metal-organic compounds
Bis(4-aminobenzenesulfonamide-κN4)dichloridozinc
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H3G 1M8, Canada
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title compound, [ZnCl2(C6H8N2O2S)2], the ZnII ion lies on a twofold rotation axis and has a slightly distorted tetrahedral coordination geometry, involving two Cl atoms and two N atoms from the amino groups attached directly to the benzene rings [Zn—Cl = 2.2288 (16) Å and Zn—N = 2.060 (5) Å]. The dihedral angle between the benzene rings is 67.1 (3)°. The crystal packing can be describe as layers in a zigzag arrangement parallel to (001). The amine H atoms act as donor atoms and participate in intermolecular N—H⋯O and N—H⋯Cl hydrogen bonds, forming a three-dimensional network.
CCDC reference: 977963
Related literature
For background to sulfanilamides and their applications, see: Wong & Giandomenico (1999); Ferrer et al. (1990); Supuran et al. (1998); Medina et al. (1999). For related structures, see: Benmebarek et al. (2012, 2013).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 977963
https://doi.org/10.1107/S160053681303417X/lh5676sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681303417X/lh5676Isup2.hkl
ZnCl2 (0.1 mmol) and sulfanilamide (0.5 mmol) were dissolved in 15 ml solution of NaOH 0.01 N and heated, under continuous stirring, at 373 K for 15 min. The solution was transfered into a 23 ml teflon-lined stainless steel autoclave and heated at 453 K for 3 days. Then the autoclave was cooled to room temperature at 10K/h. Clear block-shaped crystal were collected, washed with ethanol and dried in air at ambient temperature.
All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference
However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follows: C—H = 0.93 Å and N—H = 0.90 Å. Uiso = 1.2Ueq(C or N). The atoms H1N and H2N amino group were located in difference Fourier maps and included in the subsequent with the constaint of N—H = 0.85 (2)Å and Uiso(H) = 1.5Ueq(N).The use of metal complexes as pharmaceuticals has shown promise in recent years particularly as anticancer agents (Wong & Giandomenico, 1999). Recently, sulfadrugs and their complexes have applications as diuretic, antiglaucoma or antiepileptic drugs among others (Ferrer et al., 1990; Supuran et al., 1998). Furthermore, metal sulfanilamides have received attention owing to their antimicrobial activity (Medina et al., 1999). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes (Benmebarek et al. 2012, 2013) we have synthesized and determined the
of the title compound (I).The molecular geometry and the atom-numbering scheme are shown in Fig 1. The title compound is a mononuclear zinc(II) complex in which the ZnII ion is in a slightly distorted tetrahedral geometry involving two Cl atoms and two N atoms from the two amino groups of the sulfanilamide unit [Zn—Cl = 2.2288 (16) Å and Zn—N = 2.060 (5) Å]. The angles involving the Zn atom range from 104.38 (14) to 116.38 (11)°. The dihedral angle between the two benzene rings is 67.1 (3)°. The crystal packing can be describe by a interacting layers in zigzag parallel to (001) planes (Fig.2). The sulfonamidic nitrogen atoms, acting as donor, participate in intermolecular N—H···O and N—H···Cl hydrogen bonds formimg a three-dimensional network (Table 1, Fig. 3).
For background to sulfanilamides and their applications, see: Wong & Giandomenico (1999); Ferrer et al. (1990); Supuran et al. (1998); Medina et al. (1999). For related structures, see: Benmebarek et al. (2012, 2013).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).[ZnCl2(C6H8N2O2S)2] | Dx = 1.774 Mg m−3 |
Mr = 480.68 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Aba2 | Cell parameters from 805 reflections |
a = 7.7957 (15) Å | θ = 2.9–22.3° |
b = 27.916 (6) Å | µ = 1.92 mm−1 |
c = 8.2701 (17) Å | T = 150 K |
V = 1799.8 (6) Å3 | Block, colourless |
Z = 4 | 0.23 × 0.19 × 0.15 mm |
F(000) = 976 |
Bruker APEXII CCD diffractometer | 1563 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.075 |
φ and ω scans | θmax = 27.4°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −10→10 |
Tmin = 0.639, Tmax = 0.746 | k = −36→35 |
6151 measured reflections | l = −10→10 |
2051 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.067 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.38 e Å−3 |
2051 reflections | Δρmin = −0.40 e Å−3 |
120 parameters | Absolute structure: Flack parameter determined using 601 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
3 restraints | Absolute structure parameter: 0.037 (18) |
[ZnCl2(C6H8N2O2S)2] | V = 1799.8 (6) Å3 |
Mr = 480.68 | Z = 4 |
Orthorhombic, Aba2 | Mo Kα radiation |
a = 7.7957 (15) Å | µ = 1.92 mm−1 |
b = 27.916 (6) Å | T = 150 K |
c = 8.2701 (17) Å | 0.23 × 0.19 × 0.15 mm |
Bruker APEXII CCD diffractometer | 2051 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1563 reflections with I > 2σ(I) |
Tmin = 0.639, Tmax = 0.746 | Rint = 0.075 |
6151 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.067 | Δρmax = 0.38 e Å−3 |
S = 1.00 | Δρmin = −0.40 e Å−3 |
2051 reflections | Absolute structure: Flack parameter determined using 601 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
120 parameters | Absolute structure parameter: 0.037 (18) |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1797 (7) | 0.0904 (2) | −0.0925 (8) | 0.0181 (15) | |
C2 | 0.1224 (6) | 0.1288 (2) | −0.0041 (9) | 0.0202 (13) | |
H2 | 0.0028 | 0.1339 | 0.0093 | 0.024* | |
C3 | 0.2387 (8) | 0.1598 (2) | 0.0653 (8) | 0.0205 (15) | |
H3 | 0.2002 | 0.1866 | 0.1263 | 0.025* | |
C4 | 0.4132 (7) | 0.1514 (2) | 0.0446 (8) | 0.0182 (14) | |
C5 | 0.4705 (7) | 0.1121 (2) | −0.0415 (9) | 0.0214 (16) | |
H5 | 0.5901 | 0.1065 | −0.0532 | 0.026* | |
C6 | 0.3546 (7) | 0.0811 (2) | −0.1103 (7) | 0.0188 (15) | |
H6 | 0.3928 | 0.0539 | −0.1689 | 0.023* | |
N1 | 0.0594 (5) | 0.05705 (19) | −0.1656 (7) | 0.0221 (13) | |
H1A | 0.1090 | 0.0447 | −0.2676 | 0.026* | |
H1B | −0.0475 | 0.0744 | −0.1929 | 0.026* | |
N2 | 0.6629 (6) | 0.21766 (18) | −0.0154 (9) | 0.0267 (12) | |
H1N | 0.591 (6) | 0.235 (2) | −0.069 (7) | 0.032* | |
H2N | 0.712 (7) | 0.1973 (18) | −0.079 (7) | 0.032* | |
O1 | 0.6944 (5) | 0.15998 (16) | 0.2073 (6) | 0.0275 (12) | |
O2 | 0.4808 (6) | 0.22535 (16) | 0.2260 (6) | 0.0312 (12) | |
S1 | 0.56714 (18) | 0.18997 (6) | 0.1307 (2) | 0.0204 (3) | |
Cl1 | −0.22591 (17) | 0.02497 (6) | 0.1242 (2) | 0.0273 (4) | |
Zn1 | 0.0000 | 0.0000 | −0.01787 (14) | 0.0176 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.023 (3) | 0.019 (4) | 0.012 (3) | −0.003 (3) | −0.004 (3) | 0.007 (3) |
C2 | 0.020 (3) | 0.024 (3) | 0.017 (4) | 0.004 (2) | 0.002 (3) | 0.005 (4) |
C3 | 0.027 (3) | 0.020 (4) | 0.015 (3) | 0.001 (3) | −0.001 (3) | 0.002 (3) |
C4 | 0.025 (3) | 0.016 (3) | 0.014 (3) | 0.001 (3) | −0.002 (3) | 0.001 (3) |
C5 | 0.021 (3) | 0.024 (3) | 0.019 (4) | 0.002 (3) | 0.005 (3) | 0.004 (3) |
C6 | 0.022 (3) | 0.018 (4) | 0.017 (4) | 0.004 (3) | 0.005 (3) | −0.002 (3) |
N1 | 0.018 (2) | 0.031 (3) | 0.017 (3) | −0.004 (2) | −0.001 (2) | 0.001 (3) |
N2 | 0.039 (3) | 0.023 (3) | 0.019 (3) | −0.007 (2) | −0.002 (4) | 0.003 (4) |
O1 | 0.030 (3) | 0.025 (3) | 0.027 (3) | 0.003 (2) | −0.011 (2) | 0.000 (2) |
O2 | 0.041 (3) | 0.027 (3) | 0.026 (3) | 0.007 (2) | −0.006 (2) | −0.012 (2) |
S1 | 0.0261 (7) | 0.0209 (9) | 0.0144 (8) | 0.0013 (6) | −0.0036 (8) | −0.0010 (9) |
Cl1 | 0.0259 (7) | 0.0307 (9) | 0.0252 (9) | 0.0073 (7) | 0.0086 (9) | 0.0030 (10) |
Zn1 | 0.0164 (4) | 0.0218 (5) | 0.0145 (5) | −0.0010 (5) | 0.000 | 0.000 |
C1—C2 | 1.371 (8) | N1—Zn1 | 2.060 (5) |
C1—C6 | 1.396 (7) | N1—H1A | 0.9900 |
C1—N1 | 1.454 (7) | N1—H1B | 0.9900 |
C2—C3 | 1.380 (8) | N2—S1 | 1.617 (6) |
C2—H2 | 0.9500 | N2—H1N | 0.86 (3) |
C3—C4 | 1.391 (8) | N2—H2N | 0.86 (3) |
C3—H3 | 0.9500 | O1—S1 | 1.444 (4) |
C4—C5 | 1.382 (8) | O2—S1 | 1.432 (5) |
C4—S1 | 1.763 (6) | Cl1—Zn1 | 2.2288 (16) |
C5—C6 | 1.374 (8) | Zn1—N1i | 2.060 (5) |
C5—H5 | 0.9500 | Zn1—Cl1i | 2.2288 (16) |
C6—H6 | 0.9500 | ||
C2—C1—C6 | 121.3 (6) | Zn1—N1—H1A | 108.9 |
C2—C1—N1 | 120.8 (5) | C1—N1—H1B | 108.9 |
C6—C1—N1 | 117.9 (6) | Zn1—N1—H1B | 108.9 |
C1—C2—C3 | 119.9 (5) | H1A—N1—H1B | 107.8 |
C1—C2—H2 | 120.1 | S1—N2—H1N | 110 (4) |
C3—C2—H2 | 120.1 | S1—N2—H2N | 110 (4) |
C2—C3—C4 | 119.0 (6) | H1N—N2—H2N | 110 (7) |
C2—C3—H3 | 120.5 | O2—S1—O1 | 118.8 (3) |
C4—C3—H3 | 120.5 | O2—S1—N2 | 107.4 (3) |
C5—C4—C3 | 120.9 (6) | O1—S1—N2 | 106.7 (3) |
C5—C4—S1 | 118.2 (4) | O2—S1—C4 | 108.9 (3) |
C3—C4—S1 | 120.8 (5) | O1—S1—C4 | 106.9 (3) |
C6—C5—C4 | 120.0 (5) | N2—S1—C4 | 107.7 (3) |
C6—C5—H5 | 120.0 | N1i—Zn1—N1 | 107.2 (3) |
C4—C5—H5 | 120.0 | N1i—Zn1—Cl1i | 104.38 (14) |
C5—C6—C1 | 118.8 (6) | N1—Zn1—Cl1i | 112.14 (13) |
C5—C6—H6 | 120.6 | N1i—Zn1—Cl1 | 112.14 (13) |
C1—C6—H6 | 120.6 | N1—Zn1—Cl1 | 104.38 (14) |
C1—N1—Zn1 | 113.2 (4) | Cl1i—Zn1—Cl1 | 116.38 (11) |
C1—N1—H1A | 108.9 | ||
C6—C1—C2—C3 | 1.9 (10) | N1—C1—C6—C5 | −179.7 (6) |
N1—C1—C2—C3 | 179.5 (6) | C2—C1—N1—Zn1 | −91.0 (6) |
C1—C2—C3—C4 | −0.3 (10) | C6—C1—N1—Zn1 | 86.8 (6) |
C2—C3—C4—C5 | −1.2 (10) | C5—C4—S1—O2 | −174.7 (5) |
C2—C3—C4—S1 | −180.0 (5) | C3—C4—S1—O2 | 4.1 (6) |
C3—C4—C5—C6 | 1.1 (10) | C5—C4—S1—O1 | −45.2 (6) |
S1—C4—C5—C6 | 179.9 (5) | C3—C4—S1—O1 | 133.6 (5) |
C4—C5—C6—C1 | 0.5 (10) | C5—C4—S1—N2 | 69.1 (6) |
C2—C1—C6—C5 | −2.0 (10) | C3—C4—S1—N2 | −112.0 (5) |
Symmetry code: (i) −x, −y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1ii | 0.99 | 2.50 | 3.327 (5) | 141 |
N2—H1N···O2iii | 0.86 (5) | 2.10 (6) | 2.891 (8) | 152 (5) |
N2—H2N···O1iv | 0.86 (5) | 2.18 (6) | 3.015 (8) | 163 (5) |
Symmetry codes: (ii) x+1/2, −y, z−1/2; (iii) −x+1, −y+1/2, z−1/2; (iv) −x+3/2, y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.99 | 2.50 | 3.327 (5) | 141 |
N2—H1N···O2ii | 0.86 (5) | 2.10 (6) | 2.891 (8) | 152 (5) |
N2—H2N···O1iii | 0.86 (5) | 2.18 (6) | 3.015 (8) | 163 (5) |
Symmetry codes: (i) x+1/2, −y, z−1/2; (ii) −x+1, −y+1/2, z−1/2; (iii) −x+3/2, y, z−1/2. |
Acknowledgements
This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université de Constantine1, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie - Algérie) via the PNR programme for financial support.
References
Benmebarek, S., Boudraa, M., Bouacida, S. & Daran, J.-C. (2012). Acta Cryst. E68, o3207. CSD CrossRef IUCr Journals Google Scholar
Benmebarek, S., Boudraa, M., Bouacida, S. & Merazig, H. (2013). Acta Cryst. E69, o432. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferrer, S., Borras, J. & Garcia-Espana, E. (1990). J. Inorg. Biochem. 39, 297–306. CrossRef CAS Web of Science Google Scholar
Medina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P. & Clark, D. L. (1999). Bioorg. Med. Chem. Lett. 9, 1843–1846. Web of Science CrossRef PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Supuran, C. T., Mincoine, F., Scozzafava, A., Brigenti, F., Mincinone, G. & Ilies, M. A. (1998). Eur. J. Med. Chem. 33, 247–254. Web of Science CrossRef CAS Google Scholar
Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451–2466. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The use of metal complexes as pharmaceuticals has shown promise in recent years particularly as anticancer agents (Wong & Giandomenico, 1999). Recently, sulfadrugs and their complexes have applications as diuretic, antiglaucoma or antiepileptic drugs among others (Ferrer et al., 1990; Supuran et al., 1998). Furthermore, metal sulfanilamides have received attention owing to their antimicrobial activity (Medina et al., 1999). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes (Benmebarek et al. 2012, 2013) we have synthesized and determined the crystal structure of the title compound (I).
The molecular geometry and the atom-numbering scheme are shown in Fig 1. The title compound is a mononuclear zinc(II) complex in which the ZnII ion is in a slightly distorted tetrahedral geometry involving two Cl atoms and two N atoms from the two amino groups of the sulfanilamide unit [Zn—Cl = 2.2288 (16) Å and Zn—N = 2.060 (5) Å]. The angles involving the Zn atom range from 104.38 (14) to 116.38 (11)°. The dihedral angle between the two benzene rings is 67.1 (3)°. The crystal packing can be describe by a interacting layers in zigzag parallel to (001) planes (Fig.2). The sulfonamidic nitrogen atoms, acting as donor, participate in intermolecular N—H···O and N—H···Cl hydrogen bonds formimg a three-dimensional network (Table 1, Fig. 3).