organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[(Di­methyl­amino)­methyl­­idene]-4-phenyl-1-(prop-2-yn­yl)-1H-1,5-benzodiazepin-2(3H)-one

aLaboratoire de Chimie Moléculaire, Département de Chimie, Faculté des Sciences-Semlalia, BP 2390, Université Cadi Ayyad, 40001 Marrakech, Morocco, bDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, cDepartment of Chemistry, University of Aveiro, QOPNA, 3810-193 Aveiro, Portugal, and dEquipe de Chimie des Matériaux et de l'Environnement, FSTG–Marrakech, Université Cadi Ayyad, Bd Abdelkrim Khattabi, BP 549, Marrakech, Morocco
*Correspondence e-mail: eh_soumhi@yahoo.fr

(Received 5 November 2013; accepted 4 December 2013; online 11 December 2013)

The title compound, C21H19N3O, exhibits an E configuration with respect to the C=C bond between the benzodiazepine and tri­methyl­amine groups. The seven-membered diazepine ring displays a boat conformation. In the crystal, mol­ecules are linked by a C—H⋯O hydrogen bond, forming a chain along [110].

Related literature

For benzodiazepine derivatives, see: Di Braccio et al. (2001[Di Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935-949.]); Pevarello et al. (1993[Pevarello, P., Amici, R., Colombo, M. & Varasi, M. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 2151-2152.]). For related structures, see: Loughzail et al. (2011[Loughzail, M., Fernandes, J. A., Baouid, A., Essaber, M., Cavaleiro, J. A. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2075-o2076.]); Boudina et al. (2006[Boudina, A., Baouid, A., Hasnaoui, A. & Essaber, M. (2006). Synth. Commun. 36, 573-579.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19N3O

  • Mr = 329.39

  • Monoclinic, C 2/c

  • a = 12.8122 (10) Å

  • b = 13.9317 (12) Å

  • c = 19.7795 (14) Å

  • β = 94.647 (3)°

  • V = 3519.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 300 K

  • 0.13 × 0.10 × 0.08 mm

Data collection
  • Bruker X8 KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.990, Tmax = 0.994

  • 21544 measured reflections

  • 3220 independent reflections

  • 2555 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 1.02

  • 3220 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.50 3.415 (2) 170
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The benzodiazepine nucleus is extremely important, as it is the base of several drugs and other biologically active compounds with different properties. A large number of structurally modified benzodiazepines have been prepared and evaluated concerning their biological activity (Di Braccio et al., 2001; Pevarello et al., 1993) and may be considered support for the synthesis of more active heterocyclic systems. In this class of compounds, our research team is interested in the synthesis of novel benzodiazepines derived (Loughzail et al., 2011; Boudina et al., 2006). Here we wish to report the synthesis via phase transfer catalysis and the crystallographic studies of the title compound. The title compound was prepared by action of propargyl bromide with 3-dimethylaminomethylene-4-phenyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one using a catalytic amount of benzyltriethylammonium chloride (TBA-Cl) and sodium hydroxide aqueous solution in benzene. The obtained compound was typically characterized by 1H, 13C NMR, IR and mass spectroscopy, and the stereochemistry (E) of the benzodiazepine was determined by X-ray diffraction. The main geometric feature of the title compound is in good agreement with that observed in a similar compound (Loughzail et al., 2011).

Related literature top

For benzodiazepine derivatives, see: Di Braccio et al. (2001); Pevarello et al. (1993). For related structures, see: Loughzail et al. (2011); Boudina et al. (2006).

Experimental top

A mixture of 0.6 g (2.06 mmol) of 3-[(dimethylamino)methylene]-4-phenyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one, 0.26 g (1.14 mmol) of benzyltriethylammonium chloride and 3 ml of a 50% sodium hydroxide aqueous solution in benzene (25 ml) was stirred at ambient temperature. After 15 min, propagyl bromide was added slowly. After 8 h of stirring at 298 K, the reaction mixture was diluted with water (30 ml). The organic layer was extracted with benzene (3× 10 ml), dried over anhydrous sodium sulfate and evaporated under vacuum. The title compound was isolated by column chromatography on silica gel using hexane/ethyl acetate as eluent. The solid product was recrystallized in dichloromethane to give yellow crystals of the title compound.

Yield: 93%, m.p. 488–490 K. 1H NMR (300 MHz, CDCl3): δ 2.36 (t, J = 2.27 Hz, 1H, HCC), 2.58 (s, 6H, (CH3)2N), 4.21 and 4.29 (AB system, d, J = 17.9 Hz, 2H, N—CH2—C), 6.46 (s, 1H, C=CH—N), 7.15–8.11 (9H, Ar—H). 13C NMR (75 MHz, CDCl3): δ 37.1 (1 C, N—CH2—C), 42.6 (N(CH3)2), 71.9 (1 C, HCC), 78.5 (1 C, HCC), 97.8 (C-3), 120.9–140.9 (Ar—C, =CH), 164.8 (1 C, Ph—C=N), 169 (1 C, CO).

Refinement top

All H-atoms were located in a difference map and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso = 1.2Ueq(C).

Structure description top

The benzodiazepine nucleus is extremely important, as it is the base of several drugs and other biologically active compounds with different properties. A large number of structurally modified benzodiazepines have been prepared and evaluated concerning their biological activity (Di Braccio et al., 2001; Pevarello et al., 1993) and may be considered support for the synthesis of more active heterocyclic systems. In this class of compounds, our research team is interested in the synthesis of novel benzodiazepines derived (Loughzail et al., 2011; Boudina et al., 2006). Here we wish to report the synthesis via phase transfer catalysis and the crystallographic studies of the title compound. The title compound was prepared by action of propargyl bromide with 3-dimethylaminomethylene-4-phenyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one using a catalytic amount of benzyltriethylammonium chloride (TBA-Cl) and sodium hydroxide aqueous solution in benzene. The obtained compound was typically characterized by 1H, 13C NMR, IR and mass spectroscopy, and the stereochemistry (E) of the benzodiazepine was determined by X-ray diffraction. The main geometric feature of the title compound is in good agreement with that observed in a similar compound (Loughzail et al., 2011).

For benzodiazepine derivatives, see: Di Braccio et al. (2001); Pevarello et al. (1993). For related structures, see: Loughzail et al. (2011); Boudina et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability ellipsoids.
(E)-3-[(Dimethylamino)methylidene]-4-phenyl-1-(prop-2-ynyl)-1H-1,5-benzodiazepin-2(3H)-one top
Crystal data top
C21H19N3OF(000) = 1392
Mr = 329.39Dx = 1.243 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 12.8122 (10) Åθ = 10–15°
b = 13.9317 (12) ŵ = 0.08 mm1
c = 19.7795 (14) ÅT = 300 K
β = 94.647 (3)°Block, yellow
V = 3519.0 (5) Å30.13 × 0.10 × 0.08 mm
Z = 8
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
3220 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 25.4°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.990, Tmax = 0.994k = 1613
21544 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.099H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0423P)2 + 1.6343P]
where P = (Fo2 + 2Fc2)/3
3220 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C21H19N3OV = 3519.0 (5) Å3
Mr = 329.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.8122 (10) ŵ = 0.08 mm1
b = 13.9317 (12) ÅT = 300 K
c = 19.7795 (14) Å0.13 × 0.10 × 0.08 mm
β = 94.647 (3)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
3220 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2555 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.994Rint = 0.032
21544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
3220 reflectionsΔρmin = 0.14 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23744 (12)0.00078 (11)0.47258 (7)0.0493 (4)
H1A0.17590.04120.46560.059*
H1B0.28860.03450.50260.059*
C20.20897 (11)0.08866 (12)0.50454 (8)0.0500 (4)
C30.18446 (14)0.15873 (15)0.53145 (9)0.0687 (5)
H30.16490.21460.55290.082*
C40.27086 (11)0.06084 (10)0.36193 (7)0.0418 (3)
C50.30050 (10)0.04291 (10)0.29321 (7)0.0387 (3)
C60.27571 (10)0.05269 (10)0.26392 (7)0.0396 (3)
C70.19842 (11)0.05802 (11)0.20333 (7)0.0449 (4)
C80.20304 (13)0.13347 (11)0.15770 (8)0.0545 (4)
H80.25630.17880.16380.065*
C90.12883 (16)0.14127 (14)0.10342 (9)0.0710 (5)
H90.13310.19130.07260.085*
C100.04882 (16)0.07593 (18)0.09453 (10)0.0811 (6)
H100.00170.08230.05830.097*
C110.04357 (15)0.00075 (17)0.13950 (11)0.0806 (6)
H110.01070.04360.13360.097*
C120.11855 (13)0.00900 (13)0.19330 (9)0.0603 (4)
H120.11550.06060.22290.072*
C130.37939 (11)0.13592 (10)0.34662 (7)0.0418 (3)
C140.46264 (12)0.20107 (11)0.34809 (9)0.0555 (4)
H140.47130.23850.31000.067*
C150.53236 (12)0.21109 (13)0.40479 (10)0.0630 (5)
H150.58860.25320.40430.076*
C160.51758 (12)0.15823 (13)0.46185 (9)0.0598 (4)
H160.56340.16530.50050.072*
C170.43540 (11)0.09509 (11)0.46209 (8)0.0497 (4)
H170.42570.06050.50130.060*
C180.36619 (10)0.08181 (10)0.40482 (7)0.0396 (3)
C190.33035 (10)0.12223 (10)0.25861 (7)0.0418 (3)
H190.32080.18040.28030.050*
C200.40194 (12)0.04771 (12)0.16008 (8)0.0537 (4)
H20A0.46300.06390.13740.064*
H20B0.41750.00560.19000.064*
H20C0.34600.03060.12710.064*
C210.39525 (14)0.22348 (12)0.17186 (9)0.0653 (5)
H21A0.46970.22960.17060.078*
H21B0.36200.23000.12680.078*
H21C0.37010.27270.20040.078*
N10.28111 (9)0.01576 (8)0.40710 (6)0.0415 (3)
N20.30977 (9)0.13373 (8)0.28823 (6)0.0446 (3)
N30.37076 (9)0.12945 (9)0.19895 (6)0.0462 (3)
O10.23521 (10)0.13715 (8)0.38040 (6)0.0660 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0566 (9)0.0513 (9)0.0418 (8)0.0016 (7)0.0155 (7)0.0015 (7)
C20.0463 (8)0.0615 (10)0.0434 (8)0.0012 (7)0.0107 (6)0.0030 (8)
C30.0633 (10)0.0749 (13)0.0700 (12)0.0078 (9)0.0182 (9)0.0209 (10)
C40.0450 (7)0.0363 (8)0.0452 (8)0.0025 (6)0.0109 (6)0.0006 (6)
C50.0420 (7)0.0362 (7)0.0384 (7)0.0030 (6)0.0065 (6)0.0013 (6)
C60.0440 (7)0.0383 (8)0.0377 (7)0.0002 (6)0.0114 (6)0.0005 (6)
C70.0484 (8)0.0449 (8)0.0421 (8)0.0077 (7)0.0078 (6)0.0031 (6)
C80.0659 (10)0.0487 (9)0.0493 (9)0.0135 (8)0.0064 (7)0.0002 (7)
C90.0899 (14)0.0705 (12)0.0518 (10)0.0326 (11)0.0009 (9)0.0031 (9)
C100.0723 (13)0.1024 (17)0.0650 (12)0.0292 (12)0.0170 (10)0.0110 (12)
C110.0597 (11)0.0990 (17)0.0804 (14)0.0018 (11)0.0105 (10)0.0117 (13)
C120.0547 (9)0.0672 (11)0.0585 (10)0.0035 (8)0.0013 (8)0.0025 (8)
C130.0461 (8)0.0360 (8)0.0448 (8)0.0011 (6)0.0122 (6)0.0075 (6)
C140.0625 (9)0.0452 (9)0.0621 (10)0.0125 (7)0.0257 (8)0.0110 (8)
C150.0442 (8)0.0583 (11)0.0880 (13)0.0119 (8)0.0155 (8)0.0270 (10)
C160.0444 (8)0.0629 (11)0.0711 (11)0.0035 (8)0.0023 (8)0.0188 (9)
C170.0486 (8)0.0495 (9)0.0508 (9)0.0080 (7)0.0017 (7)0.0060 (7)
C180.0390 (7)0.0369 (7)0.0440 (8)0.0019 (6)0.0098 (6)0.0055 (6)
C190.0438 (7)0.0373 (8)0.0449 (8)0.0043 (6)0.0078 (6)0.0009 (6)
C200.0531 (9)0.0621 (10)0.0480 (9)0.0015 (7)0.0166 (7)0.0018 (8)
C210.0720 (11)0.0573 (11)0.0690 (11)0.0003 (9)0.0213 (9)0.0224 (9)
N10.0481 (6)0.0402 (7)0.0375 (6)0.0046 (5)0.0121 (5)0.0020 (5)
N20.0569 (7)0.0367 (7)0.0415 (7)0.0019 (5)0.0111 (5)0.0003 (5)
N30.0501 (7)0.0442 (7)0.0458 (7)0.0024 (5)0.0138 (6)0.0082 (6)
O10.0993 (9)0.0428 (6)0.0605 (7)0.0180 (6)0.0342 (6)0.0033 (5)
Geometric parameters (Å, º) top
C1—C21.457 (2)C12—H120.9300
C1—N11.4700 (18)C13—C181.398 (2)
C1—H1A0.9700C13—C141.399 (2)
C1—H1B0.9700C13—N21.4012 (18)
C2—C31.167 (2)C14—C151.383 (2)
C3—H30.9300C14—H140.9300
C4—O11.2244 (16)C15—C161.373 (3)
C4—N11.3911 (18)C15—H150.9300
C4—C51.4622 (19)C16—C171.372 (2)
C5—C191.3705 (19)C16—H160.9300
C5—C61.4767 (19)C17—C181.393 (2)
C6—N21.2893 (17)C17—H170.9300
C6—C71.493 (2)C18—N11.4301 (17)
C7—C121.388 (2)C19—N31.3303 (18)
C7—C81.390 (2)C19—H190.9300
C8—C91.380 (2)C20—N31.4482 (19)
C8—H80.9300C20—H20A0.9600
C9—C101.372 (3)C20—H20B0.9600
C9—H90.9300C20—H20C0.9600
C10—C111.379 (3)C21—N31.4590 (19)
C10—H100.9300C21—H21A0.9600
C11—C121.381 (2)C21—H21B0.9600
C11—H110.9300C21—H21C0.9600
C2—C1—N1112.02 (12)C15—C14—C13121.58 (16)
C2—C1—H1A109.2C15—C14—H14119.2
N1—C1—H1A109.2C13—C14—H14119.2
C2—C1—H1B109.2C16—C15—C14119.29 (15)
N1—C1—H1B109.2C16—C15—H15120.4
H1A—C1—H1B107.9C14—C15—H15120.4
C3—C2—C1177.97 (17)C17—C16—C15120.23 (15)
C2—C3—H3180.0C17—C16—H16119.9
O1—C4—N1119.51 (13)C15—C16—H16119.9
O1—C4—C5123.84 (13)C16—C17—C18121.35 (15)
N1—C4—C5116.61 (12)C16—C17—H17119.3
C19—C5—C4115.50 (12)C18—C17—H17119.3
C19—C5—C6126.24 (12)C17—C18—C13119.11 (13)
C4—C5—C6117.07 (11)C17—C18—N1119.76 (13)
N2—C6—C5126.02 (12)C13—C18—N1121.10 (12)
N2—C6—C7115.98 (12)N3—C19—C5130.42 (13)
C5—C6—C7117.85 (12)N3—C19—H19114.8
C12—C7—C8119.06 (14)C5—C19—H19114.8
C12—C7—C6120.98 (13)N3—C20—H20A109.5
C8—C7—C6119.89 (14)N3—C20—H20B109.5
C9—C8—C7120.13 (17)H20A—C20—H20B109.5
C9—C8—H8119.9N3—C20—H20C109.5
C7—C8—H8119.9H20A—C20—H20C109.5
C10—C9—C8120.55 (18)H20B—C20—H20C109.5
C10—C9—H9119.7N3—C21—H21A109.5
C8—C9—H9119.7N3—C21—H21B109.5
C9—C10—C11119.76 (18)H21A—C21—H21B109.5
C9—C10—H10120.1N3—C21—H21C109.5
C11—C10—H10120.1H21A—C21—H21C109.5
C10—C11—C12120.28 (19)H21B—C21—H21C109.5
C10—C11—H11119.9C4—N1—C18120.39 (11)
C12—C11—H11119.9C4—N1—C1115.01 (11)
C11—C12—C7120.19 (18)C18—N1—C1118.30 (11)
C11—C12—H12119.9C6—N2—C13120.00 (12)
C7—C12—H12119.9C19—N3—C20123.73 (12)
C18—C13—C14118.40 (14)C19—N3—C21120.29 (13)
C18—C13—N2123.75 (12)C20—N3—C21115.74 (12)
C14—C13—N2117.69 (13)
O1—C4—C5—C1927.5 (2)C16—C17—C18—C131.7 (2)
N1—C4—C5—C19154.90 (12)C16—C17—C18—N1179.66 (13)
O1—C4—C5—C6140.80 (15)C14—C13—C18—C170.53 (19)
N1—C4—C5—C636.78 (17)N2—C13—C18—C17174.84 (12)
C19—C5—C6—N2133.01 (15)C14—C13—C18—N1178.43 (12)
C4—C5—C6—N260.09 (18)N2—C13—C18—N13.1 (2)
C19—C5—C6—C751.59 (19)C4—C5—C19—N3172.74 (14)
C4—C5—C6—C7115.32 (14)C6—C5—C19—N320.2 (2)
N2—C6—C7—C12146.20 (14)O1—C4—N1—C18146.04 (14)
C5—C6—C7—C1229.67 (19)C5—C4—N1—C1836.26 (18)
N2—C6—C7—C830.81 (19)O1—C4—N1—C15.6 (2)
C5—C6—C7—C8153.32 (13)C5—C4—N1—C1172.08 (12)
C12—C7—C8—C90.2 (2)C17—C18—N1—C4121.72 (14)
C6—C7—C8—C9176.90 (14)C13—C18—N1—C460.39 (18)
C7—C8—C9—C101.2 (3)C17—C18—N1—C129.02 (18)
C8—C9—C10—C111.2 (3)C13—C18—N1—C1148.87 (13)
C9—C10—C11—C120.1 (3)C2—C1—N1—C4155.14 (13)
C10—C11—C12—C71.4 (3)C2—C1—N1—C1852.58 (17)
C8—C7—C12—C111.5 (2)C5—C6—N2—C132.0 (2)
C6—C7—C12—C11175.58 (15)C7—C6—N2—C13177.51 (11)
C18—C13—C14—C151.4 (2)C18—C13—N2—C645.70 (19)
N2—C13—C14—C15177.09 (14)C14—C13—N2—C6138.91 (14)
C13—C14—C15—C162.2 (2)C5—C19—N3—C206.6 (2)
C14—C15—C16—C171.0 (2)C5—C19—N3—C21179.16 (15)
C15—C16—C17—C181.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.503.415 (2)170
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.503.415 (2)170
Symmetry code: (i) x+1/2, y+1/2, z.
 

References

First citationBoudina, A., Baouid, A., Hasnaoui, A. & Essaber, M. (2006). Synth. Commun. 36, 573–579.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M. & Marongiu, M. E. (2001). Eur. J. Med. Chem. 36, 935–949.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoughzail, M., Fernandes, J. A., Baouid, A., Essaber, M., Cavaleiro, J. A. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2075–o2076.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPevarello, P., Amici, R., Colombo, M. & Varasi, M. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 2151–2152.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds