organic compounds
3,6-Dichloro-9-(prop-2-yn-1-yl)-9H-carbazole
aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
The tricyclic aromatic ring system of the title compound, C15H9Cl2N, is essentially planar (r.m.s. deviation = 0.002 Å). The two Cl atoms lie slightly out of the plane of the carbazole ring system, with the C—Cl bonds forming angles of 1.23 (8) and 1.14 (8)° with the plane. The acetylene group has a syn orientation with respect to the ring system. In the crystal, no weak hydrogen bonds nor any π–π stacking interactions are observed.
CCDC reference: 974842
Related literature
For industrial applications of carbazole-containing compounds, see: Zhang et al. (1998). For pharmaceutical properties of carbazoles, see: Liu & Larock (2007); Hussain et al. (2011); Zhang et al. (2010); Conchon et al. (2006). For a related structure, see: Xie et al. (2012).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 974842
https://doi.org/10.1107/S1600536813032777/lh5674sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813032777/lh5674Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813032777/lh5674Isup3.cml
Propargyl bromide (1.1 g, 9 mmol) was added to a suspension solution of 3,6-dichloro-9H-carbazole (0.7 g, 3 mmol) and K2CO3 (0.82 g, 6 mmol) in DMF (15 ml) and stirred at room temperature for 6 h. The excess solvent was evaporated to dryness in vacuo. The residue was diluted with water and then extracted with CH2Cl2 (3 x 30 ml). The combined organic extracts were dried over anhydrous Na2SO4, filtered and evaporated under reduced pressure to give the corresponding product as colourless crystals (0.61 g, 75%) yield, mp 469–471 K.
All H atoms were placed geometrically and refined using a riding model with C—H = 0.95 - 0.99 Å, and with Uiso(H) = 1.2Uiso(C).
In recent years, carbazoles have been used as photoconductors, semiconductors and for their light-emitting properties, making them interesting organic tools for physics experiments (Zhang et al., 1998). Moreover, several
based on a carbazole structure are known to possess interesting biological activities such as antitumor, antibacterial, anti-inflammatory, psychotropic and anti-histamine properties (Liu & Larock, 2007). Many synthetic carbazole derivatives are of significant pharmacological relevance because of their antifungal, antibiotic, and antitumor activities (Hussain et al., 2011; Zhang et al., 2010; Conchon et al., 2006). The introduction of functional groups onto the carbazole scaffold is essential to generate compounds suitable for biological and physical investigations. Based on such facts we herein report the of the title compound.In the title compound (Fig. 1), the carbazole ring system is essentially planar (r.m.s. deviation = 0.002 Å). The Cl1 and Cl2 atoms lie slightly out of the plane of the carbazole ring system which makes angles of 1.23 (8) and 1.14 (8)° with the Cl1—C4 and Cl2—C9 bonds, respectively. The values of the geometric parameters of the title compound are within normal ranges (Xie et al., 2012).
In the crystal, no classical hydrogen bonds are observed. The crystal packing is stabilized by weak van der Waals interactions. The packing of the title compound viewed along the a axis are shown in Fig. 2.
For industrial applications of carbazole-containing compounds, see: Zhang et al. (1998). For pharmaceutical properties of carbazoles, see: Liu & Larock (2007); Hussain et al. (2011); Zhang et al. (2010); Conchon et al. (2006). For a related structure, see: Xie et al. (2012).
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. Perspective view of the title compound with 50% probability ellipsoids. | |
Fig. 2. Packing of the title compound viewed along the a axis. |
C15H9Cl2N | F(000) = 560 |
Mr = 274.13 | Dx = 1.492 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9151 reflections |
a = 3.9825 (1) Å | θ = 4.3–68.0° |
b = 11.1705 (4) Å | µ = 4.59 mm−1 |
c = 27.4417 (9) Å | T = 100 K |
V = 1220.79 (7) Å3 | Column, colourless |
Z = 4 | 0.18 × 0.05 × 0.02 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2224 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2160 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.088 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 68.1°, θmin = 3.2° |
ω scans | h = −4→4 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −13→13 |
Tmin = 0.74, Tmax = 0.91 | l = −32→33 |
10712 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.026 | W = 1/[Σ2(FO2) + (0.0351P)2 + 0.195P] where P = (FO2 + 2FC2)/3 |
wR(F2) = 0.068 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.22 e Å−3 |
2224 reflections | Δρmin = −0.18 e Å−3 |
163 parameters | Absolute structure: Flack parameter determined using 817 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.002 (12) |
C15H9Cl2N | V = 1220.79 (7) Å3 |
Mr = 274.13 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 3.9825 (1) Å | µ = 4.59 mm−1 |
b = 11.1705 (4) Å | T = 100 K |
c = 27.4417 (9) Å | 0.18 × 0.05 × 0.02 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2224 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 2160 reflections with I > 2σ(I) |
Tmin = 0.74, Tmax = 0.91 | Rint = 0.088 |
10712 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | H-atom parameters constrained |
wR(F2) = 0.068 | Δρmax = 0.22 e Å−3 |
S = 1.05 | Δρmin = −0.18 e Å−3 |
2224 reflections | Absolute structure: Flack parameter determined using 817 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
163 parameters | Absolute structure parameter: −0.002 (12) |
0 restraints |
Experimental. 1H-NMR (300 MHz, CDCl3): d 3.31 (s, 1H, C—CH), 5.34 (d, 2H, J=2.4 Hz, CH2—C), 7.54 (m, 2H, Ar—H), 7.74 (m, 2H, Ar—H), 8.34 (s, 2H, Ar—H). 13 C-NMR (75 MHz, CDCl3): d 32.2 (CH2), 74.8 (C—CH), 78.5 (C—CH), 111.4, 120.5, (4CH-Ar), 122.9, 124.2 (4 C-Ar), 126.4 (2CH-Ar), 138.6 (2 C-Ar). MS: (EI) m/z (%): 275 (M+2, 70), 274 (M+1, 74), 273 (M+, 100), 247 (10), 233 (44), 201 (4), 174 (2), 164 (14), 150 (2), 122 (2), 98 (2), 75 (4). Anal. for C15H9Cl2N: calcd. C, 65.72; H, 3.31; Cl, 25.86; N, 5.11. Found: C, 65.38; H, 3.11; N, 4.95%. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.52328 (16) | 0.39290 (5) | −0.06840 (2) | 0.0240 (2) | |
Cl2 | 0.52780 (15) | 0.15240 (5) | 0.22392 (2) | 0.0252 (2) | |
N1 | 0.0291 (5) | 0.57255 (17) | 0.11884 (6) | 0.0190 (5) | |
C1 | 0.1356 (6) | 0.5462 (2) | 0.07181 (8) | 0.0180 (6) | |
C2 | 0.0865 (6) | 0.6107 (2) | 0.02874 (8) | 0.0218 (7) | |
C3 | 0.2076 (6) | 0.5615 (2) | −0.01405 (8) | 0.0214 (7) | |
C4 | 0.3762 (6) | 0.4513 (2) | −0.01335 (8) | 0.0197 (6) | |
C5 | 0.4309 (6) | 0.3879 (2) | 0.02890 (8) | 0.0190 (6) | |
C6 | 0.3072 (6) | 0.4360 (2) | 0.07226 (8) | 0.0175 (6) | |
C7 | 0.3067 (6) | 0.3947 (2) | 0.12215 (8) | 0.0177 (6) | |
C8 | 0.4327 (6) | 0.2920 (2) | 0.14472 (8) | 0.0188 (6) | |
C9 | 0.3751 (6) | 0.2800 (2) | 0.19418 (8) | 0.0208 (7) | |
C10 | 0.2040 (6) | 0.3660 (2) | 0.22166 (8) | 0.0217 (7) | |
C11 | 0.0803 (6) | 0.4677 (2) | 0.19960 (8) | 0.0213 (7) | |
C12 | 0.1317 (6) | 0.4812 (2) | 0.14950 (8) | 0.0183 (6) | |
C13 | −0.1714 (6) | 0.6755 (2) | 0.13263 (9) | 0.0219 (7) | |
C14 | 0.0264 (6) | 0.7838 (2) | 0.14305 (8) | 0.0216 (6) | |
C15 | 0.1835 (7) | 0.8710 (2) | 0.15139 (10) | 0.0284 (7) | |
H2 | −0.02610 | 0.68560 | 0.02880 | 0.0260* | |
H3 | 0.17640 | 0.60250 | −0.04400 | 0.0260* | |
H5 | 0.54890 | 0.31400 | 0.02860 | 0.0230* | |
H8 | 0.55280 | 0.23300 | 0.12690 | 0.0230* | |
H10 | 0.17270 | 0.35420 | 0.25560 | 0.0260* | |
H11 | −0.03610 | 0.52690 | 0.21790 | 0.0260* | |
H13A | −0.30450 | 0.65470 | 0.16190 | 0.0260* | |
H13B | −0.33110 | 0.69340 | 0.10600 | 0.0260* | |
H15 | 0.31000 | 0.94120 | 0.15810 | 0.0340* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0287 (3) | 0.0266 (3) | 0.0167 (2) | −0.0027 (3) | 0.0020 (2) | −0.0015 (2) |
Cl2 | 0.0256 (3) | 0.0274 (3) | 0.0226 (3) | −0.0015 (3) | −0.0015 (2) | 0.0073 (2) |
N1 | 0.0184 (9) | 0.0176 (9) | 0.0209 (9) | −0.0002 (9) | 0.0008 (8) | −0.0031 (7) |
C1 | 0.0165 (11) | 0.0170 (11) | 0.0206 (11) | −0.0036 (9) | −0.0012 (9) | −0.0023 (9) |
C2 | 0.0201 (11) | 0.0185 (11) | 0.0269 (12) | −0.0009 (10) | −0.0024 (9) | 0.0002 (9) |
C3 | 0.0221 (11) | 0.0228 (12) | 0.0192 (11) | −0.0057 (10) | −0.0024 (9) | 0.0016 (10) |
C4 | 0.0191 (11) | 0.0212 (11) | 0.0189 (11) | −0.0052 (9) | 0.0009 (9) | −0.0023 (9) |
C5 | 0.0186 (11) | 0.0180 (11) | 0.0204 (10) | −0.0036 (10) | 0.0004 (9) | −0.0017 (9) |
C6 | 0.0157 (10) | 0.0174 (11) | 0.0195 (11) | −0.0028 (9) | −0.0017 (9) | −0.0014 (9) |
C7 | 0.0155 (10) | 0.0188 (11) | 0.0188 (11) | −0.0045 (9) | 0.0006 (8) | −0.0018 (9) |
C8 | 0.0168 (11) | 0.0201 (10) | 0.0194 (10) | −0.0028 (9) | −0.0008 (9) | −0.0028 (9) |
C9 | 0.0178 (12) | 0.0235 (12) | 0.0211 (11) | −0.0056 (10) | −0.0038 (9) | 0.0031 (10) |
C10 | 0.0194 (11) | 0.0291 (13) | 0.0167 (10) | −0.0066 (10) | 0.0015 (9) | −0.0024 (10) |
C11 | 0.0193 (12) | 0.0238 (12) | 0.0207 (11) | −0.0041 (10) | 0.0017 (9) | −0.0064 (9) |
C12 | 0.0143 (11) | 0.0188 (11) | 0.0219 (11) | −0.0034 (9) | −0.0008 (9) | −0.0031 (9) |
C13 | 0.0173 (11) | 0.0208 (12) | 0.0276 (12) | 0.0012 (10) | 0.0005 (9) | −0.0043 (10) |
C14 | 0.0212 (12) | 0.0219 (11) | 0.0217 (10) | 0.0062 (11) | 0.0028 (10) | −0.0018 (9) |
C15 | 0.0276 (12) | 0.0206 (12) | 0.0369 (14) | 0.0005 (11) | 0.0004 (11) | −0.0031 (11) |
Cl1—C4 | 1.747 (2) | C9—C10 | 1.399 (3) |
Cl2—C9 | 1.751 (2) | C10—C11 | 1.378 (3) |
N1—C1 | 1.390 (3) | C11—C12 | 1.398 (3) |
N1—C12 | 1.384 (3) | C13—C14 | 1.472 (3) |
N1—C13 | 1.450 (3) | C14—C15 | 1.180 (3) |
C1—C2 | 1.398 (3) | C2—H2 | 0.9500 |
C1—C6 | 1.408 (3) | C3—H3 | 0.9500 |
C2—C3 | 1.383 (3) | C5—H5 | 0.9500 |
C3—C4 | 1.402 (3) | C8—H8 | 0.9500 |
C4—C5 | 1.376 (3) | C10—H10 | 0.9500 |
C5—C6 | 1.395 (3) | C11—H11 | 0.9500 |
C6—C7 | 1.445 (3) | C13—H13A | 0.9900 |
C7—C8 | 1.397 (3) | C13—H13B | 0.9900 |
C7—C12 | 1.408 (3) | C15—H15 | 0.9500 |
C8—C9 | 1.383 (3) | ||
C1—N1—C12 | 108.55 (18) | N1—C12—C7 | 109.15 (19) |
C1—N1—C13 | 125.32 (19) | N1—C12—C11 | 129.3 (2) |
C12—N1—C13 | 126.05 (18) | C7—C12—C11 | 121.5 (2) |
N1—C1—C2 | 129.3 (2) | N1—C13—C14 | 114.1 (2) |
N1—C1—C6 | 108.97 (19) | C13—C14—C15 | 179.7 (3) |
C2—C1—C6 | 121.7 (2) | C1—C2—H2 | 121.00 |
C1—C2—C3 | 117.7 (2) | C3—C2—H2 | 121.00 |
C2—C3—C4 | 120.3 (2) | C2—C3—H3 | 120.00 |
Cl1—C4—C3 | 118.46 (17) | C4—C3—H3 | 120.00 |
Cl1—C4—C5 | 118.91 (17) | C4—C5—H5 | 121.00 |
C3—C4—C5 | 122.6 (2) | C6—C5—H5 | 121.00 |
C4—C5—C6 | 117.7 (2) | C7—C8—H8 | 121.00 |
C1—C6—C5 | 120.0 (2) | C9—C8—H8 | 121.00 |
C1—C6—C7 | 106.67 (19) | C9—C10—H10 | 120.00 |
C5—C6—C7 | 133.3 (2) | C11—C10—H10 | 120.00 |
C6—C7—C8 | 133.0 (2) | C10—C11—H11 | 121.00 |
C6—C7—C12 | 106.66 (19) | C12—C11—H11 | 121.00 |
C8—C7—C12 | 120.3 (2) | N1—C13—H13A | 109.00 |
C7—C8—C9 | 117.1 (2) | N1—C13—H13B | 109.00 |
Cl2—C9—C8 | 118.59 (17) | C14—C13—H13A | 109.00 |
Cl2—C9—C10 | 118.49 (17) | C14—C13—H13B | 109.00 |
C8—C9—C10 | 122.9 (2) | H13A—C13—H13B | 108.00 |
C9—C10—C11 | 120.2 (2) | C14—C15—H15 | 180.00 |
C10—C11—C12 | 117.9 (2) | ||
C12—N1—C1—C2 | 178.9 (2) | C3—C4—C5—C6 | 1.0 (4) |
C12—N1—C1—C6 | 0.4 (3) | C4—C5—C6—C1 | −0.5 (3) |
C13—N1—C1—C2 | 1.9 (4) | C4—C5—C6—C7 | 177.8 (2) |
C13—N1—C1—C6 | −176.6 (2) | C1—C6—C7—C8 | 179.0 (3) |
C1—N1—C12—C7 | 0.0 (3) | C1—C6—C7—C12 | 0.6 (3) |
C1—N1—C12—C11 | −179.3 (2) | C5—C6—C7—C8 | 0.6 (5) |
C13—N1—C12—C7 | 177.0 (2) | C5—C6—C7—C12 | −177.8 (3) |
C13—N1—C12—C11 | −2.4 (4) | C6—C7—C8—C9 | −177.8 (2) |
C1—N1—C13—C14 | −86.6 (3) | C12—C7—C8—C9 | 0.4 (3) |
C12—N1—C13—C14 | 97.0 (3) | C6—C7—C12—N1 | −0.4 (3) |
N1—C1—C2—C3 | −177.2 (2) | C6—C7—C12—C11 | 179.0 (2) |
C6—C1—C2—C3 | 1.1 (4) | C8—C7—C12—N1 | −179.1 (2) |
N1—C1—C6—C5 | 178.1 (2) | C8—C7—C12—C11 | 0.3 (4) |
N1—C1—C6—C7 | −0.6 (3) | C7—C8—C9—Cl2 | 179.84 (17) |
C2—C1—C6—C5 | −0.6 (4) | C7—C8—C9—C10 | −1.0 (4) |
C2—C1—C6—C7 | −179.3 (2) | Cl2—C9—C10—C11 | 179.94 (18) |
C1—C2—C3—C4 | −0.7 (3) | C8—C9—C10—C11 | 0.8 (4) |
C2—C3—C4—Cl1 | 179.85 (18) | C9—C10—C11—C12 | 0.0 (3) |
C2—C3—C4—C5 | −0.4 (4) | C10—C11—C12—N1 | 178.7 (2) |
Cl1—C4—C5—C6 | −179.26 (18) | C10—C11—C12—C7 | −0.6 (4) |
Experimental details
Crystal data | |
Chemical formula | C15H9Cl2N |
Mr | 274.13 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 3.9825 (1), 11.1705 (4), 27.4417 (9) |
V (Å3) | 1220.79 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 4.59 |
Crystal size (mm) | 0.18 × 0.05 × 0.02 |
Data collection | |
Diffractometer | Bruker D8 VENTURE PHOTON 100 CMOS |
Absorption correction | Multi-scan (SADABS; Bruker, 2013) |
Tmin, Tmax | 0.74, 0.91 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10712, 2224, 2160 |
Rint | 0.088 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.068, 1.05 |
No. of reflections | 2224 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.18 |
Absolute structure | Flack parameter determined using 817 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Absolute structure parameter | −0.002 (12) |
Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Acknowledgements
The authors thank Minia University, Erciyes University, Tulane University and Manchester Metropolitan University for supporting the study.
References
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Conchon, E., Anizon, F., Golsteyn, R. M., Léonce, S., Pfeiffer, B. & Prudhomme, M. (2006). Tetrahedron, 62, 11136–11144. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hussain, M., Toguem, S.-M.T., Ahmad, R., Tùng, Ð.T., Knepper, I., Villinger, A. & Langer, P. (2011). Tetrahedron, 67, 5304–5318. Google Scholar
Liu, Z. & Larock, R. C. (2007). Tetrahedron, 63, 347–355. Web of Science CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, Y.-Z., Jin, J.-Y. & Jin, G.-D. (2012). Acta Cryst. E68, o1242. CSD CrossRef IUCr Journals Google Scholar
Zhang, F. F., Gan, L. L. & Cheng-He Zho, C. H. (2010). Bioorg. Med. Chem. Lett. 20, 1881–1884. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, Y., Wada, T. & Sasabe, H. (1998). J. Mater. Chem. 8, 809–828. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, carbazoles have been used as photoconductors, semiconductors and for their light-emitting properties, making them interesting organic tools for physics experiments (Zhang et al., 1998). Moreover, several alkaloids based on a carbazole structure are known to possess interesting biological activities such as antitumor, antibacterial, anti-inflammatory, psychotropic and anti-histamine properties (Liu & Larock, 2007). Many synthetic carbazole derivatives are of significant pharmacological relevance because of their antifungal, antibiotic, and antitumor activities (Hussain et al., 2011; Zhang et al., 2010; Conchon et al., 2006). The introduction of functional groups onto the carbazole scaffold is essential to generate compounds suitable for biological and physical investigations. Based on such facts we herein report the crystal structure of the title compound.
In the title compound (Fig. 1), the carbazole ring system is essentially planar (r.m.s. deviation = 0.002 Å). The Cl1 and Cl2 atoms lie slightly out of the plane of the carbazole ring system which makes angles of 1.23 (8) and 1.14 (8)° with the Cl1—C4 and Cl2—C9 bonds, respectively. The values of the geometric parameters of the title compound are within normal ranges (Xie et al., 2012).
In the crystal, no classical hydrogen bonds are observed. The crystal packing is stabilized by weak van der Waals interactions. The packing of the title compound viewed along the a axis are shown in Fig. 2.