organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z,4E)-1-(5-Fluoro-2-hy­dr­oxy­phen­yl)-5-(4-fluoro­phen­yl)-3-hy­dr­oxy­penta-2,4-dien-1-one

aThe Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, People's Republic of China, bSchool of Pharmaceutical Sciences, Xiamen University, Sounth Xiang-An Road, Xiamen 361100, People's Republic of China, and cState Ocean Adm, Inst Oceanog 3, Xiamen 361005, People's Republic of China
*Correspondence e-mail: fangmj@xmu.edu.cn

(Received 20 November 2013; accepted 11 December 2013; online 24 December 2013)

In the title mol­ecule, C17H12F2O3, the dihedral angle between the benzene rings is 8.6 (2)°. In the crystal, two pairs of O—H⋯O hydrogen bonds connect the mol­ecules into inversion dimers. In addition, weak C—H⋯F hydrogen bonds link the dimers into a two-dimensional network parallel to (10-4). The carbonyl O atom is an acceptor for two weak intra­molecular hydrogen bonds.

Related literature

For the biological activities of chalcones, see: Meng et al. (2007[Meng, C. Q., Ni, L. M., Worsencroft, K. J., Ye, Z., Weingarten, D. M., Simpson, J. E., Skudlarek, J. W., Marino, E. M., Suen, K. L., Kunsch, C., Souder, A., Howard, R. B., Sundell, C. L., Wasserman, M. A. & Sikorski, J. A. (2007). J. Med. Chem. 50, 1304-1315.]); Schobert et al. (2009[Schobert, R., Biersack, B., Dietrich, A., Knauer, S., Zoldakova, M., Fruehauf, A. & Mueller, T. (2009). J. Med. Chem. 52, 241-246.]). For the synthesis, see: Baker (1933[Baker, W. J. (1933). J. Chem. Soc. pp. 1381-1389.]); Mahal & Venkataraman (1934[Mahal, H. S. & Venkataraman, K. (1934). J. Chem. Soc. pp. 1767-1769.]). For a related structure, see: Fun et al. (2012[Fun, H.-K., Farhadikoutenaei, A., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2012). Acta Cryst. E68, o2658.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12F2O3

  • Mr = 302.27

  • Monoclinic, P 21 /c

  • a = 6.8275 (18) Å

  • b = 14.004 (4) Å

  • c = 14.267 (4) Å

  • β = 91.293 (5)°

  • V = 1363.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.32 × 0.23 × 0.18 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.979

  • 6787 measured reflections

  • 2392 independent reflections

  • 2040 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.147

  • S = 1.08

  • 2392 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 1.84 2.558 (2) 145
O1—H1A⋯O3i 0.82 2.55 3.145 (2) 130
O3—H3A⋯O2 0.82 1.81 2.532 (2) 146
O3—H3A⋯O2i 0.82 2.38 2.856 (2) 118
C10—H10A⋯F2ii 0.93 2.51 3.326 (3) 147
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) [-x-3, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dibenzoylmethane (1,3-Diphenyl-propane-1,3-dione, DBM) and chalcones have been found to exhibit a variety of biological activities, such as anti-tumor, anti-inflammatory, antibacterial, anti-parasitic, anti-oxidation and anti-viral effect (Schobert et al., 2009; Meng et al., 2007). Recently, we carried out to synthesis a series of (E)-1,5-diphenylpent-4-ene-1,3-dione derivatives. These compounds have keto-enol tautomerism, however, the enol form predominates. The dihedral angle between the planes of the phenyl rings (C2–C7) and (C12–C17) is 8.6 (3) °. Bond lengths and angles in (I, Fig. 2) are agreement with values reported for a similar compound (Fun et al., 2012). In the crystal, two pairs of O—H···O hydrogen bonds connect the molecules into inversion dimers (Fig. 3). In addition, weak C—H···F hydrogen bonds link dimers into a two-dimensional network parallel to (104) (Fig. 4). The oxygen atom of the –CO group is an acceptor for two intramolecular hydrogen bonds (Fig. 2).

Related literature top

For the biological activities of chalcones, see: Meng et al. (2007); Schobert et al. (2009). For the synthesis, see: Baker (1933); Mahal & Venkataraman (1934). For a related structure, see: Fun et al. (2012).

Experimental top

The reaction scheme is shown in Fig. 1. A reaction mixture of (E)-3-(4-fluorophenyl) acryloyl chloride (0.37 g, 2.0 mmol) and 1-(5-fluoro-2-hydroxyphenyl)ethanone (0.31 g, 2.0 mmol) in pyridine (10 ml) was stirred for 1 h at 323K (Baker et al., 1933). The mixture was then neutralized with dilute hydrochloric acid, and extracted with ethyl acetate (3×15 ml). The organic phase was concentrated under vacuum to obtain a slurry residue to which was added pyridine (10 ml) and potassium hydroxide (0.21 g, 1.5 mmol). The solution was stirred for 3 h at 323K. The mixture was then neutralized with dilute hydrochloric acid, and extracted with ethyl acetate (3×15 ml). The organic phase was dried over anhydrous MgSO4 and concentrated under vacuum to obtain a slurry residue. The residue was purified by chromatography using petroleum ether and ethyl acetate (v:v=5:1) as eluent to give a light yellow solid (Mahal & Venkataraman, 1934). Single crystals were obtained by crystallization of a petroleum ether and ethyl acetate (v:v=1:4) solution of the title compound.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic) or 0.98 (CH), O—H = 0.82 Å and isotropic displacement parameters for were set at Uiso(H) = x Ueq (carried atom), with x = 1.5 for hydroxy, and x = 1.2 for methyne.

Structure description top

Dibenzoylmethane (1,3-Diphenyl-propane-1,3-dione, DBM) and chalcones have been found to exhibit a variety of biological activities, such as anti-tumor, anti-inflammatory, antibacterial, anti-parasitic, anti-oxidation and anti-viral effect (Schobert et al., 2009; Meng et al., 2007). Recently, we carried out to synthesis a series of (E)-1,5-diphenylpent-4-ene-1,3-dione derivatives. These compounds have keto-enol tautomerism, however, the enol form predominates. The dihedral angle between the planes of the phenyl rings (C2–C7) and (C12–C17) is 8.6 (3) °. Bond lengths and angles in (I, Fig. 2) are agreement with values reported for a similar compound (Fun et al., 2012). In the crystal, two pairs of O—H···O hydrogen bonds connect the molecules into inversion dimers (Fig. 3). In addition, weak C—H···F hydrogen bonds link dimers into a two-dimensional network parallel to (104) (Fig. 4). The oxygen atom of the –CO group is an acceptor for two intramolecular hydrogen bonds (Fig. 2).

For the biological activities of chalcones, see: Meng et al. (2007); Schobert et al. (2009). For the synthesis, see: Baker (1933); Mahal & Venkataraman (1934). For a related structure, see: Fun et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The reaction scheme.
[Figure 2] Fig. 2. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level and H atoms drawn as small spheres of arbitrary radii.
[Figure 3] Fig. 3. An inversion dimers of (I). Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. Part of the crystal structure with hydrogen bonds shown as dashed lines.
(2Z,4E)-1-(5-Fluoro-2-hydroxyphenyl)-5-(4-fluorophenyl)-3-hydroxypenta-2,4-dien-1-one top
Crystal data top
C17H12F2O3F(000) = 624
Mr = 302.27Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2113 reflections
a = 6.8275 (18) Åθ = 1.6–27.3°
b = 14.004 (4) ŵ = 0.12 mm1
c = 14.267 (4) ÅT = 173 K
β = 91.293 (5)°Block, yellow
V = 1363.8 (7) Å30.32 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
2392 independent reflections
Radiation source: fine-focus sealed tube2040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.963, Tmax = 0.979k = 1616
6787 measured reflectionsl = 1216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.073P)2 + 0.3861P]
where P = (Fo2 + 2Fc2)/3
2392 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H12F2O3V = 1363.8 (7) Å3
Mr = 302.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8275 (18) ŵ = 0.12 mm1
b = 14.004 (4) ÅT = 173 K
c = 14.267 (4) Å0.32 × 0.23 × 0.18 mm
β = 91.293 (5)°
Data collection top
Bruker APEX CCD
diffractometer
2392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2040 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.979Rint = 0.028
6787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.08Δρmax = 0.21 e Å3
2392 reflectionsΔρmin = 0.29 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.0830 (2)1.43310 (10)0.38367 (11)0.0579 (5)
F21.6953 (2)0.59884 (10)0.25050 (10)0.0577 (5)
O30.7476 (2)0.93089 (10)0.42390 (11)0.0383 (4)
H3A0.65980.96750.44040.057*
O20.5856 (2)1.09111 (10)0.45331 (11)0.0348 (4)
O10.3972 (2)1.24886 (10)0.46202 (11)0.0391 (4)
H1A0.41081.19080.46490.059*
C161.5714 (3)0.75182 (16)0.27847 (15)0.0371 (5)
H16A1.69150.77800.26020.045*
C60.9127 (3)1.38522 (15)0.40188 (16)0.0371 (5)
C90.9017 (3)0.98066 (14)0.39432 (13)0.0276 (5)
C10.7404 (3)1.13263 (14)0.42564 (13)0.0258 (5)
C70.9178 (3)1.28835 (15)0.40533 (15)0.0328 (5)
H7A1.03521.25590.39520.039*
C50.7442 (4)1.43672 (16)0.41622 (16)0.0401 (6)
H5A0.74551.50300.41270.048*
C131.2171 (3)0.67182 (15)0.33270 (14)0.0336 (5)
H13A1.09790.64470.35110.040*
C80.9043 (3)1.07757 (14)0.39450 (14)0.0287 (5)
H8A1.01701.10900.37360.034*
C30.5709 (3)1.28979 (15)0.44117 (14)0.0297 (5)
C141.3700 (4)0.61349 (16)0.30486 (16)0.0400 (6)
H14A1.35580.54740.30410.048*
C111.0733 (3)0.83020 (14)0.36333 (14)0.0287 (5)
H11A0.96130.79870.38520.034*
C20.7438 (3)1.23770 (14)0.42429 (13)0.0271 (5)
C171.4183 (3)0.80885 (16)0.30625 (15)0.0331 (5)
H17A1.43520.87470.30680.040*
C101.0668 (3)0.92464 (14)0.36235 (14)0.0294 (5)
H10A1.17660.95710.33940.035*
C151.5432 (3)0.65543 (17)0.27832 (15)0.0385 (6)
C121.2379 (3)0.77070 (14)0.33372 (13)0.0265 (5)
C40.5740 (3)1.38854 (15)0.43586 (16)0.0374 (6)
H4A0.45851.42260.44580.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0450 (9)0.0381 (8)0.0906 (12)0.0127 (6)0.0004 (8)0.0083 (8)
F20.0554 (10)0.0552 (9)0.0619 (10)0.0309 (7)0.0138 (7)0.0001 (7)
O30.0275 (8)0.0281 (8)0.0588 (11)0.0005 (6)0.0106 (7)0.0042 (7)
O20.0258 (8)0.0298 (8)0.0483 (9)0.0013 (6)0.0062 (7)0.0013 (7)
O10.0295 (9)0.0346 (8)0.0530 (10)0.0088 (7)0.0058 (7)0.0058 (7)
C160.0306 (12)0.0444 (13)0.0363 (13)0.0028 (10)0.0002 (9)0.0039 (10)
C60.0374 (13)0.0306 (11)0.0434 (13)0.0058 (10)0.0033 (10)0.0042 (10)
C90.0268 (11)0.0301 (11)0.0258 (11)0.0005 (9)0.0012 (8)0.0017 (8)
C10.0235 (10)0.0308 (11)0.0231 (10)0.0005 (8)0.0001 (8)0.0016 (8)
C70.0307 (12)0.0318 (11)0.0358 (12)0.0020 (9)0.0008 (9)0.0010 (9)
C50.0508 (15)0.0260 (11)0.0438 (14)0.0027 (10)0.0066 (11)0.0006 (10)
C130.0369 (13)0.0324 (11)0.0313 (12)0.0010 (9)0.0002 (9)0.0019 (9)
C80.0251 (11)0.0297 (11)0.0310 (11)0.0015 (8)0.0066 (8)0.0042 (9)
C30.0307 (12)0.0315 (11)0.0269 (11)0.0046 (9)0.0012 (9)0.0016 (9)
C140.0535 (15)0.0282 (11)0.0383 (13)0.0097 (11)0.0018 (11)0.0012 (10)
C110.0271 (12)0.0333 (11)0.0257 (11)0.0009 (9)0.0005 (8)0.0027 (9)
C20.0305 (11)0.0284 (11)0.0224 (10)0.0028 (9)0.0023 (8)0.0013 (8)
C170.0296 (12)0.0331 (11)0.0367 (12)0.0009 (9)0.0014 (9)0.0043 (9)
C100.0274 (11)0.0316 (11)0.0290 (11)0.0011 (9)0.0051 (9)0.0000 (9)
C150.0398 (14)0.0441 (13)0.0317 (12)0.0205 (11)0.0008 (10)0.0013 (10)
C120.0299 (11)0.0291 (10)0.0206 (10)0.0032 (9)0.0018 (8)0.0019 (8)
C40.0413 (14)0.0312 (11)0.0397 (13)0.0108 (10)0.0026 (10)0.0030 (10)
Geometric parameters (Å, º) top
F1—C61.362 (2)C5—C41.368 (3)
F2—C151.358 (2)C5—H5A0.9300
O3—C91.323 (2)C13—C141.377 (3)
O3—H3A0.8200C13—C121.392 (3)
O2—C11.262 (2)C13—H13A0.9300
O1—C31.345 (2)C8—H8A0.9300
O1—H1A0.8200C3—C41.385 (3)
C16—C151.363 (3)C3—C21.404 (3)
C16—C171.367 (3)C14—C151.366 (3)
C16—H16A0.9300C14—H14A0.9300
C6—C71.358 (3)C11—C101.323 (3)
C6—C51.369 (3)C11—C121.454 (3)
C9—C81.357 (3)C11—H11A0.9300
C9—C101.439 (3)C17—C121.391 (3)
C1—C81.422 (3)C17—H17A0.9300
C1—C21.472 (3)C10—H10A0.9300
C7—C21.404 (3)C4—H4A0.9300
C7—H7A0.9300
C9—O3—H3A109.5O1—C3—C2123.41 (18)
C3—O1—H1A109.5C4—C3—C2119.84 (19)
C15—C16—C17118.1 (2)C15—C14—C13118.1 (2)
C15—C16—H16A120.9C15—C14—H14A121.0
C17—C16—H16A120.9C13—C14—H14A121.0
C7—C6—F1118.4 (2)C10—C11—C12126.55 (19)
C7—C6—C5122.9 (2)C10—C11—H11A116.7
F1—C6—C5118.66 (19)C12—C11—H11A116.7
O3—C9—C8122.42 (18)C3—C2—C7118.35 (18)
O3—C9—C10115.18 (17)C3—C2—C1120.26 (18)
C8—C9—C10122.40 (18)C7—C2—C1121.38 (18)
O2—C1—C8119.71 (18)C16—C17—C12121.6 (2)
O2—C1—C2118.55 (17)C16—C17—H17A119.2
C8—C1—C2121.72 (18)C12—C17—H17A119.2
C6—C7—C2119.3 (2)C11—C10—C9124.61 (19)
C6—C7—H7A120.4C11—C10—H10A117.7
C2—C7—H7A120.4C9—C10—H10A117.7
C4—C5—C6118.6 (2)F2—C15—C16118.1 (2)
C4—C5—H5A120.7F2—C15—C14118.8 (2)
C6—C5—H5A120.7C16—C15—C14123.1 (2)
C14—C13—C12121.1 (2)C17—C12—C13117.98 (19)
C14—C13—H13A119.5C17—C12—C11122.39 (18)
C12—C13—H13A119.5C13—C12—C11119.63 (19)
C9—C8—C1122.19 (19)C5—C4—C3121.0 (2)
C9—C8—H8A118.9C5—C4—H4A119.5
C1—C8—H8A118.9C3—C4—H4A119.5
O1—C3—C4116.75 (18)
F1—C6—C7—C2179.82 (18)C8—C1—C2—C79.5 (3)
C5—C6—C7—C20.0 (4)C15—C16—C17—C120.0 (3)
C7—C6—C5—C40.7 (4)C12—C11—C10—C9178.58 (19)
F1—C6—C5—C4179.0 (2)O3—C9—C10—C111.7 (3)
O3—C9—C8—C10.7 (3)C8—C9—C10—C11178.0 (2)
C10—C9—C8—C1179.63 (18)C17—C16—C15—F2179.84 (19)
O2—C1—C8—C90.8 (3)C17—C16—C15—C140.2 (4)
C2—C1—C8—C9179.13 (19)C13—C14—C15—F2179.86 (19)
C12—C13—C14—C150.1 (3)C13—C14—C15—C160.2 (4)
O1—C3—C2—C7178.50 (19)C16—C17—C12—C130.3 (3)
C4—C3—C2—C72.1 (3)C16—C17—C12—C11179.90 (19)
O1—C3—C2—C12.1 (3)C14—C13—C12—C170.3 (3)
C4—C3—C2—C1177.29 (19)C14—C13—C12—C11179.87 (19)
C6—C7—C2—C31.4 (3)C10—C11—C12—C174.8 (3)
C6—C7—C2—C1177.92 (19)C10—C11—C12—C13175.4 (2)
O2—C1—C2—C38.5 (3)C6—C5—C4—C30.1 (3)
C8—C1—C2—C3169.85 (18)O1—C3—C4—C5179.18 (19)
O2—C1—C2—C7172.14 (18)C2—C3—C4—C51.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.842.558 (2)145
O1—H1A···O3i0.822.553.145 (2)130
O3—H3A···O20.821.812.532 (2)146
O3—H3A···O2i0.822.382.856 (2)118
C10—H10A···F2ii0.932.513.326 (3)147
Symmetry codes: (i) x1, y+2, z+1; (ii) x3, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.842.558 (2)145
O1—H1A···O3i0.822.553.145 (2)130
O3—H3A···O20.821.812.532 (2)146
O3—H3A···O2i0.822.382.856 (2)118
C10—H10A···F2ii0.932.513.326 (3)147
Symmetry codes: (i) x1, y+2, z+1; (ii) x3, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the National Science Foundation of China (grants No. 81072549 and 81302652) and the Natural Science Foundation of Fujian Province of China (grant No. 2011 J05101)

References

First citationBaker, W. J. (1933). J. Chem. Soc. pp. 1381–1389.  CrossRef Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Farhadikoutenaei, A., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2012). Acta Cryst. E68, o2658.  CSD CrossRef IUCr Journals Google Scholar
First citationMahal, H. S. & Venkataraman, K. (1934). J. Chem. Soc. pp. 1767–1769.  CrossRef Google Scholar
First citationMeng, C. Q., Ni, L. M., Worsencroft, K. J., Ye, Z., Weingarten, D. M., Simpson, J. E., Skudlarek, J. W., Marino, E. M., Suen, K. L., Kunsch, C., Souder, A., Howard, R. B., Sundell, C. L., Wasserman, M. A. & Sikorski, J. A. (2007). J. Med. Chem. 50, 1304–1315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchobert, R., Biersack, B., Dietrich, A., Knauer, S., Zoldakova, M., Fruehauf, A. & Mueller, T. (2009). J. Med. Chem. 52, 241–246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds