metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-amino­benzene­sulfonamide-κN4)di­chlorido­zinc

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, and cLaboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H3G 1M8, Canada
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 1 December 2013; accepted 18 December 2013; online 24 December 2013)

In the title compound, [ZnCl2(C6H8N2O2S)2], the ZnII ion lies on a twofold rotation axis and has a slightly distorted tetra­hedral coordination geometry, involving two Cl atoms and two N atoms from the amino groups attached directly to the benzene rings [Zn—Cl = 2.2288 (16) Å and Zn—N = 2.060 (5) Å]. The dihedral angle between the benzene rings is 67.1 (3)°. The crystal packing can be describe as layers in a zigzag arrangement parallel to (001). The amine H atoms act as donor atoms and participate in inter­molecular N—H⋯O and N—H⋯Cl hydrogen bonds, forming a three-dimensional network.

Related literature

For background to sulfanilamides and their applications, see: Wong & Giandomenico (1999[Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451-2466.]); Ferrer et al. (1990[Ferrer, S., Borras, J. & Garcia-Espana, E. (1990). J. Inorg. Biochem. 39, 297-306.]); Supuran et al. (1998[Supuran, C. T., Mincoine, F., Scozzafava, A., Brigenti, F., Mincinone, G. & Ilies, M. A. (1998). Eur. J. Med. Chem. 33, 247-254.]); Medina et al. (1999[Medina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P. & Clark, D. L. (1999). Bioorg. Med. Chem. Lett. 9, 1843-1846.]). For related structures, see: Benmebarek et al. (2012[Benmebarek, S., Boudraa, M., Bouacida, S. & Daran, J.-C. (2012). Acta Cryst. E68, o3207.], 2013[Benmebarek, S., Boudraa, M., Bouacida, S. & Merazig, H. (2013). Acta Cryst. E69, o432.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C6H8N2O2S)2]

  • Mr = 480.68

  • Orthorhombic, A b a 2

  • a = 7.7957 (15) Å

  • b = 27.916 (6) Å

  • c = 8.2701 (17) Å

  • V = 1799.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 150 K

  • 0.23 × 0.19 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.639, Tmax = 0.746

  • 6151 measured reflections

  • 2051 independent reflections

  • 1563 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.067

  • S = 1.00

  • 2051 reflections

  • 120 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack parameter determined using 601 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.037 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.99 2.50 3.327 (5) 141
N2—H1N⋯O2ii 0.86 (5) 2.10 (6) 2.891 (8) 152 (5)
N2—H2N⋯O1iii 0.86 (5) 2.18 (6) 3.015 (8) 163 (5)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [-x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The use of metal complexes as pharmaceuticals has shown promise in recent years particularly as anticancer agents (Wong & Giandomenico, 1999). Recently, sulfadrugs and their complexes have applications as diuretic, antiglaucoma or antiepileptic drugs among others (Ferrer et al., 1990; Supuran et al., 1998). Furthermore, metal sulfanilamides have received attention owing to their antimicrobial activity (Medina et al., 1999). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes (Benmebarek et al. 2012, 2013) we have synthesized and determined the crystal structure of the title compound (I).

The molecular geometry and the atom-numbering scheme are shown in Fig 1. The title compound is a mononuclear zinc(II) complex in which the ZnII ion is in a slightly distorted tetrahedral geometry involving two Cl atoms and two N atoms from the two amino groups of the sulfanilamide unit [Zn—Cl = 2.2288 (16) Å and Zn—N = 2.060 (5) Å]. The angles involving the Zn atom range from 104.38 (14) to 116.38 (11)°. The dihedral angle between the two benzene rings is 67.1 (3)°. The crystal packing can be describe by a interacting layers in zigzag parallel to (001) planes (Fig.2). The sulfonamidic nitrogen atoms, acting as donor, participate in intermolecular N—H···O and N—H···Cl hydrogen bonds formimg a three-dimensional network (Table 1, Fig. 3).

Related literature top

For background to sulfanilamides and their applications, see: Wong & Giandomenico (1999); Ferrer et al. (1990); Supuran et al. (1998); Medina et al. (1999). For related structures, see: Benmebarek et al. (2012, 2013).

Experimental top

ZnCl2 (0.1 mmol) and sulfanilamide (0.5 mmol) were dissolved in 15 ml solution of NaOH 0.01 N and heated, under continuous stirring, at 373 K for 15 min. The solution was transfered into a 23 ml teflon-lined stainless steel autoclave and heated at 453 K for 3 days. Then the autoclave was cooled to room temperature at 10K/h. Clear block-shaped crystal were collected, washed with ethanol and dried in air at ambient temperature.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follows: C—H = 0.93 Å and N—H = 0.90 Å. Uiso = 1.2Ueq(C or N). The atoms H1N and H2N amino group were located in difference Fourier maps and included in the subsequent refinement with the constaint of N—H = 0.85 (2)Å and Uiso(H) = 1.5Ueq(N).

Structure description top

The use of metal complexes as pharmaceuticals has shown promise in recent years particularly as anticancer agents (Wong & Giandomenico, 1999). Recently, sulfadrugs and their complexes have applications as diuretic, antiglaucoma or antiepileptic drugs among others (Ferrer et al., 1990; Supuran et al., 1998). Furthermore, metal sulfanilamides have received attention owing to their antimicrobial activity (Medina et al., 1999). As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes (Benmebarek et al. 2012, 2013) we have synthesized and determined the crystal structure of the title compound (I).

The molecular geometry and the atom-numbering scheme are shown in Fig 1. The title compound is a mononuclear zinc(II) complex in which the ZnII ion is in a slightly distorted tetrahedral geometry involving two Cl atoms and two N atoms from the two amino groups of the sulfanilamide unit [Zn—Cl = 2.2288 (16) Å and Zn—N = 2.060 (5) Å]. The angles involving the Zn atom range from 104.38 (14) to 116.38 (11)°. The dihedral angle between the two benzene rings is 67.1 (3)°. The crystal packing can be describe by a interacting layers in zigzag parallel to (001) planes (Fig.2). The sulfonamidic nitrogen atoms, acting as donor, participate in intermolecular N—H···O and N—H···Cl hydrogen bonds formimg a three-dimensional network (Table 1, Fig. 3).

For background to sulfanilamides and their applications, see: Wong & Giandomenico (1999); Ferrer et al. (1990); Supuran et al. (1998); Medina et al. (1999). For related structures, see: Benmebarek et al. (2012, 2013).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. Only the the asymmetric unit is labelled. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing of (I) viwed via a axis showing alterning layers in zigzag parallel to (001) planes.
[Figure 3] Fig. 3. Packing of the title compound viewed along the c axis showing hydrogen bonds [N—H···Cl and N—H···O] as dashed lines
Bis(4-aminobenzenesulfonamide-κN4)dichloridozinc top
Crystal data top
[ZnCl2(C6H8N2O2S)2]Dx = 1.774 Mg m3
Mr = 480.68Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Aba2Cell parameters from 805 reflections
a = 7.7957 (15) Åθ = 2.9–22.3°
b = 27.916 (6) ŵ = 1.92 mm1
c = 8.2701 (17) ÅT = 150 K
V = 1799.8 (6) Å3Block, colourless
Z = 40.23 × 0.19 × 0.15 mm
F(000) = 976
Data collection top
Bruker APEXII CCD
diffractometer
1563 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.075
φ and ω scansθmax = 27.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.639, Tmax = 0.746k = 3635
6151 measured reflectionsl = 1010
2051 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.38 e Å3
2051 reflectionsΔρmin = 0.40 e Å3
120 parametersAbsolute structure: Flack parameter determined using 601 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.037 (18)
Crystal data top
[ZnCl2(C6H8N2O2S)2]V = 1799.8 (6) Å3
Mr = 480.68Z = 4
Orthorhombic, Aba2Mo Kα radiation
a = 7.7957 (15) ŵ = 1.92 mm1
b = 27.916 (6) ÅT = 150 K
c = 8.2701 (17) Å0.23 × 0.19 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2051 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1563 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.746Rint = 0.075
6151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.38 e Å3
S = 1.00Δρmin = 0.40 e Å3
2051 reflectionsAbsolute structure: Flack parameter determined using 601 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
120 parametersAbsolute structure parameter: 0.037 (18)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1797 (7)0.0904 (2)0.0925 (8)0.0181 (15)
C20.1224 (6)0.1288 (2)0.0041 (9)0.0202 (13)
H20.00280.13390.00930.024*
C30.2387 (8)0.1598 (2)0.0653 (8)0.0205 (15)
H30.20020.18660.12630.025*
C40.4132 (7)0.1514 (2)0.0446 (8)0.0182 (14)
C50.4705 (7)0.1121 (2)0.0415 (9)0.0214 (16)
H50.59010.10650.05320.026*
C60.3546 (7)0.0811 (2)0.1103 (7)0.0188 (15)
H60.39280.05390.16890.023*
N10.0594 (5)0.05705 (19)0.1656 (7)0.0221 (13)
H1A0.10900.04470.26760.026*
H1B0.04750.07440.19290.026*
N20.6629 (6)0.21766 (18)0.0154 (9)0.0267 (12)
H1N0.591 (6)0.235 (2)0.069 (7)0.032*
H2N0.712 (7)0.1973 (18)0.079 (7)0.032*
O10.6944 (5)0.15998 (16)0.2073 (6)0.0275 (12)
O20.4808 (6)0.22535 (16)0.2260 (6)0.0312 (12)
S10.56714 (18)0.18997 (6)0.1307 (2)0.0204 (3)
Cl10.22591 (17)0.02497 (6)0.1242 (2)0.0273 (4)
Zn10.00000.00000.01787 (14)0.0176 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (3)0.019 (4)0.012 (3)0.003 (3)0.004 (3)0.007 (3)
C20.020 (3)0.024 (3)0.017 (4)0.004 (2)0.002 (3)0.005 (4)
C30.027 (3)0.020 (4)0.015 (3)0.001 (3)0.001 (3)0.002 (3)
C40.025 (3)0.016 (3)0.014 (3)0.001 (3)0.002 (3)0.001 (3)
C50.021 (3)0.024 (3)0.019 (4)0.002 (3)0.005 (3)0.004 (3)
C60.022 (3)0.018 (4)0.017 (4)0.004 (3)0.005 (3)0.002 (3)
N10.018 (2)0.031 (3)0.017 (3)0.004 (2)0.001 (2)0.001 (3)
N20.039 (3)0.023 (3)0.019 (3)0.007 (2)0.002 (4)0.003 (4)
O10.030 (3)0.025 (3)0.027 (3)0.003 (2)0.011 (2)0.000 (2)
O20.041 (3)0.027 (3)0.026 (3)0.007 (2)0.006 (2)0.012 (2)
S10.0261 (7)0.0209 (9)0.0144 (8)0.0013 (6)0.0036 (8)0.0010 (9)
Cl10.0259 (7)0.0307 (9)0.0252 (9)0.0073 (7)0.0086 (9)0.0030 (10)
Zn10.0164 (4)0.0218 (5)0.0145 (5)0.0010 (5)0.0000.000
Geometric parameters (Å, º) top
C1—C21.371 (8)N1—Zn12.060 (5)
C1—C61.396 (7)N1—H1A0.9900
C1—N11.454 (7)N1—H1B0.9900
C2—C31.380 (8)N2—S11.617 (6)
C2—H20.9500N2—H1N0.86 (3)
C3—C41.391 (8)N2—H2N0.86 (3)
C3—H30.9500O1—S11.444 (4)
C4—C51.382 (8)O2—S11.432 (5)
C4—S11.763 (6)Cl1—Zn12.2288 (16)
C5—C61.374 (8)Zn1—N1i2.060 (5)
C5—H50.9500Zn1—Cl1i2.2288 (16)
C6—H60.9500
C2—C1—C6121.3 (6)Zn1—N1—H1A108.9
C2—C1—N1120.8 (5)C1—N1—H1B108.9
C6—C1—N1117.9 (6)Zn1—N1—H1B108.9
C1—C2—C3119.9 (5)H1A—N1—H1B107.8
C1—C2—H2120.1S1—N2—H1N110 (4)
C3—C2—H2120.1S1—N2—H2N110 (4)
C2—C3—C4119.0 (6)H1N—N2—H2N110 (7)
C2—C3—H3120.5O2—S1—O1118.8 (3)
C4—C3—H3120.5O2—S1—N2107.4 (3)
C5—C4—C3120.9 (6)O1—S1—N2106.7 (3)
C5—C4—S1118.2 (4)O2—S1—C4108.9 (3)
C3—C4—S1120.8 (5)O1—S1—C4106.9 (3)
C6—C5—C4120.0 (5)N2—S1—C4107.7 (3)
C6—C5—H5120.0N1i—Zn1—N1107.2 (3)
C4—C5—H5120.0N1i—Zn1—Cl1i104.38 (14)
C5—C6—C1118.8 (6)N1—Zn1—Cl1i112.14 (13)
C5—C6—H6120.6N1i—Zn1—Cl1112.14 (13)
C1—C6—H6120.6N1—Zn1—Cl1104.38 (14)
C1—N1—Zn1113.2 (4)Cl1i—Zn1—Cl1116.38 (11)
C1—N1—H1A108.9
C6—C1—C2—C31.9 (10)N1—C1—C6—C5179.7 (6)
N1—C1—C2—C3179.5 (6)C2—C1—N1—Zn191.0 (6)
C1—C2—C3—C40.3 (10)C6—C1—N1—Zn186.8 (6)
C2—C3—C4—C51.2 (10)C5—C4—S1—O2174.7 (5)
C2—C3—C4—S1180.0 (5)C3—C4—S1—O24.1 (6)
C3—C4—C5—C61.1 (10)C5—C4—S1—O145.2 (6)
S1—C4—C5—C6179.9 (5)C3—C4—S1—O1133.6 (5)
C4—C5—C6—C10.5 (10)C5—C4—S1—N269.1 (6)
C2—C1—C6—C52.0 (10)C3—C4—S1—N2112.0 (5)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1ii0.992.503.327 (5)141
N2—H1N···O2iii0.86 (5)2.10 (6)2.891 (8)152 (5)
N2—H2N···O1iv0.86 (5)2.18 (6)3.015 (8)163 (5)
Symmetry codes: (ii) x+1/2, y, z1/2; (iii) x+1, y+1/2, z1/2; (iv) x+3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.992.503.327 (5)141
N2—H1N···O2ii0.86 (5)2.10 (6)2.891 (8)152 (5)
N2—H2N···O1iii0.86 (5)2.18 (6)3.015 (8)163 (5)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y+1/2, z1/2; (iii) x+3/2, y, z1/2.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université de Constantine1, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie - Algérie) via the PNR programme for financial support.

References

First citationBenmebarek, S., Boudraa, M., Bouacida, S. & Daran, J.-C. (2012). Acta Cryst. E68, o3207.  CSD CrossRef IUCr Journals Google Scholar
First citationBenmebarek, S., Boudraa, M., Bouacida, S. & Merazig, H. (2013). Acta Cryst. E69, o432.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerrer, S., Borras, J. & Garcia-Espana, E. (1990). J. Inorg. Biochem. 39, 297–306.  CrossRef CAS Web of Science Google Scholar
First citationMedina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P. & Clark, D. L. (1999). Bioorg. Med. Chem. Lett. 9, 1843–1846.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T., Mincoine, F., Scozzafava, A., Brigenti, F., Mincinone, G. & Ilies, M. A. (1998). Eur. J. Med. Chem. 33, 247–254.  Web of Science CrossRef CAS Google Scholar
First citationWong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451–2466.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds