organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­chloro-9-(prop-2-yn-1-yl)-9H-carbazole

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 22 November 2013; accepted 3 December 2013; online 7 December 2013)

The tricyclic aromatic ring system of the title compound, C15H9Cl2N, is essentially planar (r.m.s. deviation = 0.002 Å). The two Cl atoms lie slightly out of the plane of the carbazole ring system, with the C—Cl bonds forming angles of 1.23 (8) and 1.14 (8)° with the plane. The acetylene group has a syn orientation with respect to the ring system. In the crystal, no weak hydrogen bonds nor any ππ stacking inter­actions are observed.

Related literature

For industrial applications of carbazole-containing compounds, see: Zhang et al. (1998[Zhang, Y., Wada, T. & Sasabe, H. (1998). J. Mater. Chem. 8, 809-828.]). For pharmaceutical properties of carbazoles, see: Liu & Larock (2007[Liu, Z. & Larock, R. C. (2007). Tetrahedron, 63, 347-355.]); Hussain et al. (2011[Hussain, M., Toguem, S.-M.T., Ahmad, R., Tùng, Ð.T., Knepper, I., Villinger, A. & Langer, P. (2011). Tetrahedron, 67, 5304-5318.]); Zhang et al. (2010[Zhang, F. F., Gan, L. L. & Cheng-He Zho, C. H. (2010). Bioorg. Med. Chem. Lett. 20, 1881-1884.]); Conchon et al. (2006[Conchon, E., Anizon, F., Golsteyn, R. M., Léonce, S., Pfeiffer, B. & Prudhomme, M. (2006). Tetrahedron, 62, 11136-11144.]). For a related structure, see: Xie et al. (2012[Xie, Y.-Z., Jin, J.-Y. & Jin, G.-D. (2012). Acta Cryst. E68, o1242.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9Cl2N

  • Mr = 274.13

  • Orthorhombic, P 21 21 21

  • a = 3.9825 (1) Å

  • b = 11.1705 (4) Å

  • c = 27.4417 (9) Å

  • V = 1220.79 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.59 mm−1

  • T = 100 K

  • 0.18 × 0.05 × 0.02 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.74, Tmax = 0.91

  • 10712 measured reflections

  • 2224 independent reflections

  • 2160 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.05

  • 2224 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack parameter determined using 817 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.002 (12)

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, carbazoles have been used as photoconductors, semiconductors and for their light-emitting properties, making them interesting organic tools for physics experiments (Zhang et al., 1998). Moreover, several alkaloids based on a carbazole structure are known to possess interesting biological activities such as antitumor, antibacterial, anti-inflammatory, psychotropic and anti-histamine properties (Liu & Larock, 2007). Many synthetic carbazole derivatives are of significant pharmacological relevance because of their antifungal, antibiotic, and antitumor activities (Hussain et al., 2011; Zhang et al., 2010; Conchon et al., 2006). The introduction of functional groups onto the carbazole scaffold is essential to generate compounds suitable for biological and physical investigations. Based on such facts we herein report the crystal structure of the title compound.

In the title compound (Fig. 1), the carbazole ring system is essentially planar (r.m.s. deviation = 0.002 Å). The Cl1 and Cl2 atoms lie slightly out of the plane of the carbazole ring system which makes angles of 1.23 (8) and 1.14 (8)° with the Cl1—C4 and Cl2—C9 bonds, respectively. The values of the geometric parameters of the title compound are within normal ranges (Xie et al., 2012).

In the crystal, no classical hydrogen bonds are observed. The crystal packing is stabilized by weak van der Waals interactions. The packing of the title compound viewed along the a axis are shown in Fig. 2.

Related literature top

For industrial applications of carbazole-containing compounds, see: Zhang et al. (1998). For pharmaceutical properties of carbazoles, see: Liu & Larock (2007); Hussain et al. (2011); Zhang et al. (2010); Conchon et al. (2006). For a related structure, see: Xie et al. (2012).

Experimental top

Propargyl bromide (1.1 g, 9 mmol) was added to a suspension solution of 3,6-dichloro-9H-carbazole (0.7 g, 3 mmol) and K2CO3 (0.82 g, 6 mmol) in DMF (15 ml) and stirred at room temperature for 6 h. The excess solvent was evaporated to dryness in vacuo. The residue was diluted with water and then extracted with CH2Cl2 (3 x 30 ml). The combined organic extracts were dried over anhydrous Na2SO4, filtered and evaporated under reduced pressure to give the corresponding product as colourless crystals (0.61 g, 75%) yield, mp 469–471 K.

Refinement top

All H atoms were placed geometrically and refined using a riding model with C—H = 0.95 - 0.99 Å, and with Uiso(H) = 1.2Uiso(C).

Structure description top

In recent years, carbazoles have been used as photoconductors, semiconductors and for their light-emitting properties, making them interesting organic tools for physics experiments (Zhang et al., 1998). Moreover, several alkaloids based on a carbazole structure are known to possess interesting biological activities such as antitumor, antibacterial, anti-inflammatory, psychotropic and anti-histamine properties (Liu & Larock, 2007). Many synthetic carbazole derivatives are of significant pharmacological relevance because of their antifungal, antibiotic, and antitumor activities (Hussain et al., 2011; Zhang et al., 2010; Conchon et al., 2006). The introduction of functional groups onto the carbazole scaffold is essential to generate compounds suitable for biological and physical investigations. Based on such facts we herein report the crystal structure of the title compound.

In the title compound (Fig. 1), the carbazole ring system is essentially planar (r.m.s. deviation = 0.002 Å). The Cl1 and Cl2 atoms lie slightly out of the plane of the carbazole ring system which makes angles of 1.23 (8) and 1.14 (8)° with the Cl1—C4 and Cl2—C9 bonds, respectively. The values of the geometric parameters of the title compound are within normal ranges (Xie et al., 2012).

In the crystal, no classical hydrogen bonds are observed. The crystal packing is stabilized by weak van der Waals interactions. The packing of the title compound viewed along the a axis are shown in Fig. 2.

For industrial applications of carbazole-containing compounds, see: Zhang et al. (1998). For pharmaceutical properties of carbazoles, see: Liu & Larock (2007); Hussain et al. (2011); Zhang et al. (2010); Conchon et al. (2006). For a related structure, see: Xie et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing of the title compound viewed along the a axis.
3,6-Dichloro-9-(prop-2-yn-1-yl)-9H-carbazole top
Crystal data top
C15H9Cl2NF(000) = 560
Mr = 274.13Dx = 1.492 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 9151 reflections
a = 3.9825 (1) Åθ = 4.3–68.0°
b = 11.1705 (4) ŵ = 4.59 mm1
c = 27.4417 (9) ÅT = 100 K
V = 1220.79 (7) Å3Column, colourless
Z = 40.18 × 0.05 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2224 independent reflections
Radiation source: INCOATEC IµS micro–focus source2160 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.088
Detector resolution: 10.4167 pixels mm-1θmax = 68.1°, θmin = 3.2°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1313
Tmin = 0.74, Tmax = 0.91l = 3233
10712 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 W = 1/[Σ2(FO2) + (0.0351P)2 + 0.195P]
where P = (FO2 + 2FC2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.22 e Å3
2224 reflectionsΔρmin = 0.18 e Å3
163 parametersAbsolute structure: Flack parameter determined using 817 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.002 (12)
Crystal data top
C15H9Cl2NV = 1220.79 (7) Å3
Mr = 274.13Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 3.9825 (1) ŵ = 4.59 mm1
b = 11.1705 (4) ÅT = 100 K
c = 27.4417 (9) Å0.18 × 0.05 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2224 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2160 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.91Rint = 0.088
10712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.18 e Å3
2224 reflectionsAbsolute structure: Flack parameter determined using 817 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
163 parametersAbsolute structure parameter: 0.002 (12)
0 restraints
Special details top

Experimental. 1H-NMR (300 MHz, CDCl3): d 3.31 (s, 1H, C—CH), 5.34 (d, 2H, J=2.4 Hz, CH2—C), 7.54 (m, 2H, Ar—H), 7.74 (m, 2H, Ar—H), 8.34 (s, 2H, Ar—H). 13 C-NMR (75 MHz, CDCl3): d 32.2 (CH2), 74.8 (C—CH), 78.5 (C—CH), 111.4, 120.5, (4CH-Ar), 122.9, 124.2 (4 C-Ar), 126.4 (2CH-Ar), 138.6 (2 C-Ar). MS: (EI) m/z (%): 275 (M+2, 70), 274 (M+1, 74), 273 (M+, 100), 247 (10), 233 (44), 201 (4), 174 (2), 164 (14), 150 (2), 122 (2), 98 (2), 75 (4). Anal. for C15H9Cl2N: calcd. C, 65.72; H, 3.31; Cl, 25.86; N, 5.11. Found: C, 65.38; H, 3.11; N, 4.95%.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52328 (16)0.39290 (5)0.06840 (2)0.0240 (2)
Cl20.52780 (15)0.15240 (5)0.22392 (2)0.0252 (2)
N10.0291 (5)0.57255 (17)0.11884 (6)0.0190 (5)
C10.1356 (6)0.5462 (2)0.07181 (8)0.0180 (6)
C20.0865 (6)0.6107 (2)0.02874 (8)0.0218 (7)
C30.2076 (6)0.5615 (2)0.01405 (8)0.0214 (7)
C40.3762 (6)0.4513 (2)0.01335 (8)0.0197 (6)
C50.4309 (6)0.3879 (2)0.02890 (8)0.0190 (6)
C60.3072 (6)0.4360 (2)0.07226 (8)0.0175 (6)
C70.3067 (6)0.3947 (2)0.12215 (8)0.0177 (6)
C80.4327 (6)0.2920 (2)0.14472 (8)0.0188 (6)
C90.3751 (6)0.2800 (2)0.19418 (8)0.0208 (7)
C100.2040 (6)0.3660 (2)0.22166 (8)0.0217 (7)
C110.0803 (6)0.4677 (2)0.19960 (8)0.0213 (7)
C120.1317 (6)0.4812 (2)0.14950 (8)0.0183 (6)
C130.1714 (6)0.6755 (2)0.13263 (9)0.0219 (7)
C140.0264 (6)0.7838 (2)0.14305 (8)0.0216 (6)
C150.1835 (7)0.8710 (2)0.15139 (10)0.0284 (7)
H20.026100.685600.028800.0260*
H30.176400.602500.044000.0260*
H50.548900.314000.028600.0230*
H80.552800.233000.126900.0230*
H100.172700.354200.255600.0260*
H110.036100.526900.217900.0260*
H13A0.304500.654700.161900.0260*
H13B0.331100.693400.106000.0260*
H150.310000.941200.158100.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0287 (3)0.0266 (3)0.0167 (2)0.0027 (3)0.0020 (2)0.0015 (2)
Cl20.0256 (3)0.0274 (3)0.0226 (3)0.0015 (3)0.0015 (2)0.0073 (2)
N10.0184 (9)0.0176 (9)0.0209 (9)0.0002 (9)0.0008 (8)0.0031 (7)
C10.0165 (11)0.0170 (11)0.0206 (11)0.0036 (9)0.0012 (9)0.0023 (9)
C20.0201 (11)0.0185 (11)0.0269 (12)0.0009 (10)0.0024 (9)0.0002 (9)
C30.0221 (11)0.0228 (12)0.0192 (11)0.0057 (10)0.0024 (9)0.0016 (10)
C40.0191 (11)0.0212 (11)0.0189 (11)0.0052 (9)0.0009 (9)0.0023 (9)
C50.0186 (11)0.0180 (11)0.0204 (10)0.0036 (10)0.0004 (9)0.0017 (9)
C60.0157 (10)0.0174 (11)0.0195 (11)0.0028 (9)0.0017 (9)0.0014 (9)
C70.0155 (10)0.0188 (11)0.0188 (11)0.0045 (9)0.0006 (8)0.0018 (9)
C80.0168 (11)0.0201 (10)0.0194 (10)0.0028 (9)0.0008 (9)0.0028 (9)
C90.0178 (12)0.0235 (12)0.0211 (11)0.0056 (10)0.0038 (9)0.0031 (10)
C100.0194 (11)0.0291 (13)0.0167 (10)0.0066 (10)0.0015 (9)0.0024 (10)
C110.0193 (12)0.0238 (12)0.0207 (11)0.0041 (10)0.0017 (9)0.0064 (9)
C120.0143 (11)0.0188 (11)0.0219 (11)0.0034 (9)0.0008 (9)0.0031 (9)
C130.0173 (11)0.0208 (12)0.0276 (12)0.0012 (10)0.0005 (9)0.0043 (10)
C140.0212 (12)0.0219 (11)0.0217 (10)0.0062 (11)0.0028 (10)0.0018 (9)
C150.0276 (12)0.0206 (12)0.0369 (14)0.0005 (11)0.0004 (11)0.0031 (11)
Geometric parameters (Å, º) top
Cl1—C41.747 (2)C9—C101.399 (3)
Cl2—C91.751 (2)C10—C111.378 (3)
N1—C11.390 (3)C11—C121.398 (3)
N1—C121.384 (3)C13—C141.472 (3)
N1—C131.450 (3)C14—C151.180 (3)
C1—C21.398 (3)C2—H20.9500
C1—C61.408 (3)C3—H30.9500
C2—C31.383 (3)C5—H50.9500
C3—C41.402 (3)C8—H80.9500
C4—C51.376 (3)C10—H100.9500
C5—C61.395 (3)C11—H110.9500
C6—C71.445 (3)C13—H13A0.9900
C7—C81.397 (3)C13—H13B0.9900
C7—C121.408 (3)C15—H150.9500
C8—C91.383 (3)
C1—N1—C12108.55 (18)N1—C12—C7109.15 (19)
C1—N1—C13125.32 (19)N1—C12—C11129.3 (2)
C12—N1—C13126.05 (18)C7—C12—C11121.5 (2)
N1—C1—C2129.3 (2)N1—C13—C14114.1 (2)
N1—C1—C6108.97 (19)C13—C14—C15179.7 (3)
C2—C1—C6121.7 (2)C1—C2—H2121.00
C1—C2—C3117.7 (2)C3—C2—H2121.00
C2—C3—C4120.3 (2)C2—C3—H3120.00
Cl1—C4—C3118.46 (17)C4—C3—H3120.00
Cl1—C4—C5118.91 (17)C4—C5—H5121.00
C3—C4—C5122.6 (2)C6—C5—H5121.00
C4—C5—C6117.7 (2)C7—C8—H8121.00
C1—C6—C5120.0 (2)C9—C8—H8121.00
C1—C6—C7106.67 (19)C9—C10—H10120.00
C5—C6—C7133.3 (2)C11—C10—H10120.00
C6—C7—C8133.0 (2)C10—C11—H11121.00
C6—C7—C12106.66 (19)C12—C11—H11121.00
C8—C7—C12120.3 (2)N1—C13—H13A109.00
C7—C8—C9117.1 (2)N1—C13—H13B109.00
Cl2—C9—C8118.59 (17)C14—C13—H13A109.00
Cl2—C9—C10118.49 (17)C14—C13—H13B109.00
C8—C9—C10122.9 (2)H13A—C13—H13B108.00
C9—C10—C11120.2 (2)C14—C15—H15180.00
C10—C11—C12117.9 (2)
C12—N1—C1—C2178.9 (2)C3—C4—C5—C61.0 (4)
C12—N1—C1—C60.4 (3)C4—C5—C6—C10.5 (3)
C13—N1—C1—C21.9 (4)C4—C5—C6—C7177.8 (2)
C13—N1—C1—C6176.6 (2)C1—C6—C7—C8179.0 (3)
C1—N1—C12—C70.0 (3)C1—C6—C7—C120.6 (3)
C1—N1—C12—C11179.3 (2)C5—C6—C7—C80.6 (5)
C13—N1—C12—C7177.0 (2)C5—C6—C7—C12177.8 (3)
C13—N1—C12—C112.4 (4)C6—C7—C8—C9177.8 (2)
C1—N1—C13—C1486.6 (3)C12—C7—C8—C90.4 (3)
C12—N1—C13—C1497.0 (3)C6—C7—C12—N10.4 (3)
N1—C1—C2—C3177.2 (2)C6—C7—C12—C11179.0 (2)
C6—C1—C2—C31.1 (4)C8—C7—C12—N1179.1 (2)
N1—C1—C6—C5178.1 (2)C8—C7—C12—C110.3 (4)
N1—C1—C6—C70.6 (3)C7—C8—C9—Cl2179.84 (17)
C2—C1—C6—C50.6 (4)C7—C8—C9—C101.0 (4)
C2—C1—C6—C7179.3 (2)Cl2—C9—C10—C11179.94 (18)
C1—C2—C3—C40.7 (3)C8—C9—C10—C110.8 (4)
C2—C3—C4—Cl1179.85 (18)C9—C10—C11—C120.0 (3)
C2—C3—C4—C50.4 (4)C10—C11—C12—N1178.7 (2)
Cl1—C4—C5—C6179.26 (18)C10—C11—C12—C70.6 (4)

Experimental details

Crystal data
Chemical formulaC15H9Cl2N
Mr274.13
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)3.9825 (1), 11.1705 (4), 27.4417 (9)
V3)1220.79 (7)
Z4
Radiation typeCu Kα
µ (mm1)4.59
Crystal size (mm)0.18 × 0.05 × 0.02
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.74, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
10712, 2224, 2160
Rint0.088
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.05
No. of reflections2224
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18
Absolute structureFlack parameter determined using 817 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.002 (12)

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Minia University, Erciyes University, Tulane University and Manchester Metropolitan University for supporting the study.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConchon, E., Anizon, F., Golsteyn, R. M., Léonce, S., Pfeiffer, B. & Prudhomme, M. (2006). Tetrahedron, 62, 11136–11144.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHussain, M., Toguem, S.-M.T., Ahmad, R., Tùng, Ð.T., Knepper, I., Villinger, A. & Langer, P. (2011). Tetrahedron, 67, 5304–5318.  Google Scholar
First citationLiu, Z. & Larock, R. C. (2007). Tetrahedron, 63, 347–355.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-Z., Jin, J.-Y. & Jin, G.-D. (2012). Acta Cryst. E68, o1242.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, F. F., Gan, L. L. & Cheng-He Zho, C. H. (2010). Bioorg. Med. Chem. Lett. 20, 1881–1884.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Wada, T. & Sasabe, H. (1998). J. Mater. Chem. 8, 809–828.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds