organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The chalcone ethyl 2-[4-(2-{2,4-bis­­[(eth­­oxy­carbon­yl)meth­­oxy]benzo­yl}ethen­yl)phen­­oxy]acetate

aSchool of Chemistry & Environmental Engineering, Jiujiang University, Jiujiang 332005, People's Republic of China
*Correspondence e-mail: caoxxyu@126.com

(Received 27 November 2013; accepted 7 December 2013; online 14 December 2013)

In the title mol­ecule, C27H30O10, the benzene rings form a dihedral angle of 14.9 (2)°. The C=C bond is in an E conformation. In the crystal, weak C—H⋯O hydrogen bonds connect the mol­ecules, forming a three-dimensional network.

Related literature

For a related structure, see: Wang et al. (2011[Wang, J.-G., Wu, L., Zhong, C.-J., Ouyang, Z.-H. & Yi, D.-L. (2011). Acta Cryst. E67, o732.]).

[Scheme 1]

Experimental

Crystal data
  • C27H30O10

  • Mr = 514.51

  • Triclinic, [P \overline 1]

  • a = 7.8225 (16) Å

  • b = 13.579 (3) Å

  • c = 13.780 (3) Å

  • α = 63.004 (3)°

  • β = 87.157 (4)°

  • γ = 83.377 (4)°

  • V = 1295.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.990

  • 16520 measured reflections

  • 4538 independent reflections

  • 4137 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.178

  • S = 1.20

  • 4538 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.52 3.276 (4) 138
C16—H16B⋯O7ii 0.97 2.58 3.337 (4) 135
C20—H20B⋯O4ii 0.97 2.60 3.360 (4) 136
C24—H24B⋯O3iii 0.97 2.53 3.339 (4) 141
C27—H27B⋯O6iv 0.96 2.56 3.426 (4) 150
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) x, y-1, z+1; (iv) x+1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

It has been determined in the authors lab that the title compound is a potential inhibitor of mushroom tyrosinase (results to be published soon) and the crystal structure determination of the title compound has been carried out to investigate its structure property relationships.

In the title molecule (I, Fig. 1) the two benzene rings (C10-C15/C1-C6) form a dihedral angle of 14.9 (2)°. The CC bond is in an E conformation. In the crystal, weak C—H···O hydrogen bonds connect molecules forming a three-dimensional network (Fig. 2). The structure of a related compound, (E)-1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one monohydrate, has been published previously (Wang et al., 2011).

Related literature top

For a related structure, see: Wang et al. (2011).

Experimental top

Isoliquiritigenin (2.56 g, 0.01 mol) and potassium hydroxide (2.45 g, 0.0438 mol) were dissolved in dry acetone (100 ml) in a three-neck flask. Then ethyl bromoacetate (6.93 g, 0.0415 mol) was dropwise added at room temperature and vigorously stirred for 3 h. The progress of the reaction was monitored by TCL (Si gel, developing solvent V (ethyl acetate) /V (benzene) = 1:2). After suction filtration and distilled to remove the solvent, a light yellow solid was obtained, 4.39 g, yield 85.4%. Recrystallization from ethanol produced light yellow needles.

Refinement top

All hydrogen atoms were placed in ideal positions with the C—H = 0.93 Å, C—H = 0.96 Å and C—H=0.97 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmetyhl).

Structure description top

It has been determined in the authors lab that the title compound is a potential inhibitor of mushroom tyrosinase (results to be published soon) and the crystal structure determination of the title compound has been carried out to investigate its structure property relationships.

In the title molecule (I, Fig. 1) the two benzene rings (C10-C15/C1-C6) form a dihedral angle of 14.9 (2)°. The CC bond is in an E conformation. In the crystal, weak C—H···O hydrogen bonds connect molecules forming a three-dimensional network (Fig. 2). The structure of a related compound, (E)-1-(2,4-Dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one monohydrate, has been published previously (Wang et al., 2011).

For a related structure, see: Wang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of a molecule of (I) showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing for (I), with weak C—H···O interactions shown as dashed lines.
Ethyl 2-[4-(2-{2,4-bis[(ethoxycarbonyl)methoxy]benzoyl}ethenyl)phenoxy]acetate top
Crystal data top
C27H30O10Z = 2
Mr = 514.51F(000) = 544
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8225 (16) ÅCell parameters from 2402 reflections
b = 13.579 (3) Åθ = 0.0–0.0°
c = 13.780 (3) ŵ = 0.10 mm1
α = 63.004 (3)°T = 298 K
β = 87.157 (4)°Block, light yellow
γ = 83.377 (4)°0.12 × 0.10 × 0.10 mm
V = 1295.6 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4538 independent reflections
Radiation source: fine-focus sealed tube4137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 79
Tmin = 0.988, Tmax = 0.990k = 1616
16520 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0569P)2 + 1.0739P]
where P = (Fo2 + 2Fc2)/3
4538 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C27H30O10γ = 83.377 (4)°
Mr = 514.51V = 1295.6 (5) Å3
Triclinic, P1Z = 2
a = 7.8225 (16) ÅMo Kα radiation
b = 13.579 (3) ŵ = 0.10 mm1
c = 13.780 (3) ÅT = 298 K
α = 63.004 (3)°0.12 × 0.10 × 0.10 mm
β = 87.157 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4538 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4137 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.990Rint = 0.018
16520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.20Δρmax = 0.39 e Å3
4538 reflectionsΔρmin = 0.23 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7304 (4)0.4831 (2)0.6468 (2)0.0502 (7)
C20.7010 (4)0.5453 (2)0.7028 (2)0.0549 (8)
H20.71000.62130.66700.066*
C30.6586 (4)0.4962 (2)0.8106 (2)0.0532 (8)
H30.63870.53970.84710.064*
C40.6444 (4)0.3821 (2)0.8675 (2)0.0456 (7)
C50.6802 (4)0.3199 (2)0.8103 (2)0.0525 (7)
H50.67650.24340.84670.063*
C60.7211 (5)0.3687 (2)0.7015 (3)0.0570 (8)
H60.74230.32580.66460.068*
C70.5925 (4)0.3344 (2)0.9813 (2)0.0478 (7)
H70.57900.38291.01240.057*
C80.5619 (4)0.2298 (2)1.0465 (2)0.0467 (7)
H80.57510.17761.01970.056*
C90.5081 (4)0.1960 (2)1.1589 (2)0.0475 (7)
C100.4790 (4)0.0787 (2)1.2360 (2)0.0415 (6)
C110.3962 (4)0.0624 (2)1.3330 (2)0.0459 (7)
H110.35630.12461.34250.055*
C120.3700 (4)0.0400 (2)1.4151 (2)0.0485 (7)
H120.31360.04701.47860.058*
C130.4293 (4)0.1333 (2)1.4016 (2)0.0435 (6)
C140.5085 (4)0.1219 (2)1.3063 (2)0.0463 (7)
H140.54490.18481.29700.056*
C150.5343 (4)0.0178 (2)1.2239 (2)0.0432 (6)
C160.7769 (5)0.4821 (2)0.4757 (2)0.0587 (8)
H16A0.67040.44900.48330.070*
H16B0.87090.42300.50060.070*
C170.8034 (4)0.5619 (2)0.3588 (2)0.0517 (7)
C180.8388 (5)0.5709 (3)0.1834 (2)0.0623 (9)
H18A0.94520.60530.16950.075*
H18B0.74450.62870.15140.075*
C190.8467 (6)0.4911 (3)0.1360 (3)0.0855 (12)
H19A0.94020.43420.16870.128*
H19B0.86440.53000.05890.128*
H19C0.74050.45790.15010.128*
C200.3347 (4)0.2565 (3)1.5781 (2)0.0563 (8)
H20A0.38600.21341.60680.068*
H20B0.35590.33431.63030.068*
C210.1446 (5)0.2243 (2)1.5680 (2)0.0547 (8)
C220.0998 (5)0.1807 (3)1.4570 (4)0.0775 (11)
H22A0.16400.19621.52350.093*
H22B0.15000.21591.41940.093*
C230.1101 (6)0.0602 (3)1.3875 (4)0.0955 (14)
H23A0.05360.02621.42310.143*
H23B0.22870.03001.37480.143*
H23C0.05480.04551.31920.143*
C240.6858 (5)0.0966 (2)1.1165 (3)0.0592 (8)
H24A0.59340.13921.11800.071*
H24B0.76630.14411.17470.071*
C250.7749 (4)0.0555 (3)1.0089 (2)0.0522 (7)
C260.9388 (5)0.1206 (3)0.8969 (3)0.0672 (9)
H26A1.04580.09240.89980.081*
H26B0.87350.06520.83400.081*
C270.9746 (5)0.2257 (3)0.8881 (3)0.0744 (10)
H27A1.03830.28020.95090.112*
H27B1.04090.21280.82360.112*
H27C0.86800.25230.88390.112*
O10.4841 (4)0.26559 (18)1.19312 (19)0.0826 (9)
O20.7698 (3)0.54015 (16)0.53900 (17)0.0655 (7)
O30.8152 (4)0.65850 (18)0.32433 (19)0.0776 (8)
O40.8129 (3)0.50759 (17)0.29960 (16)0.0608 (6)
O50.4174 (3)0.24062 (16)1.47859 (16)0.0541 (5)
O60.0654 (4)0.2021 (3)1.6330 (2)0.0971 (10)
O70.0789 (3)0.22501 (18)1.48300 (19)0.0618 (6)
O80.6192 (3)0.00224 (16)1.13008 (17)0.0653 (7)
O90.7865 (4)0.03736 (19)0.9457 (2)0.0800 (8)
O100.8417 (3)0.14310 (17)0.99470 (18)0.0649 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0668 (19)0.0382 (15)0.0429 (15)0.0079 (13)0.0095 (13)0.0164 (13)
C20.084 (2)0.0296 (14)0.0496 (17)0.0093 (14)0.0116 (15)0.0164 (13)
C30.077 (2)0.0357 (15)0.0514 (17)0.0058 (14)0.0095 (15)0.0243 (14)
C40.0550 (17)0.0351 (14)0.0448 (15)0.0043 (12)0.0028 (13)0.0167 (12)
C50.077 (2)0.0294 (14)0.0467 (16)0.0097 (13)0.0093 (14)0.0137 (12)
C60.087 (2)0.0378 (15)0.0510 (17)0.0099 (15)0.0129 (16)0.0245 (14)
C70.0630 (18)0.0347 (14)0.0464 (16)0.0035 (13)0.0047 (13)0.0198 (13)
C80.0611 (18)0.0381 (15)0.0424 (15)0.0054 (13)0.0022 (13)0.0195 (12)
C90.0638 (19)0.0367 (14)0.0436 (15)0.0035 (13)0.0021 (13)0.0202 (13)
C100.0482 (16)0.0381 (14)0.0398 (14)0.0039 (11)0.0011 (12)0.0191 (12)
C110.0592 (18)0.0397 (15)0.0457 (15)0.0066 (13)0.0067 (13)0.0257 (13)
C120.0607 (18)0.0477 (16)0.0422 (15)0.0140 (13)0.0145 (13)0.0242 (13)
C130.0474 (16)0.0383 (14)0.0421 (15)0.0092 (12)0.0025 (12)0.0150 (12)
C140.0580 (18)0.0355 (14)0.0486 (16)0.0049 (12)0.0045 (13)0.0222 (13)
C150.0545 (17)0.0392 (14)0.0379 (14)0.0053 (12)0.0060 (12)0.0196 (12)
C160.088 (2)0.0410 (16)0.0473 (17)0.0109 (15)0.0127 (16)0.0206 (14)
C170.067 (2)0.0381 (16)0.0475 (16)0.0028 (13)0.0083 (14)0.0183 (13)
C180.085 (2)0.0570 (19)0.0402 (16)0.0134 (17)0.0100 (15)0.0179 (15)
C190.126 (4)0.080 (3)0.057 (2)0.022 (2)0.017 (2)0.037 (2)
C200.077 (2)0.0471 (17)0.0390 (15)0.0150 (15)0.0043 (15)0.0130 (13)
C210.079 (2)0.0411 (16)0.0405 (16)0.0178 (15)0.0179 (15)0.0143 (13)
C220.066 (2)0.069 (2)0.105 (3)0.0102 (18)0.001 (2)0.045 (2)
C230.076 (3)0.072 (3)0.122 (4)0.001 (2)0.025 (3)0.028 (3)
C240.086 (2)0.0410 (16)0.0536 (18)0.0068 (15)0.0161 (16)0.0254 (14)
C250.070 (2)0.0463 (17)0.0440 (16)0.0119 (14)0.0091 (14)0.0231 (14)
C260.071 (2)0.081 (2)0.063 (2)0.0145 (18)0.0210 (17)0.0441 (19)
C270.080 (3)0.085 (3)0.071 (2)0.000 (2)0.0112 (19)0.049 (2)
O10.149 (3)0.0424 (12)0.0593 (14)0.0150 (14)0.0280 (15)0.0274 (11)
O20.1146 (19)0.0361 (11)0.0445 (12)0.0161 (11)0.0222 (12)0.0174 (9)
O30.133 (2)0.0401 (13)0.0555 (14)0.0114 (13)0.0162 (14)0.0190 (11)
O40.0943 (17)0.0451 (12)0.0437 (11)0.0165 (11)0.0133 (11)0.0197 (10)
O50.0667 (14)0.0383 (11)0.0483 (12)0.0082 (9)0.0106 (10)0.0121 (9)
O60.114 (2)0.114 (2)0.0670 (17)0.0088 (18)0.0327 (16)0.0479 (17)
O70.0630 (14)0.0582 (13)0.0735 (15)0.0026 (11)0.0009 (11)0.0387 (12)
O80.1049 (18)0.0377 (11)0.0509 (12)0.0062 (11)0.0263 (12)0.0208 (10)
O90.124 (2)0.0459 (14)0.0626 (15)0.0082 (13)0.0233 (15)0.0203 (12)
O100.0907 (17)0.0486 (12)0.0585 (13)0.0094 (11)0.0247 (12)0.0288 (11)
Geometric parameters (Å, º) top
C1—O21.366 (3)C17—O41.319 (4)
C1—C21.375 (4)C18—O41.450 (4)
C1—C61.394 (4)C18—C191.492 (5)
C2—C31.365 (4)C18—H18A0.9700
C2—H20.9300C18—H18B0.9700
C3—C41.399 (4)C19—H19A0.9600
C3—H30.9300C19—H19B0.9600
C4—C51.393 (4)C19—H19C0.9600
C4—C71.455 (4)C20—O51.422 (4)
C5—C61.375 (4)C20—C211.496 (5)
C5—H50.9300C20—H20A0.9700
C6—H60.9300C20—H20B0.9700
C7—C81.335 (4)C21—O61.193 (4)
C7—H70.9300C21—O71.307 (4)
C8—C91.457 (4)C22—O71.451 (4)
C8—H80.9300C22—C231.468 (5)
C9—O11.227 (3)C22—H22A0.9700
C9—C101.497 (4)C22—H22B0.9700
C10—C111.389 (4)C23—H23A0.9600
C10—C151.412 (4)C23—H23B0.9600
C11—C121.368 (4)C23—H23C0.9600
C11—H110.9300C24—O81.415 (3)
C12—C131.387 (4)C24—C251.494 (4)
C12—H120.9300C24—H24A0.9700
C13—O51.370 (3)C24—H24B0.9700
C13—C141.375 (4)C25—O91.174 (4)
C14—C151.384 (4)C25—O101.335 (4)
C14—H140.9300C26—O101.437 (4)
C15—O81.363 (3)C26—C271.481 (5)
C16—O21.412 (3)C26—H26A0.9700
C16—C171.499 (4)C26—H26B0.9700
C16—H16A0.9700C27—H27A0.9600
C16—H16B0.9700C27—H27B0.9600
C17—O31.189 (3)C27—H27C0.9600
O2—C1—C2116.0 (2)O4—C18—H18B110.3
O2—C1—C6124.5 (3)C19—C18—H18B110.3
C2—C1—C6119.5 (3)H18A—C18—H18B108.6
C3—C2—C1120.5 (3)C18—C19—H19A109.5
C3—C2—H2119.8C18—C19—H19B109.5
C1—C2—H2119.8H19A—C19—H19B109.5
C2—C3—C4121.5 (3)C18—C19—H19C109.5
C2—C3—H3119.2H19A—C19—H19C109.5
C4—C3—H3119.2H19B—C19—H19C109.5
C5—C4—C3117.1 (3)O5—C20—C21114.2 (3)
C5—C4—C7123.4 (2)O5—C20—H20A108.7
C3—C4—C7119.5 (2)C21—C20—H20A108.7
C6—C5—C4121.7 (3)O5—C20—H20B108.7
C6—C5—H5119.1C21—C20—H20B108.7
C4—C5—H5119.1H20A—C20—H20B107.6
C5—C6—C1119.6 (3)O6—C21—O7125.4 (4)
C5—C6—H6120.2O6—C21—C20121.9 (3)
C1—C6—H6120.2O7—C21—C20112.7 (3)
C8—C7—C4128.1 (3)O7—C22—C23109.5 (3)
C8—C7—H7116.0O7—C22—H22A109.8
C4—C7—H7116.0C23—C22—H22A109.8
C7—C8—C9121.0 (3)O7—C22—H22B109.8
C7—C8—H8119.5C23—C22—H22B109.8
C9—C8—H8119.5H22A—C22—H22B108.2
O1—C9—C8119.6 (3)C22—C23—H23A109.5
O1—C9—C10117.6 (3)C22—C23—H23B109.5
C8—C9—C10122.8 (2)H23A—C23—H23B109.5
C11—C10—C15116.3 (2)C22—C23—H23C109.5
C11—C10—C9116.4 (2)H23A—C23—H23C109.5
C15—C10—C9127.2 (2)H23B—C23—H23C109.5
C12—C11—C10123.8 (3)O8—C24—C25107.2 (2)
C12—C11—H11118.1O8—C24—H24A110.3
C10—C11—H11118.1C25—C24—H24A110.3
C11—C12—C13118.5 (3)O8—C24—H24B110.3
C11—C12—H12120.7C25—C24—H24B110.3
C13—C12—H12120.7H24A—C24—H24B108.5
O5—C13—C14115.1 (2)O9—C25—O10124.3 (3)
O5—C13—C12124.6 (2)O9—C25—C24127.2 (3)
C14—C13—C12120.2 (2)O10—C25—C24108.5 (2)
C13—C14—C15120.6 (2)O10—C26—C27108.1 (3)
C13—C14—H14119.7O10—C26—H26A110.1
C15—C14—H14119.7C27—C26—H26A110.1
O8—C15—C14122.9 (2)O10—C26—H26B110.1
O8—C15—C10116.4 (2)C27—C26—H26B110.1
C14—C15—C10120.6 (2)H26A—C26—H26B108.4
O2—C16—C17108.9 (2)C26—C27—H27A109.5
O2—C16—H16A109.9C26—C27—H27B109.5
C17—C16—H16A109.9H27A—C27—H27B109.5
O2—C16—H16B109.9C26—C27—H27C109.5
C17—C16—H16B109.9H27A—C27—H27C109.5
H16A—C16—H16B108.3H27B—C27—H27C109.5
O3—C17—O4125.1 (3)C1—O2—C16117.3 (2)
O3—C17—C16125.8 (3)C17—O4—C18117.4 (2)
O4—C17—C16109.1 (2)C13—O5—C20117.2 (2)
O4—C18—C19106.9 (3)C21—O7—C22117.3 (3)
O4—C18—H18A110.3C15—O8—C24118.7 (2)
C19—C18—H18A110.3C25—O10—C26116.9 (3)
O2—C1—C2—C3179.2 (3)C11—C10—C15—O8178.5 (3)
C6—C1—C2—C31.7 (5)C9—C10—C15—O82.1 (4)
C1—C2—C3—C40.3 (5)C11—C10—C15—C141.1 (4)
C2—C3—C4—C51.8 (5)C9—C10—C15—C14175.2 (3)
C2—C3—C4—C7177.7 (3)O2—C16—C17—O30.6 (5)
C3—C4—C5—C62.6 (5)O2—C16—C17—O4179.0 (3)
C7—C4—C5—C6176.9 (3)O5—C20—C21—O6158.1 (3)
C4—C5—C6—C11.3 (5)O5—C20—C21—O722.8 (4)
O2—C1—C6—C5180.0 (3)O8—C24—C25—O91.1 (5)
C2—C1—C6—C50.9 (5)O8—C24—C25—O10179.0 (3)
C5—C4—C7—C83.9 (5)C2—C1—O2—C16171.3 (3)
C3—C4—C7—C8175.5 (3)C6—C1—O2—C169.6 (5)
C4—C7—C8—C9179.1 (3)C17—C16—O2—C1174.2 (3)
C7—C8—C9—O12.8 (5)O3—C17—O4—C180.3 (5)
C7—C8—C9—C10177.6 (3)C16—C17—O4—C18179.9 (3)
O1—C9—C10—C1111.9 (4)C19—C18—O4—C17179.4 (3)
C8—C9—C10—C11167.7 (3)C14—C13—O5—C20179.2 (3)
O1—C9—C10—C15164.5 (3)C12—C13—O5—C201.5 (4)
C8—C9—C10—C1515.9 (5)C21—C20—O5—C1370.3 (3)
C15—C10—C11—C121.3 (4)O6—C21—O7—C229.1 (5)
C9—C10—C11—C12175.5 (3)C20—C21—O7—C22171.9 (3)
C10—C11—C12—C130.1 (5)C23—C22—O7—C2187.1 (4)
C11—C12—C13—O5177.5 (3)C14—C15—O8—C240.8 (5)
C11—C12—C13—C141.7 (4)C10—C15—O8—C24176.5 (3)
O5—C13—C14—C15177.4 (3)C25—C24—O8—C15178.7 (3)
C12—C13—C14—C151.9 (4)O9—C25—O10—C262.3 (5)
C13—C14—C15—O8176.8 (3)C24—C25—O10—C26177.7 (3)
C13—C14—C15—C100.4 (4)C27—C26—O10—C25170.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.523.276 (4)138
C16—H16B···O7ii0.972.583.337 (4)135
C20—H20B···O4ii0.972.603.360 (4)136
C24—H24B···O3iii0.972.533.339 (4)141
C27—H27B···O6iv0.962.563.426 (4)150
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x, y1, z+1; (iv) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.523.276 (4)138.4
C16—H16B···O7ii0.972.583.337 (4)135.1
C20—H20B···O4ii0.972.603.360 (4)135.7
C24—H24B···O3iii0.972.533.339 (4)140.6
C27—H27B···O6iv0.962.563.426 (4)149.8
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x, y1, z+1; (iv) x+1, y, z1.
 

Acknowledgements

This study was funded by Jiangxi Provincial Department of Education (KJLD12047) and Jiangxi Provincial Department of Science and Technology (20132BBE50021).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-G., Wu, L., Zhong, C.-J., Ouyang, Z.-H. & Yi, D.-L. (2011). Acta Cryst. E67, o732.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds