organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[2-(2,4-di­phenyl-3-aza­bi­cyclo­[3.3.1]nonan-9-yl­­idene)hydrazin-1-yl]-4-methyl-1,3-thia­zole-5-carboxyl­ate di­methyl­formamide monosolvate

aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, Chidambaram, Tamil Nadu, India
*Correspondence e-mail: jothiichem@gmail.com

(Received 16 November 2013; accepted 11 December 2013; online 18 December 2013)

In the title mol­ecule, C27H30N4O2S·C3H7NO, the fused piperidine and cyclo­hexane rings adopt a twin chair conformation and the phenyl groups occupy equatorial sites. The phenyl rings make a dihedral angle of 40.74 (2)°. In the crystal, the di­methyl­formamide solvent mol­ecule is connected to the main mol­ecule by an N—H⋯O hydrogen bond. An additional N—H⋯O hydrogen bond connects mol­ecules into chains along [100]. Pairs of weak C—H⋯O hydrogen bonds connect inversion-related chains. The ethyl group was refined as disordered over two sets of sites with an occupancy ratio of 0.660 (17):0.340 (17).

Related literature

For the biological activity of related structures, see: Ramachandran et al. (2009[Ramachandran, R., Rani, M. & Kabilan, S. (2009). Bioorg. Med. Chem. 19, 2819-2823.]); Hutchinson et al. (2002[Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). Eur. J. Med. Chem. 45, 744-747.]); Bondock et al. (2007[Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948-954.]). For bicyclic compounds, see: Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]).

[Scheme 1]

Experimental

Crystal data
  • C27H30N4O2S·C3H7NO

  • Mr = 547.71

  • Monoclinic, P 21 /c

  • a = 12.700 (5) Å

  • b = 19.427 (5) Å

  • c = 13.203 (5) Å

  • β = 115.249 (5)°

  • V = 2946.3 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.35 × 0.35 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.965

  • 25815 measured reflections

  • 5179 independent reflections

  • 3606 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.154

  • S = 1.01

  • 5179 reflections

  • 379 parameters

  • 40 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.93 2.41 3.284 (4) 156
N1—H1A⋯O1ii 0.84 (2) 2.59 (2) 3.380 (4) 157 (2)
N3—H3A⋯O3 0.85 (2) 1.99 (2) 2.843 (4) 173 (3)
Symmetry codes: (i) -x-1, -y, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiazoles are an interesting unit in medicinal chemistry and are responsible for numerous pharmacological and biological properties (Hutchinson et al. 2002; Bondock et al., 2007; Ramachandran et al., 2009). This has piqued our interest in the synthesis of thiazole containing compounds. The importance of bicyclic compounds as intermediates in the synthesis of a several physiologically active compounds have been reviewed by Jeyaraman & Avila (1981). Moreover, these bridged bicyclic compounds exhibit twin chair, chair–boat or twin boat conformations and possess interesting stereochemistries. In order to investigate the change in molecular conformation of the piperidine and cyclohexane rings, the X-ray structure determination of the title compound was carried out. The six–membered heterocyclic piperidine ring (Fig. 1) adopts the expected chair conformation. The two phenyl rings form a dihedral angle of 40.74 (2)°. In the crystal the dimethylformamide solvent molecule is connected to the main molecule by an N—H···O hydrogen bond. An additional N—H···O hydrogen bond connects molecules into chains along [100] (Fig. 2). Weak C—H···O hydrogen bonds connect pairs of inversion related chains. The ethyl group was refined as disordered over two sets of sites with a 0.660 (17): 0.340 (17) ratio of occupancies.

Related literature top

For the biological activity of related structures, see: Ramachandran et al. (2009); Hutchinson et al. (2002); Bondock et al. (2007). For bicyclic compounds, see: Jeyaraman & Avila (1981).

Experimental top

To a boiling solution of the bicyclic thiosemicarbazone (0.01 mol) in ethanolic–chloroform (1:1 / v:v), ethyl-2-chloroacetoacetate(0.01 mol), sodium acetate trihydrate (0.02 mol) and a few drops of acetic acid were added and refluxed for about 5–6 h. After the completion of reaction, excess of solvent was removed under reduced pressure and poured into water. After work–up, the solid was separated and purified by column chromatography using benzene–ethyl acetate (9:1 / v:v) as eluent on neutral alumina. Colourless crystals were grown by slow evaporation method using dimethylformamide as the solvent.

Refinement top

H atoms bonded to C atoms were included in calculated positions with C—H = 0.93-0.98Å and included in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). H atoms bonded to N atoms were refined independently with isotropic displacment parameters.

Structure description top

Thiazoles are an interesting unit in medicinal chemistry and are responsible for numerous pharmacological and biological properties (Hutchinson et al. 2002; Bondock et al., 2007; Ramachandran et al., 2009). This has piqued our interest in the synthesis of thiazole containing compounds. The importance of bicyclic compounds as intermediates in the synthesis of a several physiologically active compounds have been reviewed by Jeyaraman & Avila (1981). Moreover, these bridged bicyclic compounds exhibit twin chair, chair–boat or twin boat conformations and possess interesting stereochemistries. In order to investigate the change in molecular conformation of the piperidine and cyclohexane rings, the X-ray structure determination of the title compound was carried out. The six–membered heterocyclic piperidine ring (Fig. 1) adopts the expected chair conformation. The two phenyl rings form a dihedral angle of 40.74 (2)°. In the crystal the dimethylformamide solvent molecule is connected to the main molecule by an N—H···O hydrogen bond. An additional N—H···O hydrogen bond connects molecules into chains along [100] (Fig. 2). Weak C—H···O hydrogen bonds connect pairs of inversion related chains. The ethyl group was refined as disordered over two sets of sites with a 0.660 (17): 0.340 (17) ratio of occupancies.

For the biological activity of related structures, see: Ramachandran et al. (2009); Hutchinson et al. (2002); Bondock et al. (2007). For bicyclic compounds, see: Jeyaraman & Avila (1981).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Ethyl 2-[2-(2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazin-1-yl]-4-methyl-1,3-thiazole-5-carboxylate dimethylformamide monosolvate top
Crystal data top
C27H30N4O2S·C3H7NOF(000) = 1168
Mr = 547.71Dx = 1.235 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6962 reflections
a = 12.700 (5) Åθ = 2.1–22.4°
b = 19.427 (5) ŵ = 0.15 mm1
c = 13.203 (5) ÅT = 293 K
β = 115.249 (5)°Block, colourless
V = 2946.3 (18) Å30.35 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5179 independent reflections
Radiation source: fine-focus sealed tube3606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ sacn scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1515
Tmin = 0.937, Tmax = 0.965k = 2023
25815 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0579P)2 + 2.3626P]
where P = (Fo2 + 2Fc2)/3
5179 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.56 e Å3
40 restraintsΔρmin = 0.37 e Å3
Crystal data top
C27H30N4O2S·C3H7NOV = 2946.3 (18) Å3
Mr = 547.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.700 (5) ŵ = 0.15 mm1
b = 19.427 (5) ÅT = 293 K
c = 13.203 (5) Å0.35 × 0.35 × 0.30 mm
β = 115.249 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5179 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3606 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.965Rint = 0.032
25815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05540 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.56 e Å3
5179 reflectionsΔρmin = 0.37 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0735 (2)0.24044 (14)0.5466 (2)0.0499 (7)
C20.0996 (3)0.27051 (16)0.6495 (3)0.0647 (8)
H20.05720.25790.68920.078*
C30.1867 (3)0.31863 (18)0.6946 (3)0.0815 (11)
H30.20180.33870.76340.098*
C40.2508 (3)0.33680 (19)0.6382 (4)0.0891 (12)
H40.31090.36860.66900.107*
C50.2264 (3)0.3081 (2)0.5363 (4)0.0902 (12)
H50.26920.32110.49720.108*
C60.1386 (3)0.25983 (18)0.4907 (3)0.0706 (9)
H60.12340.24030.42150.085*
C70.0232 (2)0.18797 (13)0.5011 (2)0.0450 (6)
H70.01840.15910.56380.054*
C80.0971 (2)0.08953 (13)0.3738 (2)0.0445 (6)
H80.09390.06130.43650.053*
C90.0710 (2)0.04318 (13)0.2953 (2)0.0452 (6)
C100.0280 (2)0.06844 (15)0.2225 (2)0.0546 (7)
H100.01540.11550.22080.066*
C110.0035 (3)0.02520 (19)0.1523 (3)0.0673 (9)
H110.02470.04340.10360.081*
C120.0204 (3)0.0437 (2)0.1539 (3)0.0750 (10)
H120.00270.07270.10730.090*
C130.0633 (3)0.07009 (17)0.2242 (3)0.0743 (10)
H130.07570.11720.22480.089*
C140.0887 (3)0.02709 (15)0.2951 (3)0.0613 (8)
H140.11800.04580.34270.074*
C150.2198 (2)0.12259 (15)0.3180 (2)0.0490 (7)
H150.27830.08580.29440.059*
C160.2341 (2)0.16510 (14)0.4064 (2)0.0472 (6)
C170.1453 (2)0.22093 (14)0.4488 (2)0.0495 (7)
H170.15690.24610.50760.059*
C180.1687 (3)0.27046 (16)0.3508 (3)0.0626 (8)
H18A0.24260.29330.33190.075*
H18B0.10860.30550.37490.075*
C190.1718 (3)0.23575 (17)0.2467 (3)0.0665 (9)
H19A0.09280.22500.25830.080*
H19B0.20430.26750.18410.080*
C200.2433 (2)0.17010 (17)0.2176 (2)0.0625 (8)
H20A0.22740.14490.16230.075*
H20B0.32520.18230.18370.075*
C210.4752 (2)0.10489 (15)0.4414 (2)0.0518 (7)
C220.6309 (2)0.06611 (18)0.4541 (3)0.0641 (9)
C230.5903 (3)0.10747 (18)0.5450 (3)0.0670 (9)
C240.6432 (4)0.1188 (2)0.6213 (4)0.0859 (12)
C270.7378 (3)0.0215 (2)0.4136 (4)0.0902 (12)
H27A0.74610.00240.34700.135*
H27B0.80510.04980.39740.135*
H27C0.73050.01130.47060.135*
C280.7208 (4)0.0655 (2)0.1020 (4)0.1106 (15)
H28A0.77920.07540.02810.166*
H28B0.75670.04500.14550.166*
H28C0.68270.10740.13710.166*
C290.6557 (3)0.0071 (2)0.0138 (3)0.0943 (12)
H29C0.60910.04750.00540.141*
H29A0.73650.01850.05510.141*
H29B0.63440.02750.05340.141*
C300.5483 (3)0.00313 (18)0.1851 (3)0.0675 (8)
H300.53960.01520.25330.081*
N10.00799 (18)0.14310 (11)0.41935 (18)0.0453 (5)
N20.31082 (18)0.16070 (12)0.44462 (18)0.0512 (6)
N30.39631 (19)0.11185 (14)0.3983 (2)0.0567 (6)
N40.56551 (19)0.06438 (13)0.3952 (2)0.0583 (6)
N50.6363 (2)0.01846 (13)0.0948 (2)0.0637 (7)
O10.7381 (2)0.09901 (17)0.6088 (3)0.1174 (11)
O20.5722 (3)0.15330 (17)0.7104 (2)0.1002 (9)
O30.4768 (2)0.04548 (16)0.1866 (2)0.0917 (8)
S10.46094 (7)0.14717 (5)0.56068 (7)0.0648 (3)
C250.588 (2)0.1963 (16)0.8026 (13)0.120 (6)0.340 (17)
H25A0.57430.24460.79390.144*0.340 (17)
H25B0.66720.19140.79460.144*0.340 (17)
C260.5059 (18)0.1725 (11)0.9147 (13)0.091 (5)0.340 (17)
H26A0.53580.18400.96820.137*0.340 (17)
H26B0.43190.19450.93540.137*0.340 (17)
H26C0.49650.12350.91350.137*0.340 (17)
C25'0.6228 (7)0.1578 (6)0.7918 (6)0.085 (2)0.660 (17)
H25C0.69980.17830.75890.103*0.660 (17)
H25D0.62680.11300.82250.103*0.660 (17)
C26'0.5381 (12)0.2028 (9)0.8765 (14)0.140 (5)0.660 (17)
H26D0.56280.21180.93450.210*0.660 (17)
H26E0.53260.24550.84230.210*0.660 (17)
H26F0.46330.18080.90810.210*0.660 (17)
H1A0.0570 (18)0.1231 (13)0.451 (2)0.051 (8)*
H3A0.415 (2)0.0916 (13)0.3356 (17)0.051 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (14)0.0513 (16)0.0553 (16)0.0015 (12)0.0194 (12)0.0048 (13)
C20.0544 (17)0.070 (2)0.073 (2)0.0053 (15)0.0304 (16)0.0243 (17)
C30.064 (2)0.075 (2)0.096 (3)0.0101 (18)0.026 (2)0.040 (2)
C40.065 (2)0.070 (2)0.118 (3)0.0231 (18)0.025 (2)0.023 (2)
C50.078 (2)0.093 (3)0.107 (3)0.034 (2)0.047 (2)0.001 (2)
C60.069 (2)0.080 (2)0.068 (2)0.0245 (17)0.0339 (17)0.0077 (17)
C70.0438 (14)0.0508 (15)0.0434 (14)0.0053 (12)0.0215 (12)0.0018 (12)
C80.0411 (13)0.0510 (15)0.0436 (14)0.0048 (12)0.0203 (11)0.0011 (12)
C90.0353 (13)0.0489 (16)0.0490 (15)0.0025 (11)0.0158 (11)0.0046 (12)
C100.0482 (16)0.0595 (17)0.0653 (18)0.0076 (13)0.0331 (14)0.0098 (15)
C110.0583 (18)0.083 (2)0.072 (2)0.0003 (16)0.0382 (17)0.0126 (18)
C120.077 (2)0.079 (3)0.070 (2)0.0138 (19)0.0332 (19)0.0153 (19)
C130.091 (2)0.0468 (18)0.071 (2)0.0058 (17)0.0211 (19)0.0102 (16)
C140.0672 (19)0.0564 (18)0.0578 (18)0.0036 (15)0.0242 (15)0.0037 (15)
C150.0359 (13)0.0662 (18)0.0490 (15)0.0060 (12)0.0220 (12)0.0080 (13)
C160.0380 (13)0.0634 (17)0.0438 (14)0.0022 (12)0.0210 (12)0.0036 (13)
C170.0449 (14)0.0598 (17)0.0525 (16)0.0029 (13)0.0290 (13)0.0102 (13)
C180.0561 (17)0.0620 (19)0.075 (2)0.0106 (15)0.0330 (16)0.0056 (16)
C190.0674 (19)0.078 (2)0.0617 (19)0.0187 (17)0.0348 (16)0.0212 (17)
C200.0484 (16)0.093 (2)0.0455 (16)0.0174 (16)0.0193 (13)0.0005 (16)
C210.0392 (14)0.0680 (18)0.0523 (16)0.0086 (13)0.0235 (13)0.0115 (14)
C220.0426 (16)0.077 (2)0.080 (2)0.0187 (15)0.0330 (16)0.0376 (19)
C230.0543 (18)0.085 (2)0.079 (2)0.0233 (17)0.0450 (17)0.037 (2)
C240.080 (3)0.114 (3)0.086 (3)0.041 (2)0.057 (2)0.050 (2)
C270.0486 (18)0.098 (3)0.130 (3)0.0033 (18)0.044 (2)0.033 (2)
C280.109 (3)0.117 (3)0.105 (3)0.050 (3)0.045 (3)0.007 (3)
C290.074 (2)0.134 (4)0.063 (2)0.019 (2)0.0183 (18)0.007 (2)
C300.061 (2)0.078 (2)0.060 (2)0.0036 (18)0.0231 (17)0.0044 (17)
N10.0351 (11)0.0515 (13)0.0495 (13)0.0012 (10)0.0182 (10)0.0055 (11)
N20.0390 (12)0.0712 (15)0.0486 (13)0.0025 (11)0.0238 (10)0.0022 (12)
N30.0427 (13)0.0850 (18)0.0492 (14)0.0094 (12)0.0262 (11)0.0104 (13)
N40.0361 (12)0.0736 (16)0.0659 (15)0.0040 (11)0.0224 (11)0.0138 (13)
N50.0546 (15)0.0708 (17)0.0600 (16)0.0065 (13)0.0190 (13)0.0008 (13)
O10.0866 (19)0.164 (3)0.145 (3)0.0323 (19)0.0910 (19)0.058 (2)
O20.096 (2)0.148 (3)0.0854 (18)0.0435 (19)0.0665 (17)0.0204 (18)
O30.0672 (15)0.135 (2)0.0749 (16)0.0336 (16)0.0326 (13)0.0304 (15)
S10.0582 (5)0.0880 (6)0.0615 (5)0.0065 (4)0.0383 (4)0.0060 (4)
C250.119 (13)0.152 (14)0.117 (11)0.027 (11)0.077 (10)0.002 (12)
C260.121 (11)0.099 (11)0.079 (8)0.025 (8)0.067 (8)0.005 (7)
C25'0.096 (5)0.096 (6)0.099 (4)0.001 (4)0.075 (4)0.009 (4)
C26'0.133 (11)0.165 (11)0.147 (12)0.027 (9)0.083 (10)0.078 (9)
Geometric parameters (Å, º) top
C1—C61.375 (4)C20—H20A0.9700
C1—C21.383 (4)C20—H20B0.9700
C1—C71.509 (4)C21—N41.308 (4)
C2—C31.375 (4)C21—N31.354 (3)
C2—H20.9300C21—S11.716 (3)
C3—C41.364 (5)C22—C231.351 (5)
C3—H30.9300C22—N41.358 (4)
C4—C51.364 (5)C22—C271.503 (5)
C4—H40.9300C23—C241.445 (5)
C5—C61.383 (5)C23—S11.746 (3)
C5—H50.9300C24—O11.208 (5)
C6—H60.9300C24—O21.320 (5)
C7—N11.462 (3)C27—H27A0.9600
C7—C171.542 (4)C27—H27B0.9600
C7—H70.9800C27—H27C0.9600
C8—N11.464 (3)C28—N51.443 (4)
C8—C91.512 (4)C28—H28A0.9600
C8—C151.551 (4)C28—H28B0.9600
C8—H80.9800C28—H28C0.9600
C9—C101.382 (4)C29—N51.435 (4)
C9—C141.383 (4)C29—H29C0.9600
C10—C111.381 (4)C29—H29A0.9600
C10—H100.9300C29—H29B0.9600
C11—C121.357 (5)C30—O31.219 (4)
C11—H110.9300C30—N51.308 (4)
C12—C131.361 (5)C30—H300.9300
C12—H120.9300N1—H1A0.844 (17)
C13—C141.392 (4)N2—N31.374 (3)
C13—H130.9300N3—H3A0.853 (17)
C14—H140.9300O2—C25'1.472 (6)
C15—C161.502 (4)O2—C251.559 (15)
C15—C201.536 (4)C25—C261.474 (16)
C15—H150.9800C25—H25A0.9700
C16—N21.277 (3)C25—H25B0.9700
C16—C171.491 (4)C26—H26A0.9600
C17—C181.536 (4)C26—H26B0.9600
C17—H170.9800C26—H26C0.9600
C18—C191.517 (4)C25'—C26'1.465 (11)
C18—H18A0.9700C25'—H25C0.9700
C18—H18B0.9700C25'—H25D0.9700
C19—C201.517 (4)C26'—H26D0.9600
C19—H19A0.9700C26'—H26E0.9600
C19—H19B0.9700C26'—H26F0.9600
C6—C1—C2117.7 (3)C19—C20—H20A108.7
C6—C1—C7123.0 (3)C15—C20—H20A108.7
C2—C1—C7119.3 (2)C19—C20—H20B108.7
C3—C2—C1121.6 (3)C15—C20—H20B108.7
C3—C2—H2119.2H20A—C20—H20B107.6
C1—C2—H2119.2N4—C21—N3121.6 (3)
C4—C3—C2119.8 (3)N4—C21—S1116.3 (2)
C4—C3—H3120.1N3—C21—S1122.1 (2)
C2—C3—H3120.1C23—C22—N4115.4 (3)
C3—C4—C5119.7 (3)C23—C22—C27127.1 (3)
C3—C4—H4120.1N4—C22—C27117.5 (3)
C5—C4—H4120.1C22—C23—C24126.5 (3)
C4—C5—C6120.6 (4)C22—C23—S1110.6 (2)
C4—C5—H5119.7C24—C23—S1122.9 (3)
C6—C5—H5119.7O1—C24—O2123.1 (4)
C1—C6—C5120.6 (3)O1—C24—C23126.1 (5)
C1—C6—H6119.7O2—C24—C23110.8 (4)
C5—C6—H6119.7C22—C27—H27A109.5
N1—C7—C1110.8 (2)C22—C27—H27B109.5
N1—C7—C17110.0 (2)H27A—C27—H27B109.5
C1—C7—C17112.9 (2)C22—C27—H27C109.5
N1—C7—H7107.6H27A—C27—H27C109.5
C1—C7—H7107.6H27B—C27—H27C109.5
C17—C7—H7107.6N5—C28—H28A109.5
N1—C8—C9110.3 (2)N5—C28—H28B109.5
N1—C8—C15110.2 (2)H28A—C28—H28B109.5
C9—C8—C15113.0 (2)N5—C28—H28C109.5
N1—C8—H8107.7H28A—C28—H28C109.5
C9—C8—H8107.7H28B—C28—H28C109.5
C15—C8—H8107.7N5—C29—H29C109.5
C10—C9—C14117.5 (3)N5—C29—H29A109.5
C10—C9—C8122.1 (2)H29C—C29—H29A109.5
C14—C9—C8120.4 (2)N5—C29—H29B109.5
C11—C10—C9121.3 (3)H29C—C29—H29B109.5
C11—C10—H10119.4H29A—C29—H29B109.5
C9—C10—H10119.4O3—C30—N5124.9 (3)
C12—C11—C10120.5 (3)O3—C30—H30117.6
C12—C11—H11119.8N5—C30—H30117.6
C10—C11—H11119.8C7—N1—C8113.88 (19)
C11—C12—C13119.6 (3)C7—N1—H1A108.3 (19)
C11—C12—H12120.2C8—N1—H1A107.3 (19)
C13—C12—H12120.2C16—N2—N3117.5 (2)
C12—C13—C14120.5 (3)C21—N3—N2117.9 (2)
C12—C13—H13119.7C21—N3—H3A114.5 (19)
C14—C13—H13119.7N2—N3—H3A126.0 (19)
C9—C14—C13120.6 (3)C21—N4—C22110.3 (3)
C9—C14—H14119.7C30—N5—C29121.0 (3)
C13—C14—H14119.7C30—N5—C28120.9 (3)
C16—C15—C20107.2 (2)C29—N5—C28118.0 (3)
C16—C15—C8106.8 (2)C24—O2—C25'109.6 (4)
C20—C15—C8116.4 (2)C24—O2—C25134.6 (12)
C16—C15—H15108.7C21—S1—C2387.38 (16)
C20—C15—H15108.7C26—C25—O2110.1 (13)
C8—C15—H15108.7C26—C25—H25A109.6
N2—C16—C17118.8 (2)O2—C25—H25A109.6
N2—C16—C15129.5 (2)C26—C25—H25B109.6
C17—C16—C15111.7 (2)O2—C25—H25B109.6
C16—C17—C18107.2 (2)H25A—C25—H25B108.1
C16—C17—C7108.7 (2)C25—C26—H26A109.5
C18—C17—C7115.7 (2)C25—C26—H26B109.5
C16—C17—H17108.4H26A—C26—H26B109.5
C18—C17—H17108.4C25—C26—H26C109.5
C7—C17—H17108.4H26A—C26—H26C109.5
C19—C18—C17114.0 (2)H26B—C26—H26C109.5
C19—C18—H18A108.8C26'—C25'—O2100.7 (9)
C17—C18—H18A108.8C26'—C25'—H25C111.6
C19—C18—H18B108.8O2—C25'—H25C111.6
C17—C18—H18B108.8C26'—C25'—H25D111.6
H18A—C18—H18B107.7O2—C25'—H25D111.6
C18—C19—C20112.6 (2)H25C—C25'—H25D109.4
C18—C19—H19A109.1C25'—C26'—H26D109.5
C20—C19—H19A109.1C25'—C26'—H26E109.5
C18—C19—H19B109.1H26D—C26'—H26E109.5
C20—C19—H19B109.1C25'—C26'—H26F109.5
H19A—C19—H19B107.8H26D—C26'—H26F109.5
C19—C20—C15114.3 (2)H26E—C26'—H26F109.5
C6—C1—C2—C30.6 (5)C7—C17—C18—C1966.9 (3)
C7—C1—C2—C3179.9 (3)C17—C18—C19—C2045.7 (3)
C1—C2—C3—C41.1 (5)C18—C19—C20—C1545.1 (3)
C2—C3—C4—C51.3 (6)C16—C15—C20—C1953.1 (3)
C3—C4—C5—C61.1 (6)C8—C15—C20—C1966.4 (3)
C2—C1—C6—C50.4 (5)N4—C22—C23—C24179.7 (3)
C7—C1—C6—C5179.9 (3)C27—C22—C23—C241.6 (5)
C4—C5—C6—C10.7 (6)N4—C22—C23—S10.4 (3)
C6—C1—C7—N122.4 (4)C27—C22—C23—S1178.2 (3)
C2—C1—C7—N1157.1 (3)C22—C23—C24—O18.7 (6)
C6—C1—C7—C17101.5 (3)S1—C23—C24—O1171.5 (3)
C2—C1—C7—C1779.0 (3)C22—C23—C24—O2170.0 (3)
N1—C8—C9—C1039.0 (3)S1—C23—C24—O29.8 (4)
C15—C8—C9—C1084.8 (3)C1—C7—N1—C8178.4 (2)
N1—C8—C9—C14140.4 (3)C17—C7—N1—C856.0 (3)
C15—C8—C9—C1495.8 (3)C9—C8—N1—C7176.8 (2)
C14—C9—C10—C110.1 (4)C15—C8—N1—C757.7 (3)
C8—C9—C10—C11179.3 (3)C17—C16—N2—N3175.5 (2)
C9—C10—C11—C120.5 (5)C15—C16—N2—N32.0 (4)
C10—C11—C12—C130.9 (5)N4—C21—N3—N2173.3 (2)
C11—C12—C13—C140.7 (5)S1—C21—N3—N28.0 (4)
C10—C9—C14—C130.4 (4)C16—N2—N3—C21177.3 (3)
C8—C9—C14—C13179.1 (3)N3—C21—N4—C22179.8 (3)
C12—C13—C14—C90.0 (5)S1—C21—N4—C221.0 (3)
N1—C8—C15—C1657.6 (3)C23—C22—N4—C210.3 (4)
C9—C8—C15—C16178.4 (2)C27—C22—N4—C21179.1 (3)
N1—C8—C15—C2062.0 (3)O3—C30—N5—C290.1 (5)
C9—C8—C15—C2061.9 (3)O3—C30—N5—C28176.0 (4)
C20—C15—C16—N2113.4 (3)O1—C24—O2—C25'4.6 (6)
C8—C15—C16—N2121.2 (3)C23—C24—O2—C25'174.1 (5)
C20—C15—C16—C1764.3 (3)O1—C24—O2—C2520.2 (15)
C8—C15—C16—C1761.1 (3)C23—C24—O2—C25161.0 (14)
N2—C16—C17—C18113.0 (3)N4—C21—S1—C231.0 (2)
C15—C16—C17—C1865.0 (3)N3—C21—S1—C23179.8 (3)
N2—C16—C17—C7121.3 (3)C22—C23—S1—C210.8 (2)
C15—C16—C17—C760.7 (3)C24—C23—S1—C21179.4 (3)
N1—C7—C17—C1655.5 (3)C24—O2—C25—C26128.4 (18)
C1—C7—C17—C16179.9 (2)C25'—O2—C25—C2681 (3)
N1—C7—C17—C1865.1 (3)C24—O2—C25'—C26'174.6 (10)
C1—C7—C17—C1859.3 (3)C25—O2—C25'—C26'28.6 (14)
C16—C17—C18—C1954.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.413.284 (4)156
N1—H1A···O1ii0.84 (2)2.59 (2)3.380 (4)157 (2)
N3—H3A···O30.85 (2)1.99 (2)2.843 (4)173 (3)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.413.284 (4)156
N1—H1A···O1ii0.844 (17)2.59 (2)3.380 (4)157 (2)
N3—H3A···O30.853 (17)1.993 (18)2.843 (4)173 (3)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

SJ is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for the award of a Senior Research Fellowship through research grant No. 01/2454/11/EMR-II. The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948–954.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). Eur. J. Med. Chem. 45, 744–747.  Web of Science CrossRef CAS Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationRamachandran, R., Rani, M. & Kabilan, S. (2009). Bioorg. Med. Chem. 19, 2819–2823.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds