organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(benzyl­ammonium) di­hydrogen diphosphate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bCEMES-CNRS, 29 rue Jeanne Marvig, 31055 Toulouse cedex 4, France
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 15 November 2013; accepted 28 November 2013; online 4 December 2013)

The asymmetric unit of the title salt, 2C6H5CH2NH3+·H2P2O72−, contains two independent benzyl­ammonium cations and a di­hydrogen diphosphate dianion. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the cations and anions, forming a two-dimensional network parallel to (010). Within this network, weak C—H⋯O hydrogen bonds are observed.

Related literature

For the chemistry of diphosphate materials, see: Ernester (1992[Ernester, L. (1992). In Molecular Mechanism in Bioenergetics. Amsterdam: Elsevier.]); Lipscomb & Strater (1996[Lipscomb, W. N. & Strater, N. (1996). Chem. Rev. 96, 2375-2433.]); Centi et al. (1988[Centi, G., Trifirò, F., Ebner, J. R. & Franchetti, V. M. (1988). Chem. Rev. 88, 55-80.]); Chen & Munson (2002[Chen, B. & Munson, E. J. (2002). J. Am. Chem. Soc. 124, 1638-1652.]); Ballarini et al. (2006[Ballarini, N., Cavani, F., Cortelli, C., Ligi, S., Pierelli, F., Trifiro, F., Fumagalli, C., Mazzoni, G. & Monti, T. (2006). Top. Catal. 38, 147-156.]). For details of hydrogen bonds, see: Desiraju (1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For related structures, see: Akriche & Rzaigui (2005[Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607-o2609.], 2008[Akriche, S. & Rzaigui, M. (2008). Struct. Chem. 19, 827-831.]); Ahmed et al. (2006[Ahmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796-m1798.]); Elboulali et al. (2013[Elboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o213-o214.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H10N+·H2P2O72−

  • Mr = 392.27

  • Monoclinic, P 21 /c

  • a = 8.1337 (2) Å

  • b = 28.9015 (9) Å

  • c = 8.4727 (2) Å

  • β = 113.449 (1)°

  • V = 1827.24 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 27919 measured reflections

  • 7410 independent reflections

  • 5946 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.06

  • 7410 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O6i 0.82 1.90 2.7208 (13) 174
O5—H5O5⋯O3ii 0.82 1.83 2.6061 (13) 158
N1—H1N1⋯O2 0.89 2.07 2.9292 (13) 162
N1—H2N1⋯O6iii 0.89 2.10 2.9698 (15) 166
N1—H2N1⋯O4iii 0.89 2.53 3.1493 (13) 127
N1—H3N1⋯O7iv 0.89 1.88 2.7645 (15) 169
N2—H1N2⋯O3ii 0.89 1.94 2.7956 (15) 160
N2—H2N2⋯O2 0.89 1.98 2.8637 (15) 169
N2—H3N2⋯O6iii 0.89 1.99 2.8053 (14) 152
C1—H1B⋯O5ii 0.97 2.52 3.3333 (19) 141
C8—H8B⋯O7 0.97 2.40 3.1558 (17) 135
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+1; (iii) x-1, y, z; (iv) -x, -y, -z+2.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

There is current interest in the chemistry of diphosphate materials. They are involved in a variety of bioenergetic (Ernester, 1992; Lipscomb & Strater, 1996) and catalytic processes (Centi et al., 1988; Chen et al., 2002; Ballarini et al., 2006). Considering their relevance in several application areas, we are interested in this type of anion in building new hybrid materials associated to organic cations. We report here, the synthesis and the crystal structure of the title compound (I).

The asymmetric unit of (I) shown in Fig. 1, contains one diphosphate [H2P2O7]2- anion and two crystallographically independent benzylammonium cations. The two PO4 tetrahedral groups are bridged via the O4 bridging oxygen atom with P1—O4—P2 = 133.33 (6)° so as to form the diphosphate anion with a bent configurtation. The conformation is eclipsed evidenced by the psuedo-torsion angle O3—P1···P2—O7 = -6.9°. In the diphosphate group, the longest P—O distances correspond to the bridging oxygen atom with average value d(P—O4) = 1.6104 (8) Å, the intermediate distances are the P—OH bonding [d(P1—O1) = 1.5693 (9) Å, d(P2—O5) = 1.5607 (10) Å], whereas the shortest distances, ranging between 1.4762 (9) Å and 1.4987 (8) Å are related to the terminal oxygen atoms. The average value of the O—P—O angles is 109.25 (5)°. These geometrical features are in same magnitude as observed for diphosphate groups (Akriche et al., 2005; Ahmed et al., 2006; Akriche et al., 2008; Elboulali et al., 2013).

In the crystal, O—H···O and N—H···O hydrogen bonds link the cations and anions forming a two-dimensional network parallel to (010) (Table 1 and Fig. 2). Within this network, weak C—H···O hydrogen bonds are observed (Desiraju, 1991; Steiner 2002).

Related literature top

For the chemistry of diphosphate materials, see: Ernester (1992); Lipscomb & Strater (1996); Centi et al. (1988); Chen & Munson (2002); Ballarini et al. (2006). For details of hydrogen bonds, see: Desiraju (1991); Steiner (2002). For related structures, see: Akriche & Rzaigui (2005, 2008); Ahmed et al. (2006); Elboulali et al. (2013).

Experimental top

Prismatic single crystals of the title compound were prepared at room temperature by slow evaporation of a mixture of an aqueous solution (20 ml) of diphosphoric acid (5 mmol) and an ethanolic solution (10 ml) of benzylamine (4 mmol, 0.44 ml). The diphosphoric acid was produced from Na4P2O7 by using a cation-exchange resin (Amberlite IR 120).

Refinement top

All H atoms were placed in calculated positions and treated as riding, with C—H = 0.93 and 0.97 Å respectively for benzene rings and CH2 groups, N—H = 0.89 Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N,O).

Structure description top

There is current interest in the chemistry of diphosphate materials. They are involved in a variety of bioenergetic (Ernester, 1992; Lipscomb & Strater, 1996) and catalytic processes (Centi et al., 1988; Chen et al., 2002; Ballarini et al., 2006). Considering their relevance in several application areas, we are interested in this type of anion in building new hybrid materials associated to organic cations. We report here, the synthesis and the crystal structure of the title compound (I).

The asymmetric unit of (I) shown in Fig. 1, contains one diphosphate [H2P2O7]2- anion and two crystallographically independent benzylammonium cations. The two PO4 tetrahedral groups are bridged via the O4 bridging oxygen atom with P1—O4—P2 = 133.33 (6)° so as to form the diphosphate anion with a bent configurtation. The conformation is eclipsed evidenced by the psuedo-torsion angle O3—P1···P2—O7 = -6.9°. In the diphosphate group, the longest P—O distances correspond to the bridging oxygen atom with average value d(P—O4) = 1.6104 (8) Å, the intermediate distances are the P—OH bonding [d(P1—O1) = 1.5693 (9) Å, d(P2—O5) = 1.5607 (10) Å], whereas the shortest distances, ranging between 1.4762 (9) Å and 1.4987 (8) Å are related to the terminal oxygen atoms. The average value of the O—P—O angles is 109.25 (5)°. These geometrical features are in same magnitude as observed for diphosphate groups (Akriche et al., 2005; Ahmed et al., 2006; Akriche et al., 2008; Elboulali et al., 2013).

In the crystal, O—H···O and N—H···O hydrogen bonds link the cations and anions forming a two-dimensional network parallel to (010) (Table 1 and Fig. 2). Within this network, weak C—H···O hydrogen bonds are observed (Desiraju, 1991; Steiner 2002).

For the chemistry of diphosphate materials, see: Ernester (1992); Lipscomb & Strater (1996); Centi et al. (1988); Chen & Munson (2002); Ballarini et al. (2006). For details of hydrogen bonds, see: Desiraju (1991); Steiner (2002). For related structures, see: Akriche & Rzaigui (2005, 2008); Ahmed et al. (2006); Elboulali et al. (2013).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP (Farrugia, 2012) view of (I) with displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds represented as red dashed lines. The H-atoms not involved in H-bonds are omitted.
Bis(benzylammonium) dihydrogen diphosphate top
Crystal data top
2C7H10N+·H2P2O72F(000) = 824
Mr = 392.27Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1337 (2) ÅCell parameters from 25 reflections
b = 28.9015 (9) Åθ = 9–11°
c = 8.4727 (2) ŵ = 0.28 mm1
β = 113.449 (1)°T = 293 K
V = 1827.24 (9) Å3Prism, colourless
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
5946 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Detector resolution: 9 pixels mm-1θmax = 34.3°, θmin = 2.7°
CCD rotation images, thick slices scansh = 1211
27919 measured reflectionsk = 4545
7410 independent reflectionsl = 1312
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.3854P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
7410 reflectionsΔρmax = 0.52 e Å3
230 parametersΔρmin = 0.28 e Å3
Crystal data top
2C7H10N+·H2P2O72V = 1827.24 (9) Å3
Mr = 392.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1337 (2) ŵ = 0.28 mm1
b = 28.9015 (9) ÅT = 293 K
c = 8.4727 (2) Å0.3 × 0.2 × 0.1 mm
β = 113.449 (1)°
Data collection top
Nonius KappaCCD
diffractometer
5946 reflections with I > 2σ(I)
27919 measured reflectionsRint = 0.025
7410 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
7410 reflectionsΔρmin = 0.28 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.16846 (4)0.04396 (2)0.78619 (4)0.02353 (7)
P20.35638 (4)0.03781 (2)0.72893 (4)0.02459 (8)
O10.27096 (13)0.08328 (3)0.91571 (12)0.0351 (2)
H1O10.32180.07231.01230.053*
O20.05569 (11)0.01565 (3)0.85084 (12)0.03180 (19)
O30.07455 (11)0.06475 (3)0.61148 (11)0.03265 (19)
O40.33579 (11)0.01439 (3)0.78719 (13)0.03276 (19)
O50.25728 (13)0.03691 (4)0.52889 (12)0.0401 (2)
H5O50.16420.05190.49980.060*
O60.55388 (11)0.04139 (3)0.77466 (12)0.0332 (2)
O70.27351 (13)0.07023 (4)0.81039 (13)0.0367 (2)
N10.27361 (14)0.05080 (4)0.87008 (14)0.0304 (2)
H1N10.16670.04670.86650.046*
H2N10.34070.02580.82870.046*
H3N10.26000.05540.97840.046*
N20.16351 (14)0.06105 (4)0.67481 (15)0.0320 (2)
H1N20.16380.06140.56970.048*
H2N20.08590.03990.73860.048*
H3N20.27270.05410.66810.048*
C10.36307 (19)0.09184 (5)0.76385 (18)0.0384 (3)
H1A0.48150.09550.76400.046*
H1B0.37690.08690.64600.046*
C20.25602 (19)0.13517 (5)0.83218 (19)0.0372 (3)
C30.1281 (3)0.14896 (6)0.7728 (3)0.0544 (4)
H30.10920.13180.68870.065*
C40.0272 (3)0.18878 (8)0.8397 (4)0.0820 (8)
H40.05980.19780.80080.098*
C50.0551 (4)0.21432 (8)0.9606 (4)0.0865 (8)
H50.01110.24111.00260.104*
C60.1804 (3)0.20080 (7)1.0213 (3)0.0717 (6)
H60.19800.21831.10550.086*
C70.2814 (2)0.16112 (6)0.9578 (2)0.0498 (4)
H70.36620.15200.99960.060*
C80.11012 (18)0.10755 (5)0.75535 (19)0.0381 (3)
H8A0.10770.10690.87070.046*
H8B0.00980.11480.76430.046*
C90.23714 (18)0.14468 (5)0.65266 (18)0.0367 (3)
C100.2192 (2)0.16351 (7)0.5112 (2)0.0522 (4)
H100.13010.15260.47810.063*
C110.3324 (3)0.19860 (8)0.4172 (3)0.0655 (5)
H110.31910.21110.32190.079*
C120.4640 (3)0.21471 (7)0.4657 (3)0.0689 (6)
H120.53820.23880.40500.083*
C130.4863 (3)0.19547 (8)0.6032 (3)0.0708 (6)
H130.57810.20580.63340.085*
C140.3720 (3)0.16037 (7)0.6985 (3)0.0563 (4)
H140.38680.14760.79280.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01799 (12)0.03007 (15)0.02214 (13)0.00091 (9)0.00756 (9)0.00035 (10)
P20.01780 (12)0.03298 (16)0.02239 (13)0.00009 (9)0.00736 (9)0.00164 (10)
O10.0328 (4)0.0354 (5)0.0301 (4)0.0006 (4)0.0051 (3)0.0056 (3)
O20.0255 (4)0.0393 (5)0.0350 (4)0.0009 (3)0.0167 (3)0.0055 (4)
O30.0284 (4)0.0423 (5)0.0243 (4)0.0000 (3)0.0073 (3)0.0042 (3)
O40.0219 (4)0.0333 (5)0.0454 (5)0.0004 (3)0.0159 (3)0.0050 (4)
O50.0276 (4)0.0650 (7)0.0250 (4)0.0070 (4)0.0076 (3)0.0027 (4)
O60.0191 (3)0.0444 (5)0.0345 (4)0.0029 (3)0.0089 (3)0.0056 (4)
O70.0382 (5)0.0374 (5)0.0379 (5)0.0049 (4)0.0187 (4)0.0000 (4)
N10.0269 (4)0.0310 (5)0.0351 (5)0.0003 (4)0.0143 (4)0.0008 (4)
N20.0294 (5)0.0337 (6)0.0367 (5)0.0035 (4)0.0174 (4)0.0033 (4)
C10.0359 (6)0.0401 (7)0.0359 (6)0.0054 (5)0.0109 (5)0.0047 (5)
C20.0370 (6)0.0323 (6)0.0423 (7)0.0083 (5)0.0158 (5)0.0087 (5)
C30.0575 (9)0.0460 (9)0.0719 (11)0.0067 (7)0.0387 (9)0.0124 (8)
C40.0679 (13)0.0560 (13)0.132 (2)0.0072 (10)0.0504 (15)0.0200 (14)
C50.0729 (14)0.0381 (10)0.127 (2)0.0086 (10)0.0175 (15)0.0029 (12)
C60.0788 (14)0.0419 (10)0.0772 (14)0.0134 (9)0.0128 (11)0.0112 (9)
C70.0545 (9)0.0426 (8)0.0528 (9)0.0113 (7)0.0217 (7)0.0000 (7)
C80.0315 (6)0.0387 (7)0.0395 (6)0.0033 (5)0.0093 (5)0.0023 (5)
C90.0324 (6)0.0309 (6)0.0426 (7)0.0009 (5)0.0106 (5)0.0053 (5)
C100.0475 (8)0.0508 (9)0.0612 (10)0.0059 (7)0.0247 (8)0.0099 (8)
C110.0687 (12)0.0545 (11)0.0703 (12)0.0080 (9)0.0244 (10)0.0220 (9)
C120.0640 (12)0.0480 (10)0.0782 (14)0.0195 (9)0.0110 (10)0.0093 (10)
C130.0656 (12)0.0685 (13)0.0795 (14)0.0334 (10)0.0301 (11)0.0005 (11)
C140.0568 (10)0.0588 (11)0.0584 (10)0.0203 (8)0.0283 (8)0.0006 (8)
Geometric parameters (Å, º) top
P1—O21.4869 (9)C3—C41.396 (3)
P1—O31.4953 (9)C3—H30.9300
P1—O11.5693 (9)C4—C51.353 (4)
P1—O41.6042 (9)C4—H40.9300
P2—O71.4762 (10)C5—C61.369 (4)
P2—O61.4987 (9)C5—H50.9300
P2—O51.5607 (10)C6—C71.388 (3)
P2—O41.6166 (10)C6—H60.9300
O1—H1O10.8200C7—H70.9300
O5—H5O50.8200C8—C91.5035 (19)
N1—C11.4917 (17)C8—H8A0.9700
N1—H1N10.8900C8—H8B0.9700
N1—H2N10.8900C9—C101.376 (2)
N1—H3N10.8900C9—C141.378 (2)
N2—C81.4914 (18)C10—C111.388 (3)
N2—H1N20.8900C10—H100.9300
N2—H2N20.8900C11—C121.372 (3)
N2—H3N20.8900C11—H110.9300
C1—C21.504 (2)C12—C131.366 (3)
C1—H1A0.9700C12—H120.9300
C1—H1B0.9700C13—C141.396 (3)
C2—C31.382 (2)C13—H130.9300
C2—C71.383 (2)C14—H140.9300
O2—P1—O3116.03 (5)C4—C3—H3120.1
O2—P1—O1112.01 (6)C5—C4—C3120.6 (2)
O3—P1—O1108.73 (5)C5—C4—H4119.7
O2—P1—O4110.57 (5)C3—C4—H4119.7
O3—P1—O4108.51 (5)C4—C5—C6120.2 (2)
O1—P1—O499.70 (5)C4—C5—H5119.9
O7—P2—O6118.50 (6)C6—C5—H5119.9
O7—P2—O5112.56 (6)C5—C6—C7120.3 (2)
O6—P2—O5108.61 (5)C5—C6—H6119.9
O7—P2—O4109.12 (5)C7—C6—H6119.9
O6—P2—O4102.49 (5)C2—C7—C6119.97 (19)
O5—P2—O4104.16 (6)C2—C7—H7120.0
P1—O1—H1O1109.5C6—C7—H7120.0
P1—O4—P2133.33 (6)N2—C8—C9111.74 (11)
P2—O5—H5O5109.5N2—C8—H8A109.3
C1—N1—H1N1109.5C9—C8—H8A109.3
C1—N1—H2N1109.5N2—C8—H8B109.3
H1N1—N1—H2N1109.5C9—C8—H8B109.3
C1—N1—H3N1109.5H8A—C8—H8B107.9
H1N1—N1—H3N1109.5C10—C9—C14119.20 (15)
H2N1—N1—H3N1109.5C10—C9—C8119.97 (14)
C8—N2—H1N2109.5C14—C9—C8120.83 (15)
C8—N2—H2N2109.5C9—C10—C11120.81 (18)
H1N2—N2—H2N2109.5C9—C10—H10119.6
C8—N2—H3N2109.5C11—C10—H10119.6
H1N2—N2—H3N2109.5C12—C11—C10119.7 (2)
H2N2—N2—H3N2109.5C12—C11—H11120.2
N1—C1—C2111.18 (11)C10—C11—H11120.2
N1—C1—H1A109.4C13—C12—C11120.08 (18)
C2—C1—H1A109.4C13—C12—H12120.0
N1—C1—H1B109.4C11—C12—H12120.0
C2—C1—H1B109.4C12—C13—C14120.38 (19)
H1A—C1—H1B108.0C12—C13—H13119.8
C3—C2—C7119.23 (16)C14—C13—H13119.8
C3—C2—C1120.29 (15)C9—C14—C13119.82 (19)
C7—C2—C1120.46 (14)C9—C14—H14120.1
C2—C3—C4119.7 (2)C13—C14—H14120.1
C2—C3—H3120.1
O2—P1—O4—P244.21 (10)C3—C2—C7—C60.7 (2)
O3—P1—O4—P284.10 (10)C1—C2—C7—C6179.28 (15)
O1—P1—O4—P2162.27 (9)C5—C6—C7—C20.2 (3)
O7—P2—O4—P151.43 (10)N2—C8—C9—C1081.81 (18)
O6—P2—O4—P1177.87 (9)N2—C8—C9—C1498.38 (17)
O5—P2—O4—P168.98 (10)C14—C9—C10—C111.4 (3)
N1—C1—C2—C390.66 (17)C8—C9—C10—C11178.43 (17)
N1—C1—C2—C787.87 (16)C9—C10—C11—C120.1 (3)
C7—C2—C3—C40.2 (3)C10—C11—C12—C131.7 (4)
C1—C2—C3—C4178.79 (18)C11—C12—C13—C142.0 (4)
C2—C3—C4—C50.8 (4)C10—C9—C14—C131.0 (3)
C3—C4—C5—C61.3 (4)C8—C9—C14—C13178.81 (18)
C4—C5—C6—C70.8 (4)C12—C13—C14—C90.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O6i0.821.902.7208 (13)174
O5—H5O5···O3ii0.821.832.6061 (13)158
N1—H1N1···O20.892.072.9292 (13)162
N1—H2N1···O6iii0.892.102.9698 (15)166
N1—H2N1···O4iii0.892.533.1493 (13)127
N1—H3N1···O7iv0.891.882.7645 (15)169
N2—H1N2···O3ii0.891.942.7956 (15)160
N2—H2N2···O20.891.982.8637 (15)169
N2—H3N2···O6iii0.891.992.8053 (14)152
C1—H1B···O5ii0.972.523.3333 (19)141
C8—H8B···O70.972.403.1558 (17)135
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O6i0.821.902.7208 (13)174.1
O5—H5O5···O3ii0.821.832.6061 (13)158.0
N1—H1N1···O20.892.072.9292 (13)161.8
N1—H2N1···O6iii0.892.102.9698 (15)166.3
N1—H2N1···O4iii0.892.533.1493 (13)126.9
N1—H3N1···O7iv0.891.882.7645 (15)169.4
N2—H1N2···O3ii0.891.942.7956 (15)159.7
N2—H2N2···O20.891.982.8637 (15)169.3
N2—H3N2···O6iii0.891.992.8053 (14)152.0
C1—H1B···O5ii0.972.523.3333 (19)140.8
C8—H8B···O70.972.403.1558 (17)134.8
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y, z+2.
 

References

First citationAhmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796–m1798.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkriche, S. & Rzaigui, M. (2008). Struct. Chem. 19, 827–831.  Web of Science CSD CrossRef CAS Google Scholar
First citationBallarini, N., Cavani, F., Cortelli, C., Ligi, S., Pierelli, F., Trifiro, F., Fumagalli, C., Mazzoni, G. & Monti, T. (2006). Top. Catal. 38, 147–156.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCenti, G., Trifirò, F., Ebner, J. R. & Franchetti, V. M. (1988). Chem. Rev. 88, 55–80.  CrossRef CAS Web of Science Google Scholar
First citationChen, B. & Munson, E. J. (2002). J. Am. Chem. Soc. 124, 1638–1652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o213–o214.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationErnester, L. (1992). In Molecular Mechanism in Bioenergetics. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLipscomb, W. N. & Strater, N. (1996). Chem. Rev. 96, 2375–2433.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds