÅT = 293 K
V = 3434.0 (6) Å3Block, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6671 independent reflections
Radiation source: fine-focus sealed tube3789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and φ scanθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.981, Tmax = 0.991k = 1918
15819 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.047P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
6671 reflectionsΔρmax = 0.17 e Å3
460 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 2933 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.30 (13)
Crystal data top
C39H38N4O8V = 3434.0 (6) Å3
Mr = 690.73Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.3150 (9) ŵ = 0.09 mm1
b = 15.629 (2) ÅT = 293 K
c = 19.419 (2) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6671 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3789 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.991Rint = 0.059
15819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.17 e Å3
S = 0.97Δρmin = 0.20 e Å3
6671 reflectionsAbsolute structure: Flack (1983), 2933 Friedel pairs
460 parametersAbsolute structure parameter: 0.30 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03697 (19)0.83284 (16)0.00002 (10)0.0524 (6)
O20.1751 (2)0.73787 (18)0.04849 (14)0.0690 (8)
O30.3060 (2)0.8322 (2)0.07234 (15)0.0819 (9)
O40.00221 (19)0.73589 (14)0.16455 (9)0.0450 (5)
O50.0801 (2)0.60162 (17)0.15228 (13)0.0645 (7)
O60.0907 (2)0.55340 (17)0.10693 (13)0.0635 (7)
O70.2843 (2)0.68893 (18)0.20258 (12)0.0672 (7)
O80.23002 (19)0.81048 (15)0.14967 (12)0.0568 (7)
N10.0704 (3)1.2133 (2)0.11551 (13)0.0563 (8)
N20.0858 (2)1.03075 (19)0.13143 (14)0.0522 (7)
N30.1654 (2)0.98556 (18)0.16878 (13)0.0428 (7)
N40.2032 (3)0.8083 (2)0.06782 (14)0.0507 (7)
C10.2053 (3)1.1070 (2)0.08517 (16)0.0484 (9)
C20.3219 (3)1.1091 (3)0.06145 (19)0.0643 (11)
H20.36671.05930.05870.077*
C30.3687 (4)1.1872 (3)0.0422 (2)0.0722 (12)
H30.44601.18930.02610.087*
C40.3057 (4)1.2611 (3)0.0460 (2)0.0744 (12)
H40.34071.31270.03370.089*
C50.1888 (4)1.2597 (3)0.06840 (18)0.0631 (10)
H50.14431.30960.07050.076*
C60.1408 (3)1.1816 (2)0.08745 (15)0.0485 (9)
C70.0190 (3)1.1607 (2)0.10770 (15)0.0450 (8)
C80.1751 (3)1.1725 (3)0.13211 (17)0.0559 (10)
C90.2774 (4)1.2228 (3)0.1405 (2)0.0753 (13)
H90.27391.28180.13460.090*
C100.3812 (4)1.1847 (4)0.1572 (2)0.0878 (15)
H100.44821.21820.16370.105*
C110.3893 (4)1.0961 (4)0.1649 (3)0.0977 (16)
H110.46141.07120.17600.117*
C120.2919 (3)1.0457 (3)0.1562 (2)0.0832 (13)
H120.29770.98670.16100.100*
C130.1827 (3)1.0838 (3)0.13974 (18)0.0556 (10)
C140.0112 (3)1.0707 (2)0.11541 (15)0.0438 (8)
C150.1313 (3)1.0280 (2)0.10405 (15)0.0428 (8)
C160.2921 (3)0.9806 (3)0.18833 (17)0.0554 (10)
H16A0.34130.96530.14930.067*
H16B0.31981.03410.20780.067*
C170.2893 (3)0.9102 (3)0.24158 (18)0.0608 (10)
H17A0.36630.88340.24570.073*
H17B0.26640.93270.28620.073*
C180.1979 (3)0.8461 (3)0.21548 (16)0.0575 (10)
H18A0.23590.79920.19140.069*
H18B0.15200.82300.25340.069*
C190.1189 (3)0.8974 (2)0.16643 (14)0.0410 (8)
H190.03910.89830.18590.049*
C200.1080 (3)0.8724 (2)0.08846 (15)0.0402 (8)
C210.0170 (3)0.8386 (2)0.07265 (14)0.0385 (7)
H210.07350.88030.09110.046*
C220.0241 (3)0.9087 (2)0.03512 (15)0.0440 (8)
C230.0911 (3)0.9177 (3)0.09451 (17)0.0596 (10)
H230.14340.87490.10780.071*
C240.0793 (4)0.9897 (3)0.13301 (18)0.0666 (11)
H240.12430.99650.17270.080*
C250.0006 (4)1.0533 (3)0.11346 (18)0.0685 (11)
H250.00681.10260.13990.082*
C260.0667 (3)1.0433 (2)0.05465 (16)0.0565 (10)
H260.12011.08570.04210.068*
C270.0553 (3)0.9703 (2)0.01397 (14)0.0426 (8)
C280.1323 (3)0.9566 (2)0.04885 (15)0.0426 (8)
H280.21380.95280.03200.051*
C290.0536 (3)0.7508 (2)0.09899 (15)0.0410 (8)
H290.02580.70700.06670.049*
C300.0092 (3)0.6504 (2)0.18407 (17)0.0519 (9)
H300.00120.64680.23410.062*
C310.0300 (3)0.5300 (3)0.1170 (2)0.0649 (11)
C320.1236 (3)0.6036 (2)0.16469 (18)0.0553 (9)
H320.14890.56650.20260.066*
C330.2250 (3)0.6609 (2)0.14226 (18)0.0516 (9)
H330.27960.62880.11290.062*
C340.3182 (3)0.7751 (3)0.19214 (18)0.0590 (10)
C350.1876 (3)0.7440 (2)0.10601 (16)0.0445 (8)
H350.22510.74790.06060.053*
C360.0875 (4)0.5211 (3)0.0485 (2)0.0846 (13)
H36A0.16880.50530.05450.127*
H36B0.04760.47760.02240.127*
H36C0.08310.57450.02430.127*
C370.0398 (4)0.4515 (3)0.1621 (2)0.0955 (15)
H37A0.12150.43700.16810.143*
H37B0.00480.46310.20610.143*
H37C0.00080.40470.14060.143*
C380.4382 (3)0.7814 (3)0.1578 (2)0.0901 (15)
H38A0.45870.84050.15170.135*
H38B0.43540.75360.11370.135*
H38C0.49650.75410.18620.135*
C390.3150 (4)0.8192 (3)0.2610 (2)0.0891 (15)
H39A0.33770.87800.25550.134*
H39B0.36890.79140.29200.134*
H39C0.23640.81640.27950.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0671 (15)0.0485 (16)0.0417 (12)0.0044 (13)0.0116 (12)0.0053 (11)
O20.0695 (17)0.0440 (18)0.093 (2)0.0040 (14)0.0303 (15)0.0075 (15)
O30.0404 (15)0.086 (2)0.120 (2)0.0129 (15)0.0069 (15)0.0265 (18)
O40.0532 (13)0.0413 (14)0.0403 (11)0.0031 (11)0.0078 (11)0.0071 (10)
O50.0573 (15)0.0536 (18)0.0828 (17)0.0092 (14)0.0014 (14)0.0015 (14)
O60.0593 (16)0.0528 (17)0.0785 (17)0.0045 (13)0.0014 (14)0.0130 (13)
O70.0681 (17)0.061 (2)0.0721 (17)0.0002 (15)0.0298 (14)0.0014 (14)
O80.0506 (14)0.0506 (16)0.0693 (15)0.0014 (12)0.0141 (12)0.0111 (13)
N10.061 (2)0.053 (2)0.0542 (18)0.0164 (17)0.0069 (15)0.0056 (15)
N20.0402 (16)0.054 (2)0.0624 (18)0.0037 (16)0.0054 (14)0.0007 (15)
N30.0354 (15)0.0474 (19)0.0456 (15)0.0028 (13)0.0002 (12)0.0001 (14)
N40.053 (2)0.053 (2)0.0467 (16)0.0075 (17)0.0057 (15)0.0020 (15)
C10.047 (2)0.053 (2)0.0453 (19)0.0040 (19)0.0004 (17)0.0011 (18)
C20.053 (2)0.067 (3)0.073 (2)0.006 (2)0.012 (2)0.005 (2)
C30.064 (2)0.082 (4)0.071 (3)0.020 (3)0.010 (2)0.004 (3)
C40.085 (3)0.068 (3)0.071 (3)0.031 (3)0.005 (2)0.001 (2)
C50.077 (3)0.046 (2)0.066 (2)0.010 (2)0.000 (2)0.0013 (19)
C60.058 (2)0.045 (2)0.0419 (19)0.0076 (19)0.0032 (16)0.0001 (17)
C70.053 (2)0.042 (2)0.0400 (17)0.0013 (19)0.0053 (16)0.0043 (16)
C80.050 (2)0.067 (3)0.051 (2)0.014 (2)0.0076 (18)0.010 (2)
C90.064 (3)0.083 (3)0.079 (3)0.029 (3)0.015 (2)0.017 (2)
C100.053 (3)0.112 (5)0.099 (3)0.026 (3)0.004 (2)0.019 (3)
C110.041 (3)0.125 (5)0.126 (4)0.005 (3)0.010 (3)0.006 (4)
C120.043 (2)0.088 (3)0.119 (4)0.001 (2)0.011 (2)0.001 (3)
C130.045 (2)0.063 (3)0.058 (2)0.009 (2)0.0004 (18)0.0048 (19)
C140.045 (2)0.046 (2)0.0395 (18)0.0041 (17)0.0020 (16)0.0048 (16)
C150.0364 (17)0.045 (2)0.0472 (19)0.0039 (16)0.0029 (15)0.0032 (17)
C160.0368 (19)0.070 (3)0.060 (2)0.0058 (19)0.0071 (17)0.007 (2)
C170.051 (2)0.074 (3)0.056 (2)0.008 (2)0.0116 (19)0.002 (2)
C180.065 (2)0.063 (3)0.0441 (19)0.006 (2)0.0124 (18)0.0006 (18)
C190.0402 (18)0.045 (2)0.0373 (16)0.0035 (16)0.0006 (15)0.0018 (15)
C200.0385 (18)0.041 (2)0.0415 (17)0.0098 (15)0.0005 (15)0.0001 (15)
C210.0418 (18)0.039 (2)0.0352 (16)0.0026 (16)0.0034 (14)0.0011 (15)
C220.051 (2)0.044 (2)0.0359 (17)0.0040 (18)0.0014 (17)0.0072 (16)
C230.061 (2)0.066 (3)0.052 (2)0.001 (2)0.0160 (19)0.006 (2)
C240.077 (3)0.073 (3)0.050 (2)0.006 (2)0.013 (2)0.018 (2)
C250.084 (3)0.069 (3)0.052 (2)0.007 (2)0.002 (2)0.023 (2)
C260.062 (2)0.058 (3)0.050 (2)0.002 (2)0.0056 (19)0.0097 (19)
C270.0442 (18)0.048 (2)0.0358 (17)0.0064 (18)0.0048 (15)0.0047 (16)
C280.0380 (17)0.045 (2)0.0453 (18)0.0051 (16)0.0056 (15)0.0019 (16)
C290.0442 (19)0.041 (2)0.0376 (17)0.0016 (16)0.0054 (15)0.0015 (15)
C300.058 (2)0.053 (2)0.0449 (18)0.005 (2)0.0010 (18)0.0054 (17)
C310.059 (2)0.048 (3)0.088 (3)0.004 (2)0.006 (2)0.000 (2)
C320.060 (2)0.047 (2)0.059 (2)0.0036 (19)0.0098 (19)0.002 (2)
C330.0454 (19)0.050 (2)0.059 (2)0.0082 (18)0.0054 (18)0.0081 (19)
C340.051 (2)0.063 (3)0.064 (2)0.009 (2)0.0115 (19)0.010 (2)
C350.0448 (19)0.047 (2)0.0415 (17)0.0003 (17)0.0038 (15)0.0055 (17)
C360.077 (3)0.085 (3)0.092 (3)0.010 (3)0.017 (3)0.013 (3)
C370.102 (4)0.059 (3)0.126 (4)0.014 (3)0.013 (3)0.011 (3)
C380.051 (3)0.101 (4)0.119 (4)0.001 (2)0.002 (3)0.020 (3)
C390.098 (3)0.094 (4)0.076 (3)0.012 (3)0.028 (3)0.025 (3)
Geometric parameters (Å, º) top
O1—C221.376 (4)C17—C181.527 (5)
O1—C211.432 (3)C17—H17A0.9700
O2—N41.205 (4)C17—H17B0.9700
O3—N41.225 (4)C18—C191.533 (4)
O4—C301.391 (4)C18—H18A0.9700
O4—C291.419 (3)C18—H18B0.9700
O5—C301.408 (4)C19—C201.569 (4)
O5—C311.429 (5)C19—H190.9800
O6—C321.419 (4)C20—C211.541 (4)
O6—C311.427 (4)C20—C281.549 (4)
O7—C341.414 (5)C21—C291.522 (4)
O7—C331.419 (4)C21—H210.9800
O8—C341.408 (4)C22—C271.379 (4)
O8—C351.424 (4)C22—C231.387 (4)
N1—C71.313 (4)C23—C241.358 (5)
N1—C81.383 (5)C23—H230.9300
N2—C141.301 (4)C24—C251.386 (6)
N2—C131.384 (4)C24—H240.9300
N3—C151.473 (4)C25—C261.381 (5)
N3—C191.475 (4)C25—H250.9300
N3—C161.486 (4)C26—C271.394 (5)
N4—C201.524 (4)C26—H260.9300
C1—C61.376 (5)C27—C281.514 (4)
C1—C21.397 (5)C28—H280.9800
C1—C151.537 (5)C29—C351.526 (4)
C2—C31.382 (5)C29—H290.9800
C2—H20.9300C30—C321.534 (5)
C3—C41.359 (6)C30—H300.9800
C3—H30.9300C31—C361.488 (5)
C4—C51.392 (6)C31—C371.510 (5)
C4—H40.9300C32—C331.519 (5)
C5—C61.386 (5)C32—H320.9800
C5—H50.9300C33—C351.537 (5)
C6—C71.470 (5)C33—H330.9800
C7—C141.416 (5)C34—C391.506 (5)
C8—C131.398 (5)C34—C381.516 (5)
C8—C91.409 (5)C35—H350.9800
C9—C101.356 (6)C36—H36A0.9600
C9—H90.9300C36—H36B0.9600
C10—C111.396 (7)C36—H36C0.9600
C10—H100.9300C37—H37A0.9600
C11—C121.364 (6)C37—H37B0.9600
C11—H110.9300C37—H37C0.9600
C12—C131.408 (5)C38—H38A0.9600
C12—H120.9300C38—H38B0.9600
C14—C151.530 (4)C38—H38C0.9600
C15—C281.547 (4)C39—H39A0.9600
C16—C171.511 (5)C39—H39B0.9600
C16—H16A0.9700C39—H39C0.9600
C16—H16B0.9700
C22—O1—C21114.7 (2)C29—C21—C20119.5 (2)
C30—O4—C29112.3 (2)O1—C21—H21107.4
C30—O5—C31110.5 (3)C29—C21—H21107.4
C32—O6—C31106.5 (3)C20—C21—H21107.4
C34—O7—C33107.7 (3)O1—C22—C27121.5 (3)
C34—O8—C35107.5 (3)O1—C22—C23116.2 (3)
C7—N1—C8113.4 (3)C27—C22—C23122.2 (3)
C14—N2—C13114.1 (3)C24—C23—C22119.2 (4)
C15—N3—C19107.5 (2)C24—C23—H23120.4
C15—N3—C16119.6 (2)C22—C23—H23120.4
C19—N3—C16107.6 (3)C23—C24—C25120.4 (3)
O2—N4—O3123.4 (3)C23—C24—H24119.8
O2—N4—C20119.7 (3)C25—C24—H24119.8
O3—N4—C20116.9 (3)C26—C25—C24120.0 (4)
C6—C1—C2119.4 (3)C26—C25—H25120.0
C6—C1—C15112.6 (3)C24—C25—H25120.0
C2—C1—C15127.7 (3)C25—C26—C27120.7 (4)
C3—C2—C1118.1 (4)C25—C26—H26119.7
C3—C2—H2120.9C27—C26—H26119.7
C1—C2—H2120.9C22—C27—C26117.6 (3)
C4—C3—C2122.3 (4)C22—C27—C28121.0 (3)
C4—C3—H3118.8C26—C27—C28121.3 (3)
C2—C3—H3118.8C27—C28—C15116.9 (3)
C3—C4—C5120.1 (4)C27—C28—C20114.7 (3)
C3—C4—H4120.0C15—C28—C20105.5 (2)
C5—C4—H4120.0C27—C28—H28106.3
C6—C5—C4118.0 (4)C15—C28—H28106.3
C6—C5—H5121.0C20—C28—H28106.3
C4—C5—H5121.0O4—C29—C21109.8 (2)
C1—C6—C5122.0 (3)O4—C29—C35108.4 (2)
C1—C6—C7108.5 (3)C21—C29—C35111.3 (3)
C5—C6—C7129.4 (4)O4—C29—H29109.1
N1—C7—C14124.2 (3)C21—C29—H29109.1
N1—C7—C6127.8 (3)C35—C29—H29109.1
C14—C7—C6107.9 (3)O4—C30—O5111.1 (3)
N1—C8—C13122.3 (3)O4—C30—C32116.0 (3)
N1—C8—C9118.3 (4)O5—C30—C32103.9 (3)
C13—C8—C9119.4 (4)O4—C30—H30108.5
C10—C9—C8119.6 (5)O5—C30—H30108.5
C10—C9—H9120.2C32—C30—H30108.5
C8—C9—H9120.2O6—C31—O5104.2 (3)
C9—C10—C11121.3 (4)O6—C31—C36108.6 (3)
C9—C10—H10119.4O5—C31—C36109.2 (3)
C11—C10—H10119.4O6—C31—C37110.9 (3)
C12—C11—C10120.4 (4)O5—C31—C37109.2 (3)
C12—C11—H11119.8C36—C31—C37114.2 (4)
C10—C11—H11119.8O6—C32—C33107.3 (3)
C11—C12—C13119.5 (5)O6—C32—C30103.6 (3)
C11—C12—H12120.2C33—C32—C30115.3 (3)
C13—C12—H12120.2O6—C32—H32110.1
N2—C13—C8122.2 (3)C33—C32—H32110.1
N2—C13—C12117.9 (4)C30—C32—H32110.1
C8—C13—C12119.8 (4)O7—C33—C32107.6 (3)
N2—C14—C7123.7 (3)O7—C33—C35104.3 (3)
N2—C14—C15125.0 (3)C32—C33—C35115.0 (3)
C7—C14—C15111.3 (3)O7—C33—H33109.9
N3—C15—C14107.8 (2)C32—C33—H33109.9
N3—C15—C1115.0 (3)C35—C33—H33109.9
C14—C15—C199.6 (3)O8—C34—O7105.4 (3)
N3—C15—C28105.4 (3)O8—C34—C39108.9 (3)
C14—C15—C28114.9 (3)O7—C34—C39107.6 (3)
C1—C15—C28114.2 (2)O8—C34—C38110.6 (3)
N3—C16—C17101.1 (3)O7—C34—C38111.6 (3)
N3—C16—H16A111.5C39—C34—C38112.5 (4)
C17—C16—H16A111.5O8—C35—C29109.7 (3)
N3—C16—H16B111.5O8—C35—C33104.5 (2)
C17—C16—H16B111.5C29—C35—C33111.9 (3)
H16A—C16—H16B109.4O8—C35—H35110.2
C16—C17—C18105.4 (3)C29—C35—H35110.2
C16—C17—H17A110.7C33—C35—H35110.2
C18—C17—H17A110.7C31—C36—H36A109.5
C16—C17—H17B110.7C31—C36—H36B109.5
C18—C17—H17B110.7H36A—C36—H36B109.5
H17A—C17—H17B108.8C31—C36—H36C109.5
C17—C18—C19104.9 (3)H36A—C36—H36C109.5
C17—C18—H18A110.8H36B—C36—H36C109.5
C19—C18—H18A110.8C31—C37—H37A109.5
C17—C18—H18B110.8C31—C37—H37B109.5
C19—C18—H18B110.8H37A—C37—H37B109.5
H18A—C18—H18B108.8C31—C37—H37C109.5
N3—C19—C18105.2 (3)H37A—C37—H37C109.5
N3—C19—C20106.9 (2)H37B—C37—H37C109.5
C18—C19—C20121.0 (3)C34—C38—H38A109.5
N3—C19—H19107.7C34—C38—H38B109.5
C18—C19—H19107.7H38A—C38—H38B109.5
C20—C19—H19107.7C34—C38—H38C109.5
N4—C20—C21111.8 (3)H38A—C38—H38C109.5
N4—C20—C28107.6 (2)H38B—C38—H38C109.5
C21—C20—C28110.8 (2)C34—C39—H39A109.5
N4—C20—C19111.2 (2)C34—C39—H39B109.5
C21—C20—C19110.5 (2)H39A—C39—H39B109.5
C28—C20—C19104.7 (2)C34—C39—H39C109.5
O1—C21—C29103.4 (2)H39A—C39—H39C109.5
O1—C21—C20111.3 (2)H39B—C39—H39C109.5
C6—C1—C2—C31.2 (5)N4—C20—C21—O168.0 (3)
C15—C1—C2—C3174.9 (3)C28—C20—C21—O152.0 (3)
C1—C2—C3—C40.4 (6)C19—C20—C21—O1167.5 (2)
C2—C3—C4—C51.6 (6)N4—C20—C21—C2952.3 (3)
C3—C4—C5—C61.1 (6)C28—C20—C21—C29172.3 (3)
C2—C1—C6—C51.6 (5)C19—C20—C21—C2972.1 (3)
C15—C1—C6—C5176.2 (3)C21—O1—C22—C2731.8 (4)
C2—C1—C6—C7174.6 (3)C21—O1—C22—C23151.3 (3)
C15—C1—C6—C70.0 (4)O1—C22—C23—C24177.6 (3)
C4—C5—C6—C10.4 (5)C27—C22—C23—C240.7 (5)
C4—C5—C6—C7174.9 (3)C22—C23—C24—C250.5 (6)
C8—N1—C7—C140.1 (4)C23—C24—C25—C260.2 (6)
C8—N1—C7—C6177.3 (3)C24—C25—C26—C270.9 (6)
C1—C6—C7—N1179.6 (3)O1—C22—C27—C26176.8 (3)
C5—C6—C7—N13.8 (6)C23—C22—C27—C260.0 (5)
C1—C6—C7—C141.8 (4)O1—C22—C27—C280.3 (5)
C5—C6—C7—C14174.0 (3)C23—C22—C27—C28176.5 (3)
C7—N1—C8—C130.2 (5)C25—C26—C27—C220.7 (5)
C7—N1—C8—C9178.9 (3)C25—C26—C27—C28177.2 (3)
N1—C8—C9—C10179.5 (4)C22—C27—C28—C15128.1 (3)
C13—C8—C9—C101.4 (6)C26—C27—C28—C1555.5 (4)
C8—C9—C10—C111.4 (7)C22—C27—C28—C203.8 (4)
C9—C10—C11—C120.5 (8)C26—C27—C28—C20179.8 (3)
C10—C11—C12—C130.4 (8)N3—C15—C28—C27155.5 (3)
C14—N2—C13—C80.6 (5)C14—C15—C28—C2736.9 (4)
C14—N2—C13—C12179.1 (3)C1—C15—C28—C2777.4 (3)
N1—C8—C13—N20.2 (5)N3—C15—C28—C2026.6 (3)
C9—C8—C13—N2179.2 (3)C14—C15—C28—C2091.9 (3)
N1—C8—C13—C12179.5 (3)C1—C15—C28—C20153.8 (3)
C9—C8—C13—C120.5 (5)N4—C20—C28—C27100.7 (3)
C11—C12—C13—N2179.8 (4)C21—C20—C28—C2721.8 (3)
C11—C12—C13—C80.4 (6)C19—C20—C28—C27140.9 (3)
C13—N2—C14—C70.7 (5)N4—C20—C28—C15129.2 (3)
C13—N2—C14—C15179.3 (3)C21—C20—C28—C15108.3 (3)
N1—C7—C14—N20.3 (5)C19—C20—C28—C1510.8 (3)
C6—C7—C14—N2178.2 (3)C30—O4—C29—C21165.9 (3)
N1—C7—C14—C15179.1 (3)C30—O4—C29—C3572.3 (3)
C6—C7—C14—C153.0 (4)O1—C21—C29—O4160.0 (2)
C19—N3—C15—C1490.3 (3)C20—C21—C29—O435.7 (4)
C16—N3—C15—C14146.7 (3)O1—C21—C29—C3580.0 (3)
C19—N3—C15—C1159.6 (3)C20—C21—C29—C35155.7 (3)
C16—N3—C15—C136.6 (4)C29—O4—C30—O580.2 (3)
C19—N3—C15—C2832.9 (3)C29—O4—C30—C3238.1 (4)
C16—N3—C15—C2890.1 (3)C31—O5—C30—O4126.4 (3)
N2—C14—C15—N361.3 (4)C31—O5—C30—C320.9 (4)
C7—C14—C15—N3117.5 (3)C32—O6—C31—O533.2 (4)
N2—C14—C15—C1178.4 (3)C32—O6—C31—C36149.5 (3)
C7—C14—C15—C12.8 (3)C32—O6—C31—C3784.2 (4)
N2—C14—C15—C2855.9 (4)C30—O5—C31—O620.6 (4)
C7—C14—C15—C28125.4 (3)C30—O5—C31—C36136.5 (3)
C6—C1—C15—N3113.3 (3)C30—O5—C31—C3798.0 (4)
C2—C1—C15—N372.6 (4)C31—O6—C32—C33154.8 (3)
C6—C1—C15—C141.7 (3)C31—O6—C32—C3032.4 (3)
C2—C1—C15—C14172.4 (3)O4—C30—C32—O6103.1 (3)
C6—C1—C15—C28124.7 (3)O5—C30—C32—O619.1 (3)
C2—C1—C15—C2849.4 (4)O4—C30—C32—C3313.9 (4)
C15—N3—C16—C17162.1 (3)O5—C30—C32—C33136.1 (3)
C19—N3—C16—C1739.1 (3)C34—O7—C33—C32142.0 (3)
N3—C16—C17—C1837.0 (3)C34—O7—C33—C3519.4 (3)
C16—C17—C18—C1922.1 (4)O6—C32—C33—O7160.4 (3)
C15—N3—C19—C18155.9 (2)C30—C32—C33—O784.7 (4)
C16—N3—C19—C1825.8 (3)O6—C32—C33—C3583.9 (4)
C15—N3—C19—C2026.1 (3)C30—C32—C33—C3531.0 (4)
C16—N3—C19—C20104.1 (3)C35—O8—C34—O731.9 (3)
C17—C18—C19—N31.7 (3)C35—O8—C34—C39147.1 (3)
C17—C18—C19—C20119.3 (3)C35—O8—C34—C3888.8 (4)
O2—N4—C20—C216.9 (4)C33—O7—C34—O832.1 (3)
O3—N4—C20—C21173.4 (3)C33—O7—C34—C39148.2 (3)
O2—N4—C20—C28128.7 (3)C33—O7—C34—C3888.0 (3)
O3—N4—C20—C2851.6 (4)C34—O8—C35—C29139.5 (3)
O2—N4—C20—C19117.2 (3)C34—O8—C35—C3319.3 (3)
O3—N4—C20—C1962.5 (4)O4—C29—C35—O864.6 (3)
N3—C19—C20—N4107.3 (3)C21—C29—C35—O856.2 (3)
C18—C19—C20—N412.9 (4)O4—C29—C35—C3350.9 (4)
N3—C19—C20—C21128.0 (3)C21—C29—C35—C33171.7 (2)
C18—C19—C20—C21111.9 (3)O7—C33—C35—O80.1 (3)
N3—C19—C20—C288.6 (3)C32—C33—C35—O8117.7 (3)
C18—C19—C20—C28128.8 (3)O7—C33—C35—C29118.6 (3)
C22—O1—C21—C29172.3 (2)C32—C33—C35—C291.0 (4)
C22—O1—C21—C2058.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the N1/C7/C14/N2/C13/C8 ring.
D—H···AD—HH···AD···AD—H···A
C35—H35···O2i0.982.413.390 (4)177
C16—H16A···O30.972.593.237 (5)124
C21—H21···N20.982.483.305 (4)141
C30—H30···Cg8ii0.982.933.895 (4)168
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the N1/C7/C14/N2/C13/C8 ring.
D—H···AD—HH···AD···AD—H···A
C35—H35···O2i0.982.413.390 (4)177.0
C16—H16A···O30.972.593.237 (5)124.0
C21—H21···N20.982.483.305 (4)141.4
C30—H30···Cg8ii0.982.933.895 (4)168
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

References

First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJames, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationSeitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds