organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­tris­­[2-(di­benzyl­amino)­eth­yl]ammonium iodide

aDepartment of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA, and bCAMCOR, University of Oregon, 1443 E. 13th Avenue, Eugene, Oregon 97403, USA
*Correspondence e-mail: dtyler@uoregon.edu

(Received 11 November 2013; accepted 19 November 2013; online 4 December 2013)

In the title quaternary ammonium salt, C55H61N4+·I, all three N,N-di­benzyl­ethanamine, –(CH2)2N(CH2C6H5)2, groups have different conformations. The N—C—C—N torsion angles are significantly different [89.86 (13), 162.61 (10) and 175.70 (10)°] and the dihedral angles between the phenyl rings in these groups are different as well [58.21 (4), 43.73 (4) and 76.72 (5)°]. In the crystal, the I anions fill empty spaces between the bulky cations. The cations and anions are linked by weak C—H⋯I inter­actions, forming a chain along [110].

Related literature

For related ligand structures, see: Farrell et al. (2003[Farrell, D., Gloe, K., Gloe, K., Goretzki, G., McKee, V., Nelson, J., Nieuwenhuyzen, M., Pal, I., Stephan, H. & Town, R. M. (2003). Dalton Trans. pp. 1961-1968.]). For the application of similar ligands coordinating to copper in the catalysis of atom-transfer radical polymerization or click reactions, see: Barré et al. (2004[Barré, G., Taton, D., Lastécouères, D. & Vincent, J.-M. (2004). J. Am. Chem. Soc. 126, 7764-7765.]); Candelon et al. (2008[Candelon, N., Lastécouères, D., Diallo, A. K., Ruiz Aranzaes, J., Astruc, D. & Vincent, J.-M. (2008). Chem. Commun. pp. 741-743.]); Liang et al. (2011[Liang, L., Ruiz, J. & Astruc, D. (2011). Adv. Synth. Catal. 353, 3434-3450.]); Brady & Tyler (2012[Brady, S. E. & Tyler, D. R. (2012). J. Inorg. Organomet. Polym. Mater. 23, 158-166.]).

[Scheme 1]

Experimental

Crystal data
  • C55H61N4+·I

  • Mr = 904.98

  • Triclinic, [P \overline 1]

  • a = 11.1254 (10) Å

  • b = 14.3871 (13) Å

  • c = 15.9525 (15) Å

  • α = 94.491 (3)°

  • β = 101.972 (3)°

  • γ = 106.229 (3)°

  • V = 2372.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.25 × 0.24 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.842, Tmax = 0.926

  • 53881 measured reflections

  • 10377 independent reflections

  • 9802 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.049

  • S = 1.04

  • 10377 reflections

  • 542 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C39—H39A⋯I1i 0.95 3.01 3.893 (2) 154
C49—H49B⋯I1ii 0.99 2.86 3.8187 (13) 162
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Work in our laboratory has focused on the preparation of nonlinear polymers containing metal-metal bonds. Most recently, synthetic methods using the Huisgen 1,3-dipolar cycloaddition click reaction between 1,3,5-triethynylbenzene and an azide-functionalized molybdenum dimer, [(η5-C5H4(CH2)3N3)Mo(CO)3]2, have been used. It was concluded that 1,3,5-triethynylbenzene could not be coupled to azide functionalized molecules under click reaction conditions. 1,3,5-Triethynylbenzene reacted with Cp*Ru(COD)Cl instead of clicking, and Cu(IMes)Cl was too sterically bulky to catalyze three cycloadditions (Brady & Tyler, 2012). However, similar results demonstrated that [Cu(I)tren(C18H37)6]Br can catalyze the preparation of dendrimers by the Huisgen click reaction (Candelon et al., 2008; Barré et al., 2004). Dendritic analogues of the catalyst have also been prepared and used to synthesize second generation dendrimers with 54 terminal groups (Liang et al., 2011). These examples suggest that sterics do not effect the catalytic activity of [Cu(I)tren(C18H37)6]Br. This warranted the examination of [Cu(I)tren(C18H37)6]Br as a catalyst to prepare a star polymer with 1,3,5-triethynylbenzene.

The title compound (1) was prepared following literature preparations for [Cu(I)tren(C18H37)6]Br. Unfortunately, 1 did not coordinate to copper so it was not examined as a click chemistry catalyst.

Related literature top

For related ligand structures, see: Farrell et al. (2003). For the application of similar ligands coordinated to copper in the catalysis of atom-transfer radical polymerization or click reactions, see: Barré et al. (2004); Candelon et al. (2008); Liang et al. (2011); Brady & Tyler (2012).

Experimental top

The title compound was prepared based on a literature procedure in which three molar equivalents of bromomethylbenzene were used (Farrell et al., 2003). As reported here, six molar equivalents of bromomethylbenzene were used. Tren (0.15 g, 1.04 mmol) was dissolved in acetonitrile (20 ml) and degassed. K2CO3 (0.55 g, 4.16 mmol) and KI (0.66 g, 4.24 mmol) were added under nitrogen. A degassed solution of bromomethylbenzene (1.08 g, 6.30 mmol) in acetonitrile (20 ml) was cannulated into the solution of deprotonated tren. The reaction solution was refluxed at 95 °C for 16 h after which time the reaction mixture was still cloudy and white. The solution was cooled to 0 °C in an ice bath and the solvent was removed in vacuo. The resulting white powder was dissolved in dichloromethane and washed with water, Na2S2O3, and water again. The solvent was removed in vacuo to yield a yellow oil. The oil was dissolved in ethyl acetate (30 ml) and heptane (15 ml) and slowly heated. Upon heating, a white powder precipitated. Based on the 1H NMR spectrum and the melting point (found: 31–125 °C, reported 50–53 °C) the product is not pure. X-ray quality crystals were prepared by slow evaporation from an ethanol solution.

Refinement top

H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and refined in a rigid group model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Work in our laboratory has focused on the preparation of nonlinear polymers containing metal-metal bonds. Most recently, synthetic methods using the Huisgen 1,3-dipolar cycloaddition click reaction between 1,3,5-triethynylbenzene and an azide-functionalized molybdenum dimer, [(η5-C5H4(CH2)3N3)Mo(CO)3]2, have been used. It was concluded that 1,3,5-triethynylbenzene could not be coupled to azide functionalized molecules under click reaction conditions. 1,3,5-Triethynylbenzene reacted with Cp*Ru(COD)Cl instead of clicking, and Cu(IMes)Cl was too sterically bulky to catalyze three cycloadditions (Brady & Tyler, 2012). However, similar results demonstrated that [Cu(I)tren(C18H37)6]Br can catalyze the preparation of dendrimers by the Huisgen click reaction (Candelon et al., 2008; Barré et al., 2004). Dendritic analogues of the catalyst have also been prepared and used to synthesize second generation dendrimers with 54 terminal groups (Liang et al., 2011). These examples suggest that sterics do not effect the catalytic activity of [Cu(I)tren(C18H37)6]Br. This warranted the examination of [Cu(I)tren(C18H37)6]Br as a catalyst to prepare a star polymer with 1,3,5-triethynylbenzene.

The title compound (1) was prepared following literature preparations for [Cu(I)tren(C18H37)6]Br. Unfortunately, 1 did not coordinate to copper so it was not examined as a click chemistry catalyst.

For related ligand structures, see: Farrell et al. (2003). For the application of similar ligands coordinated to copper in the catalysis of atom-transfer radical polymerization or click reactions, see: Barré et al. (2004); Candelon et al. (2008); Liang et al. (2011); Brady & Tyler (2012).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are omitted for clarity.
Benzyltris[2-(dibenzylamino)ethyl]ammonium iodide top
Crystal data top
C55H61N4+·IZ = 2
Mr = 904.98F(000) = 944
Triclinic, P1Dx = 1.267 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1254 (10) ÅCell parameters from 9619 reflections
b = 14.3871 (13) Åθ = 2.6–36.2°
c = 15.9525 (15) ŵ = 0.72 mm1
α = 94.491 (3)°T = 100 K
β = 101.972 (3)°Prizm, colourless
γ = 106.229 (3)°0.25 × 0.24 × 0.11 mm
V = 2372.9 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
10377 independent reflections
Radiation source: fine-focus sealed tube9802 reflections with I > 2σ(I)
Triumph mirror monochromatorRint = 0.030
φ and ω scansθmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1414
Tmin = 0.842, Tmax = 0.926k = 1816
53881 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0153P)2 + 1.324P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
10377 reflectionsΔρmax = 0.38 e Å3
542 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00066 (14)
Crystal data top
C55H61N4+·Iγ = 106.229 (3)°
Mr = 904.98V = 2372.9 (4) Å3
Triclinic, P1Z = 2
a = 11.1254 (10) ÅMo Kα radiation
b = 14.3871 (13) ŵ = 0.72 mm1
c = 15.9525 (15) ÅT = 100 K
α = 94.491 (3)°0.25 × 0.24 × 0.11 mm
β = 101.972 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
10377 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
9802 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.926Rint = 0.030
53881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
10377 reflectionsΔρmin = 0.42 e Å3
542 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.258461 (8)0.304462 (6)0.946780 (6)0.01859 (3)
N10.65830 (9)0.40260 (7)0.14758 (6)0.0115 (2)
N20.92688 (10)0.57153 (8)0.27511 (7)0.0148 (2)
N30.47013 (10)0.54906 (8)0.24366 (7)0.0153 (2)
N40.46942 (10)0.17927 (8)0.22778 (7)0.0174 (2)
C10.79639 (11)0.40571 (9)0.18740 (8)0.0141 (2)
H1A0.81820.35570.15240.017*
H1B0.80060.38720.24620.017*
C20.89895 (12)0.50425 (9)0.19438 (8)0.0157 (2)
H2A0.98000.49170.18820.019*
H2B0.87080.53730.14520.019*
C31.01512 (12)0.66504 (10)0.26363 (9)0.0194 (3)
H3A0.97790.68440.20830.023*
H3B1.09820.65490.25930.023*
C41.04092 (13)0.74770 (10)0.33570 (9)0.0208 (3)
C50.94103 (15)0.76527 (11)0.36803 (10)0.0282 (3)
H5A0.85570.72240.34680.034*
C60.96470 (19)0.84485 (12)0.43104 (12)0.0383 (4)
H6A0.89590.85570.45310.046*
C71.08893 (19)0.90862 (11)0.46183 (11)0.0397 (4)
H7A1.10530.96330.50460.048*
C81.18838 (18)0.89196 (11)0.42988 (11)0.0358 (4)
H8A1.27330.93560.45050.043*
C91.16503 (15)0.81164 (11)0.36767 (9)0.0266 (3)
H9A1.23440.80030.34680.032*
C100.98820 (12)0.53424 (10)0.35122 (9)0.0178 (3)
H10A1.04360.59070.39500.021*
H10B1.04470.49830.33310.021*
C110.89454 (12)0.46742 (10)0.39318 (8)0.0166 (2)
C120.90450 (13)0.37526 (10)0.40752 (8)0.0196 (3)
H12A0.96920.35350.38910.024*
C130.82121 (14)0.31463 (11)0.44837 (9)0.0235 (3)
H13A0.82970.25220.45790.028*
C140.72586 (14)0.34508 (12)0.47524 (9)0.0255 (3)
H14A0.66840.30360.50280.031*
C150.71505 (14)0.43675 (12)0.46156 (9)0.0254 (3)
H15A0.64990.45800.47990.030*
C160.79869 (13)0.49771 (11)0.42131 (9)0.0205 (3)
H16A0.79070.56050.41280.025*
C170.62902 (11)0.48370 (9)0.19850 (8)0.0134 (2)
H17A0.68860.54710.19260.016*
H17B0.64800.47580.26050.016*
C180.49129 (12)0.48881 (9)0.17232 (8)0.0152 (2)
H18A0.47890.51850.11850.018*
H18B0.42910.42230.16180.018*
C190.54626 (13)0.65255 (10)0.25103 (9)0.0191 (3)
H19A0.50500.68210.20360.023*
H19B0.63350.65590.24380.023*
C200.55863 (12)0.71169 (10)0.33658 (9)0.0187 (3)
C210.57529 (13)0.67301 (11)0.41403 (9)0.0227 (3)
H21A0.57340.60650.41310.027*
C220.59459 (14)0.73056 (12)0.49277 (10)0.0281 (3)
H22A0.60610.70330.54510.034*
C230.59709 (16)0.82747 (12)0.49503 (10)0.0328 (4)
H23A0.61090.86690.54880.039*
C240.57942 (19)0.86637 (12)0.41876 (11)0.0377 (4)
H24A0.58010.93260.42000.045*
C250.56057 (16)0.80891 (11)0.33983 (10)0.0290 (3)
H25A0.54890.83650.28770.035*
C260.33205 (12)0.54272 (10)0.22862 (9)0.0194 (3)
H26A0.30370.56040.17070.023*
H26B0.32200.59120.27210.023*
C270.24552 (12)0.44284 (10)0.23376 (9)0.0198 (3)
C280.15843 (13)0.38517 (11)0.15984 (10)0.0251 (3)
H28A0.15690.40750.10530.030*
C290.07355 (15)0.29513 (12)0.16496 (12)0.0349 (4)
H29A0.01490.25650.11400.042*
C300.07459 (16)0.26210 (12)0.24384 (14)0.0391 (4)
H30A0.01560.20130.24760.047*
C310.16209 (16)0.31805 (13)0.31769 (12)0.0355 (4)
H31A0.16390.29490.37200.043*
C320.24727 (14)0.40774 (12)0.31282 (10)0.0263 (3)
H32A0.30710.44540.36380.032*
C330.57049 (11)0.30202 (9)0.15075 (8)0.0133 (2)
H33A0.59780.25280.11890.016*
H33B0.48180.29750.11960.016*
C340.56666 (13)0.27480 (10)0.24087 (8)0.0194 (3)
H34A0.65190.27130.27160.023*
H34B0.54290.32400.27550.023*
C350.34292 (14)0.18551 (11)0.23591 (10)0.0237 (3)
H35A0.32580.24190.20940.028*
H35B0.34270.19610.29790.028*
C360.23870 (13)0.09302 (11)0.19179 (11)0.0254 (3)
C370.21898 (14)0.06601 (11)0.10272 (11)0.0285 (3)
H37A0.27030.10690.07120.034*
C380.12591 (15)0.01933 (13)0.05975 (14)0.0415 (4)
H38A0.11430.03700.00070.050*
C390.04972 (16)0.07896 (13)0.10474 (18)0.0511 (6)
H39A0.01510.13710.07510.061*
C400.06773 (16)0.05418 (14)0.19217 (18)0.0540 (7)
H40A0.01570.09570.22290.065*
C410.16278 (15)0.03243 (13)0.23692 (14)0.0389 (4)
H41A0.17480.04920.29750.047*
C420.51333 (13)0.10956 (10)0.27861 (9)0.0211 (3)
H42A0.43790.05450.28110.025*
H42B0.55700.14220.33850.025*
C430.60544 (13)0.07035 (10)0.23936 (10)0.0218 (3)
C440.71526 (15)0.05800 (12)0.29130 (11)0.0302 (3)
H44A0.73680.07890.35200.036*
C450.79374 (16)0.01507 (14)0.25478 (13)0.0412 (4)
H45A0.86840.00670.29070.049*
C460.76366 (18)0.01528 (16)0.16680 (15)0.0492 (5)
H46A0.81600.04610.14220.059*
C470.65645 (19)0.00045 (17)0.11451 (14)0.0519 (6)
H47A0.63660.01940.05360.062*
C480.57798 (15)0.04207 (13)0.15092 (11)0.0353 (4)
H48A0.50460.05180.11470.042*
C490.64012 (12)0.41892 (9)0.05210 (8)0.0136 (2)
H49A0.54710.40680.02660.016*
H49B0.68490.48830.04980.016*
C500.68975 (13)0.35503 (10)0.00260 (8)0.0163 (2)
C510.81668 (14)0.38692 (12)0.01157 (9)0.0239 (3)
H51A0.87250.44860.01830.029*
C520.86189 (16)0.32936 (14)0.06375 (10)0.0332 (4)
H52A0.94880.35100.06840.040*
C530.78044 (18)0.24072 (14)0.10873 (10)0.0366 (4)
H53A0.81100.20170.14500.044*
C540.65424 (18)0.20851 (12)0.10119 (10)0.0320 (4)
H54A0.59860.14740.13230.038*
C550.60823 (14)0.26518 (10)0.04828 (9)0.0214 (3)
H55A0.52150.24270.04330.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01564 (5)0.01370 (5)0.02282 (5)0.00055 (3)0.00239 (3)0.00193 (3)
N10.0111 (5)0.0116 (5)0.0110 (5)0.0031 (4)0.0018 (4)0.0005 (4)
N20.0133 (5)0.0141 (5)0.0143 (5)0.0023 (4)0.0002 (4)0.0000 (4)
N30.0141 (5)0.0160 (5)0.0163 (5)0.0059 (4)0.0045 (4)0.0015 (4)
N40.0177 (5)0.0148 (5)0.0206 (6)0.0041 (4)0.0067 (4)0.0059 (4)
C10.0107 (5)0.0151 (6)0.0152 (6)0.0047 (5)0.0003 (4)0.0011 (5)
C20.0117 (5)0.0176 (6)0.0161 (6)0.0033 (5)0.0026 (5)0.0018 (5)
C30.0158 (6)0.0185 (6)0.0193 (7)0.0002 (5)0.0023 (5)0.0010 (5)
C40.0252 (7)0.0141 (6)0.0179 (7)0.0020 (5)0.0012 (5)0.0032 (5)
C50.0298 (8)0.0216 (7)0.0297 (8)0.0089 (6)0.0006 (6)0.0028 (6)
C60.0511 (10)0.0274 (8)0.0369 (9)0.0209 (8)0.0029 (8)0.0043 (7)
C70.0643 (12)0.0164 (7)0.0289 (9)0.0120 (8)0.0064 (8)0.0041 (6)
C80.0460 (10)0.0173 (7)0.0271 (8)0.0042 (7)0.0086 (7)0.0026 (6)
C90.0294 (8)0.0201 (7)0.0211 (7)0.0022 (6)0.0016 (6)0.0055 (6)
C100.0134 (6)0.0195 (6)0.0181 (6)0.0047 (5)0.0009 (5)0.0016 (5)
C110.0152 (6)0.0206 (6)0.0107 (6)0.0046 (5)0.0018 (5)0.0016 (5)
C120.0203 (6)0.0235 (7)0.0140 (6)0.0081 (5)0.0004 (5)0.0009 (5)
C130.0275 (7)0.0244 (7)0.0145 (7)0.0059 (6)0.0015 (5)0.0041 (6)
C140.0214 (7)0.0365 (8)0.0137 (7)0.0019 (6)0.0022 (5)0.0062 (6)
C150.0200 (7)0.0407 (9)0.0152 (7)0.0105 (6)0.0037 (5)0.0009 (6)
C160.0204 (6)0.0247 (7)0.0153 (6)0.0087 (6)0.0010 (5)0.0017 (5)
C170.0135 (6)0.0127 (6)0.0132 (6)0.0049 (5)0.0018 (4)0.0025 (5)
C180.0138 (6)0.0171 (6)0.0142 (6)0.0062 (5)0.0022 (5)0.0016 (5)
C190.0237 (7)0.0165 (6)0.0181 (7)0.0065 (5)0.0073 (5)0.0003 (5)
C200.0163 (6)0.0195 (6)0.0191 (7)0.0041 (5)0.0050 (5)0.0021 (5)
C210.0222 (7)0.0247 (7)0.0218 (7)0.0083 (6)0.0056 (5)0.0008 (6)
C220.0269 (7)0.0364 (8)0.0186 (7)0.0054 (7)0.0069 (6)0.0008 (6)
C230.0370 (9)0.0298 (8)0.0230 (8)0.0024 (7)0.0113 (7)0.0110 (6)
C240.0571 (11)0.0184 (7)0.0334 (9)0.0051 (7)0.0147 (8)0.0069 (7)
C250.0434 (9)0.0204 (7)0.0217 (7)0.0072 (7)0.0089 (6)0.0003 (6)
C260.0173 (6)0.0222 (7)0.0215 (7)0.0113 (5)0.0044 (5)0.0009 (5)
C270.0147 (6)0.0250 (7)0.0247 (7)0.0119 (5)0.0083 (5)0.0019 (6)
C280.0184 (6)0.0285 (7)0.0301 (8)0.0106 (6)0.0065 (6)0.0001 (6)
C290.0198 (7)0.0293 (8)0.0523 (11)0.0066 (6)0.0066 (7)0.0057 (8)
C300.0229 (8)0.0280 (8)0.0748 (14)0.0103 (7)0.0246 (8)0.0124 (9)
C310.0328 (8)0.0428 (10)0.0499 (10)0.0236 (8)0.0281 (8)0.0233 (8)
C320.0241 (7)0.0355 (8)0.0269 (8)0.0168 (6)0.0111 (6)0.0060 (6)
C330.0136 (5)0.0108 (5)0.0134 (6)0.0016 (5)0.0022 (4)0.0003 (5)
C340.0236 (7)0.0166 (6)0.0137 (6)0.0003 (5)0.0030 (5)0.0017 (5)
C350.0260 (7)0.0250 (7)0.0274 (8)0.0129 (6)0.0136 (6)0.0084 (6)
C360.0172 (6)0.0232 (7)0.0434 (9)0.0111 (6)0.0128 (6)0.0171 (7)
C370.0188 (7)0.0237 (7)0.0419 (9)0.0060 (6)0.0042 (6)0.0091 (7)
C380.0212 (8)0.0293 (8)0.0658 (13)0.0067 (7)0.0052 (8)0.0046 (8)
C390.0175 (8)0.0269 (9)0.1046 (19)0.0057 (7)0.0025 (9)0.0204 (10)
C400.0201 (8)0.0378 (10)0.123 (2)0.0169 (8)0.0307 (10)0.0538 (13)
C410.0259 (8)0.0417 (10)0.0671 (12)0.0213 (7)0.0251 (8)0.0364 (9)
C420.0221 (7)0.0203 (7)0.0243 (7)0.0073 (5)0.0088 (5)0.0103 (6)
C430.0180 (6)0.0153 (6)0.0315 (8)0.0033 (5)0.0067 (6)0.0038 (6)
C440.0262 (7)0.0305 (8)0.0349 (9)0.0103 (6)0.0051 (6)0.0100 (7)
C450.0253 (8)0.0449 (10)0.0573 (12)0.0186 (8)0.0064 (8)0.0101 (9)
C460.0337 (9)0.0540 (12)0.0659 (14)0.0257 (9)0.0133 (9)0.0060 (10)
C470.0395 (10)0.0713 (14)0.0428 (11)0.0289 (10)0.0007 (8)0.0234 (10)
C480.0241 (7)0.0432 (10)0.0357 (9)0.0161 (7)0.0013 (7)0.0106 (8)
C490.0149 (6)0.0144 (6)0.0114 (6)0.0047 (5)0.0025 (4)0.0020 (5)
C500.0216 (6)0.0198 (6)0.0111 (6)0.0103 (5)0.0055 (5)0.0039 (5)
C510.0230 (7)0.0348 (8)0.0175 (7)0.0118 (6)0.0077 (5)0.0065 (6)
C520.0338 (8)0.0565 (11)0.0241 (8)0.0286 (8)0.0158 (7)0.0131 (8)
C530.0596 (11)0.0479 (10)0.0248 (8)0.0417 (9)0.0216 (8)0.0110 (7)
C540.0571 (11)0.0240 (8)0.0200 (7)0.0199 (8)0.0104 (7)0.0010 (6)
C550.0309 (7)0.0195 (7)0.0158 (7)0.0101 (6)0.0068 (5)0.0025 (5)
Geometric parameters (Å, º) top
N1—C331.5142 (15)C24—H24A0.9500
N1—C171.5169 (15)C25—H25A0.9500
N1—C11.5225 (14)C26—C271.5088 (19)
N1—C491.5397 (15)C26—H26A0.9900
N2—C21.4706 (16)C26—H26B0.9900
N2—C31.4772 (16)C27—C321.393 (2)
N2—C101.4800 (16)C27—C281.393 (2)
N3—C181.4740 (16)C28—C291.393 (2)
N3—C191.4745 (17)C28—H28A0.9500
N3—C261.4802 (16)C29—C301.378 (3)
N4—C341.4605 (17)C29—H29A0.9500
N4—C421.4626 (16)C30—C311.386 (3)
N4—C351.4663 (17)C30—H30A0.9500
C1—C21.5305 (17)C31—C321.390 (2)
C1—H1A0.9900C31—H31A0.9500
C1—H1B0.9900C32—H32A0.9500
C2—H2A0.9900C33—C341.5252 (17)
C2—H2B0.9900C33—H33A0.9900
C3—C41.5088 (19)C33—H33B0.9900
C3—H3A0.9900C34—H34A0.9900
C3—H3B0.9900C34—H34B0.9900
C4—C91.392 (2)C35—C361.504 (2)
C4—C51.393 (2)C35—H35A0.9900
C5—C61.390 (2)C35—H35B0.9900
C5—H5A0.9500C36—C411.390 (2)
C6—C71.390 (3)C36—C371.398 (2)
C6—H6A0.9500C37—C381.383 (2)
C7—C81.380 (3)C37—H37A0.9500
C7—H7A0.9500C38—C391.383 (3)
C8—C91.390 (2)C38—H38A0.9500
C8—H8A0.9500C39—C401.371 (3)
C9—H9A0.9500C39—H39A0.9500
C10—C111.5127 (18)C40—C411.411 (3)
C10—H10A0.9900C40—H40A0.9500
C10—H10B0.9900C41—H41A0.9500
C11—C121.3935 (19)C42—C431.5147 (19)
C11—C161.3985 (18)C42—H42A0.9900
C12—C131.390 (2)C42—H42B0.9900
C12—H12A0.9500C43—C481.382 (2)
C13—C141.386 (2)C43—C441.391 (2)
C13—H13A0.9500C44—C451.393 (2)
C14—C151.387 (2)C44—H44A0.9500
C14—H14A0.9500C45—C461.378 (3)
C15—C161.388 (2)C45—H45A0.9500
C15—H15A0.9500C46—C471.386 (3)
C16—H16A0.9500C46—H46A0.9500
C17—C181.5265 (16)C47—C481.388 (2)
C17—H17A0.9900C47—H47A0.9500
C17—H17B0.9900C48—H48A0.9500
C18—H18A0.9900C49—C501.5064 (17)
C18—H18B0.9900C49—H49A0.9900
C19—C201.5101 (19)C49—H49B0.9900
C19—H19A0.9900C50—C551.3955 (19)
C19—H19B0.9900C50—C511.3990 (19)
C20—C251.390 (2)C51—C521.389 (2)
C20—C211.3931 (19)C51—H51A0.9500
C21—C221.391 (2)C52—C531.380 (3)
C21—H21A0.9500C52—H52A0.9500
C22—C231.384 (2)C53—C541.384 (3)
C22—H22A0.9500C53—H53A0.9500
C23—C241.379 (2)C54—C551.394 (2)
C23—H23A0.9500C54—H54A0.9500
C24—C251.394 (2)C55—H55A0.9500
C33—N1—C17112.71 (9)C24—C25—H25A119.6
C33—N1—C1108.08 (9)N3—C26—C27113.79 (10)
C17—N1—C1107.80 (9)N3—C26—H26A108.8
C33—N1—C49107.91 (9)C27—C26—H26A108.8
C17—N1—C49108.85 (9)N3—C26—H26B108.8
C1—N1—C49111.53 (9)C27—C26—H26B108.8
C2—N2—C3106.50 (10)H26A—C26—H26B107.7
C2—N2—C10112.13 (10)C32—C27—C28118.49 (14)
C3—N2—C10109.80 (10)C32—C27—C26120.88 (13)
C18—N3—C19111.12 (10)C28—C27—C26120.58 (13)
C18—N3—C26110.13 (10)C29—C28—C27120.82 (15)
C19—N3—C26108.59 (10)C29—C28—H28A119.6
C34—N4—C42113.12 (11)C27—C28—H28A119.6
C34—N4—C35113.16 (11)C30—C29—C28120.11 (16)
C42—N4—C35113.38 (10)C30—C29—H29A119.9
N1—C1—C2115.62 (10)C28—C29—H29A119.9
N1—C1—H1A108.4C29—C30—C31119.66 (15)
C2—C1—H1A108.4C29—C30—H30A120.2
N1—C1—H1B108.4C31—C30—H30A120.2
C2—C1—H1B108.4C30—C31—C32120.42 (16)
H1A—C1—H1B107.4C30—C31—H31A119.8
N2—C2—C1115.67 (10)C32—C31—H31A119.8
N2—C2—H2A108.4C31—C32—C27120.49 (15)
C1—C2—H2A108.4C31—C32—H32A119.8
N2—C2—H2B108.4C27—C32—H32A119.8
C1—C2—H2B108.4N1—C33—C34116.02 (10)
H2A—C2—H2B107.4N1—C33—H33A108.3
N2—C3—C4114.09 (11)C34—C33—H33A108.3
N2—C3—H3A108.7N1—C33—H33B108.3
C4—C3—H3A108.7C34—C33—H33B108.3
N2—C3—H3B108.7H33A—C33—H33B107.4
C4—C3—H3B108.7N4—C34—C33106.11 (10)
H3A—C3—H3B107.6N4—C34—H34A110.5
C9—C4—C5118.61 (14)C33—C34—H34A110.5
C9—C4—C3120.12 (13)N4—C34—H34B110.5
C5—C4—C3121.16 (12)C33—C34—H34B110.5
C6—C5—C4120.75 (15)H34A—C34—H34B108.7
C6—C5—H5A119.6N4—C35—C36110.46 (11)
C4—C5—H5A119.6N4—C35—H35A109.6
C5—C6—C7120.03 (17)C36—C35—H35A109.6
C5—C6—H6A120.0N4—C35—H35B109.6
C7—C6—H6A120.0C36—C35—H35B109.6
C8—C7—C6119.59 (15)H35A—C35—H35B108.1
C8—C7—H7A120.2C41—C36—C37118.79 (16)
C6—C7—H7A120.2C41—C36—C35122.16 (16)
C7—C8—C9120.39 (16)C37—C36—C35119.04 (13)
C7—C8—H8A119.8C38—C37—C36121.03 (16)
C9—C8—H8A119.8C38—C37—H37A119.5
C8—C9—C4120.62 (16)C36—C37—H37A119.5
C8—C9—H9A119.7C37—C38—C39120.0 (2)
C4—C9—H9A119.7C37—C38—H38A120.0
N2—C10—C11114.59 (10)C39—C38—H38A120.0
N2—C10—H10A108.6C40—C39—C38119.98 (18)
C11—C10—H10A108.6C40—C39—H39A120.0
N2—C10—H10B108.6C38—C39—H39A120.0
C11—C10—H10B108.6C39—C40—C41120.61 (17)
H10A—C10—H10B107.6C39—C40—H40A119.7
C12—C11—C16118.26 (13)C41—C40—H40A119.7
C12—C11—C10120.72 (12)C36—C41—C40119.58 (19)
C16—C11—C10120.98 (12)C36—C41—H41A120.2
C13—C12—C11121.05 (13)C40—C41—H41A120.2
C13—C12—H12A119.5N4—C42—C43111.18 (11)
C11—C12—H12A119.5N4—C42—H42A109.4
C14—C13—C12120.16 (13)C43—C42—H42A109.4
C14—C13—H13A119.9N4—C42—H42B109.4
C12—C13—H13A119.9C43—C42—H42B109.4
C13—C14—C15119.39 (13)H42A—C42—H42B108.0
C13—C14—H14A120.3C48—C43—C44118.90 (14)
C15—C14—H14A120.3C48—C43—C42119.97 (13)
C16—C15—C14120.55 (13)C44—C43—C42121.06 (14)
C16—C15—H15A119.7C43—C44—C45120.30 (16)
C14—C15—H15A119.7C43—C44—H44A119.8
C15—C16—C11120.58 (13)C45—C44—H44A119.8
C15—C16—H16A119.7C46—C45—C44120.35 (16)
C11—C16—H16A119.7C46—C45—H45A119.8
N1—C17—C18116.01 (10)C44—C45—H45A119.8
N1—C17—H17A108.3C45—C46—C47119.50 (16)
C18—C17—H17A108.3C45—C46—H46A120.3
N1—C17—H17B108.3C47—C46—H46A120.3
C18—C17—H17B108.3C46—C47—C48120.14 (18)
H17A—C17—H17B107.4C46—C47—H47A119.9
N3—C18—C17107.82 (10)C48—C47—H47A119.9
N3—C18—H18A110.1C43—C48—C47120.75 (15)
C17—C18—H18A110.1C43—C48—H48A119.6
N3—C18—H18B110.1C47—C48—H48A119.6
C17—C18—H18B110.1C50—C49—N1114.38 (9)
H18A—C18—H18B108.5C50—C49—H49A108.7
N3—C19—C20113.15 (11)N1—C49—H49A108.7
N3—C19—H19A108.9C50—C49—H49B108.7
C20—C19—H19A108.9N1—C49—H49B108.7
N3—C19—H19B108.9H49A—C49—H49B107.6
C20—C19—H19B108.9C55—C50—C51118.94 (13)
H19A—C19—H19B107.8C55—C50—C49120.55 (12)
C25—C20—C21118.38 (13)C51—C50—C49120.45 (12)
C25—C20—C19119.85 (12)C52—C51—C50120.67 (15)
C21—C20—C19121.68 (12)C52—C51—H51A119.7
C22—C21—C20120.81 (14)C50—C51—H51A119.7
C22—C21—H21A119.6C53—C52—C51119.91 (15)
C20—C21—H21A119.6C53—C52—H52A120.0
C23—C22—C21120.15 (14)C51—C52—H52A120.0
C23—C22—H22A119.9C52—C53—C54120.14 (14)
C21—C22—H22A119.9C52—C53—H53A119.9
C24—C23—C22119.61 (14)C54—C53—H53A119.9
C24—C23—H23A120.2C53—C54—C55120.43 (16)
C22—C23—H23A120.2C53—C54—H54A119.8
C23—C24—C25120.31 (15)C55—C54—H54A119.8
C23—C24—H24A119.8C54—C55—C50119.89 (14)
C25—C24—H24A119.8C54—C55—H55A120.1
C20—C25—C24120.73 (14)C50—C55—H55A120.1
C20—C25—H25A119.6
C33—N1—C1—C2176.81 (10)C32—C27—C28—C291.02 (19)
C17—N1—C1—C254.71 (13)C26—C27—C28—C29176.57 (12)
C49—N1—C1—C264.73 (13)C27—C28—C29—C300.2 (2)
C3—N2—C2—C1173.21 (10)C28—C29—C30—C311.2 (2)
C10—N2—C2—C166.67 (13)C29—C30—C31—C321.0 (2)
N1—C1—C2—N289.86 (13)C30—C31—C32—C270.3 (2)
C2—N2—C3—C4172.35 (10)C28—C27—C32—C311.26 (19)
C10—N2—C3—C466.04 (14)C26—C27—C32—C31176.32 (12)
N2—C3—C4—C9138.46 (12)C17—N1—C33—C3455.26 (13)
N2—C3—C4—C545.36 (17)C1—N1—C33—C3463.76 (13)
C9—C4—C5—C60.1 (2)C49—N1—C33—C34175.49 (10)
C3—C4—C5—C6176.38 (14)C42—N4—C34—C33132.65 (11)
C4—C5—C6—C70.7 (2)C35—N4—C34—C3396.66 (13)
C5—C6—C7—C80.4 (3)N1—C33—C34—N4175.70 (10)
C6—C7—C8—C90.4 (2)C34—N4—C35—C36159.68 (11)
C7—C8—C9—C41.0 (2)C42—N4—C35—C3669.75 (15)
C5—C4—C9—C80.7 (2)N4—C35—C36—C41117.24 (14)
C3—C4—C9—C8175.57 (13)N4—C35—C36—C3761.53 (16)
C2—N2—C10—C1187.12 (13)C41—C36—C37—C380.0 (2)
C3—N2—C10—C11154.70 (11)C35—C36—C37—C38178.78 (13)
N2—C10—C11—C12127.04 (13)C36—C37—C38—C390.7 (2)
N2—C10—C11—C1655.22 (17)C37—C38—C39—C400.9 (2)
C16—C11—C12—C130.27 (19)C38—C39—C40—C410.6 (2)
C10—C11—C12—C13178.07 (12)C37—C36—C41—C400.3 (2)
C11—C12—C13—C140.3 (2)C35—C36—C41—C40179.06 (13)
C12—C13—C14—C150.5 (2)C39—C40—C41—C360.0 (2)
C13—C14—C15—C160.0 (2)C34—N4—C42—C4375.77 (15)
C14—C15—C16—C110.6 (2)C35—N4—C42—C43153.65 (12)
C12—C11—C16—C150.71 (19)N4—C42—C43—C4844.20 (18)
C10—C11—C16—C15178.50 (12)N4—C42—C43—C44138.73 (14)
C33—N1—C17—C1856.95 (13)C48—C43—C44—C451.9 (2)
C1—N1—C17—C18176.14 (10)C42—C43—C44—C45175.18 (14)
C49—N1—C17—C1862.73 (13)C43—C44—C45—C460.2 (3)
C19—N3—C18—C1769.30 (13)C44—C45—C46—C471.7 (3)
C26—N3—C18—C17170.33 (10)C45—C46—C47—C481.9 (3)
N1—C17—C18—N3162.61 (10)C44—C43—C48—C471.7 (3)
C18—N3—C19—C20163.59 (10)C42—C43—C48—C47175.40 (17)
C26—N3—C19—C2075.13 (13)C46—C47—C48—C430.2 (3)
N3—C19—C20—C25144.93 (13)C33—N1—C49—C5068.30 (12)
N3—C19—C20—C2138.60 (17)C17—N1—C49—C50169.07 (10)
C25—C20—C21—C220.6 (2)C1—N1—C49—C5050.26 (13)
C19—C20—C21—C22175.93 (13)N1—C49—C50—C5592.30 (14)
C20—C21—C22—C230.2 (2)N1—C49—C50—C5190.69 (14)
C21—C22—C23—C240.5 (2)C55—C50—C51—C521.3 (2)
C22—C23—C24—C250.7 (3)C49—C50—C51—C52178.31 (12)
C21—C20—C25—C240.3 (2)C50—C51—C52—C531.4 (2)
C19—C20—C25—C24176.25 (15)C51—C52—C53—C540.8 (2)
C23—C24—C25—C200.3 (3)C52—C53—C54—C550.1 (2)
C18—N3—C26—C2767.15 (14)C53—C54—C55—C500.0 (2)
C19—N3—C26—C27170.96 (11)C51—C50—C55—C540.55 (19)
N3—C26—C27—C3270.99 (16)C49—C50—C55—C54177.60 (12)
N3—C26—C27—C28111.48 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C39—H39A···I1i0.953.013.893 (2)154
C49—H49B···I1ii0.992.863.8187 (13)162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C39—H39A···I1i0.953.013.893 (2)154
C49—H49B···I1ii0.992.863.8187 (13)162
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

SEB would like to acknowledge the NSF Graduate STEM Fellows in K-12 Education (GK-12) program (DGE-0742540) for support. This work was also partially supported by NSF grant CHE-0809393.

References

First citationBarré, G., Taton, D., Lastécouères, D. & Vincent, J.-M. (2004). J. Am. Chem. Soc. 126, 7764–7765.  Web of Science PubMed Google Scholar
First citationBrady, S. E. & Tyler, D. R. (2012). J. Inorg. Organomet. Polym. Mater. 23, 158–166.  Web of Science CrossRef Google Scholar
First citationBruker (2000). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCandelon, N., Lastécouères, D., Diallo, A. K., Ruiz Aranzaes, J., Astruc, D. & Vincent, J.-M. (2008). Chem. Commun. pp. 741–743.  Web of Science CrossRef Google Scholar
First citationFarrell, D., Gloe, K., Gloe, K., Goretzki, G., McKee, V., Nelson, J., Nieuwenhuyzen, M., Pal, I., Stephan, H. & Town, R. M. (2003). Dalton Trans. pp. 1961–1968.  Web of Science CSD CrossRef Google Scholar
First citationLiang, L., Ruiz, J. & Astruc, D. (2011). Adv. Synth. Catal. 353, 3434–3450.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds