metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-benzoato-κ2O:O′)bis­­[(benzoato-κ2O,O′)bis­(4,4′-bi­pyridine-κN)cobalt(II)]–benzoic acid (1/6)

aFacultad de Ciencias Químicas, Universidad Veracruzana, Prolongación Oriente 6, No. 1009, Colonia Rafael Alvarado, Apartado Postal 215, CP 94340, Orizaba, Veracruz, Mexico, and bDepartamento de Química, Centro de Investigación y de Estudios Avanzados del, Instituto Politécnico Nacional, CP 07360, México, DF, Mexico
*Correspondence e-mail: chemax7@yahoo.com.mx

(Received 31 October 2013; accepted 9 December 2013; online 18 December 2013)

In the title compound, [Co2(C7H5O2)4(C10H8N2)4]·6C6H5COOH, the centrosymmetric cobalt dimer co-crystallizes with six mol­ecules of benzoic acid. Each CoII atom is coordinated by four O atoms in a distorted square-planar arrangement while the N atoms are located in apical positions. The dihedral angles between the rings comprising each of the 4,4′-bipyridyl ligands are 25.2 (2) and 22.8 (2)°. In the crystal, the three-dimensional network is assembled by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For polymer structures with benzoate and 4,4′-bipyridyl ligands coordinated to cobalt(II), see: Song et al. (2009[Song, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S.-J. & Kim, Y. (2009). Polyhedron, 28, 1241-1252.]), Zhang et al. (2007[Zhang, Z.-X., Li, Y., Li, K.-C., Song, W.-D. & Li, Q.-S. (2007). Inorg. Chem. Commun. 10, 1276-1280.]); to copper(II), see: Wu et al. (2007[Wu, S.-T., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2007). Cryst. Growth Des. 7, 1746-1752.]); to cadmium(II) and zinc(II), see: Murugesapandian & Roesky (2011a[Murugesapandian, B. & Roesky, P. W. (2011a). Inorg. Chem. 50, 1698-1704.],b[Murugesapandian, B. & Roesky, P. W. (2011b). Eur. J. Inorg. Chem. pp. 4103-4108.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C7H5O2)4(C10H8N2)4]·6C7H6O2

  • Mr = 1959.74

  • Triclinic, [P \overline 1]

  • a = 10.4977 (6) Å

  • b = 15.8329 (7) Å

  • c = 16.3994 (8) Å

  • α = 64.222 (3)°

  • β = 87.792 (3)°

  • γ = 86.469 (3)°

  • V = 2449.6 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.2 × 0.1 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1987[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.], 1989[Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.], 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.925, Tmax = 0.980

  • 28546 measured reflections

  • 11064 independent reflections

  • 5118 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.157

  • S = 1.03

  • 11064 reflections

  • 631 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯N2i 0.82 1.91 2.726 (5) 177
O7—H7A⋯O1ii 0.82 1.86 2.656 (4) 164
O9—H9A⋯N5iii 0.82 1.91 2.732 (5) 176
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) x-1, y+1, z-1.

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), enCIFer (Allen, 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design of metal-organic coordination compounds is of current interest in the fields of supramolecular chemistry and crystal engineering. This interest stems from their potential applications as functional materials, such as in gas storage, ion-exchange, catalysis, magnetism and molecular sensing (Song et al., 2009; Zhang et al., 2007). 4,4'-Bipyridine is an excellent, rigid bridging ligand for the construction of novel metal-organic coordination compounds due to its various coordinative modes with metal ions (Wu et al., 2007; Murugesapandian & Roesky, 2011a, 2011b). Currently all the metal-organic coordination compounds obtained with benzoic acid and 4,4'-bipyridine are polymeric. The title compound is the first example of a dimeric species with these two ligands.

The title compound is a cobalt(II) dimer having crystallographically-imposed centrosymmetry (Fig. 1) together with six molecules of benzoic acid in the lattice. Each cobalt(II) ion displays a distorted octahedral coordination geometry being surrounded by four oxygen atoms of one chelating and two bridging benzoate anions and two trans-disposed, monodentate 4,4'-bipyridine ligands. In the central portion of the dimer, the two metal ions and the two bidentate bridging benzoate ions form an eight-membered ring. The dihedral angles between the rings of the 4,4'-bipyridine ligands are 25.2 (2)° (ligand containing N1 and N2) and 22.8 (2)° (ligand containing N3 and N5). In the crystal structure weak O—H···O and C—H···O hydrogen bonds link the molecules into an infinite one-dimensional chain extending along the b axis [O7—H7a···O1,1.859 Å, 164.10°; C6—H6···O2, 2.366 Å, 167.54°]. (Fig. 2).

Related literature top

For polymer structures with benzoate and 4,4'-bipyridyl ligands coordinated to cobalt(II), see: Song et al. (2009), Zhang et al. (2007); to copper(II), see: Wu et al. (2007); to cadmium(II) and zinc(II), see: Murugesapandian & Roesky (2011a,b).

Experimental top

A solution of cobalt(II) nitrate hexahydrate (93.1 mg 0.32 mmol) in 5 mL of deionized water was added dropwise to 5 mL of a methanol solution of benzoic anhydride (72.4 mg 0.32 mmol). The reaction mixture was refluxed at 80 °C without stirring after which a solution of 4,4'-bipyridine (50 mg 0.32 mmol) in 10 mL of methanol was slowly added at room temperature. The solid was crystallized from solution giving red crystals of the title compound which were suitablefor X-ray crystal structure analysis and fully characterized by standard analytical methods. M.p. > 350°C.

Refinement top

H atoms were positioned geometrically and refined using a riding model approximation with distance O—H = 0.82 Å and C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C,O).

Structure description top

The design of metal-organic coordination compounds is of current interest in the fields of supramolecular chemistry and crystal engineering. This interest stems from their potential applications as functional materials, such as in gas storage, ion-exchange, catalysis, magnetism and molecular sensing (Song et al., 2009; Zhang et al., 2007). 4,4'-Bipyridine is an excellent, rigid bridging ligand for the construction of novel metal-organic coordination compounds due to its various coordinative modes with metal ions (Wu et al., 2007; Murugesapandian & Roesky, 2011a, 2011b). Currently all the metal-organic coordination compounds obtained with benzoic acid and 4,4'-bipyridine are polymeric. The title compound is the first example of a dimeric species with these two ligands.

The title compound is a cobalt(II) dimer having crystallographically-imposed centrosymmetry (Fig. 1) together with six molecules of benzoic acid in the lattice. Each cobalt(II) ion displays a distorted octahedral coordination geometry being surrounded by four oxygen atoms of one chelating and two bridging benzoate anions and two trans-disposed, monodentate 4,4'-bipyridine ligands. In the central portion of the dimer, the two metal ions and the two bidentate bridging benzoate ions form an eight-membered ring. The dihedral angles between the rings of the 4,4'-bipyridine ligands are 25.2 (2)° (ligand containing N1 and N2) and 22.8 (2)° (ligand containing N3 and N5). In the crystal structure weak O—H···O and C—H···O hydrogen bonds link the molecules into an infinite one-dimensional chain extending along the b axis [O7—H7a···O1,1.859 Å, 164.10°; C6—H6···O2, 2.366 Å, 167.54°]. (Fig. 2).

For polymer structures with benzoate and 4,4'-bipyridyl ligands coordinated to cobalt(II), see: Song et al. (2009), Zhang et al. (2007); to copper(II), see: Wu et al. (2007); to cadmium(II) and zinc(II), see: Murugesapandian & Roesky (2011a,b).

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), enCIFer (Allen, 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, three benzoic acid molecules are represented by sticks and H atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along b axis. Intermolecular hydrogen bonds are shown as blue dashed lines.
Bis(µ2-benzoato-κ2O:O')bis[(benzoato-κ2O,O')bis(4,4'-bipyridine-κN)cobalt(II)]–benzoic acid (1/6) top
Crystal data top
[Co2(C7H5O2)4(C10H8N2)4]·6C7H6O2Z = 1
Mr = 1959.74F(000) = 1018
Triclinic, P1Dx = 1.329 Mg m3
Hall symbol: -P 1Melting point: 350 K
a = 10.4977 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.8329 (7) ÅCell parameters from 28061 reflections
c = 16.3994 (8) Åθ = 1.0–27.5°
α = 64.222 (3)°µ = 0.41 mm1
β = 87.792 (3)°T = 293 K
γ = 86.469 (3)°Prism, red
V = 2449.6 (2) Å30.2 × 0.1 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
11064 independent reflections
Radiation source: Enraf–Nonius FR5905118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 2.4°
CCD rotation images, thick slices scansh = 1312
Absorption correction: multi-scan
(SORTAV; Blessing, 1987, 1989, 1995)
k = 2020
Tmin = 0.925, Tmax = 0.980l = 2021
28546 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0388P)2 + 1.8382P]
where P = (Fo2 + 2Fc2)/3
11064 reflections(Δ/σ)max = 0.001
631 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Co2(C7H5O2)4(C10H8N2)4]·6C7H6O2γ = 86.469 (3)°
Mr = 1959.74V = 2449.6 (2) Å3
Triclinic, P1Z = 1
a = 10.4977 (6) ÅMo Kα radiation
b = 15.8329 (7) ŵ = 0.41 mm1
c = 16.3994 (8) ÅT = 293 K
α = 64.222 (3)°0.2 × 0.1 × 0.05 mm
β = 87.792 (3)°
Data collection top
Nonius KappaCCD
diffractometer
11064 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1987, 1989, 1995)
5118 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.980Rint = 0.082
28546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
11064 reflectionsΔρmin = 0.31 e Å3
631 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.13907 (4)0.09130 (3)0.51110 (3)0.04482 (16)
O10.1879 (2)0.16963 (17)0.58558 (17)0.0566 (7)
O20.3130 (2)0.17380 (17)0.47431 (17)0.0573 (7)
O30.0072 (2)0.02611 (18)0.59081 (16)0.0605 (7)
O40.1804 (2)0.04234 (18)0.41807 (16)0.0563 (7)
N10.0204 (3)0.2073 (2)0.4218 (2)0.0511 (8)
N20.3787 (5)0.6089 (3)0.1719 (3)0.0927 (13)
N30.2633 (3)0.0192 (2)0.60462 (19)0.0477 (7)
N50.6503 (5)0.3951 (3)0.9135 (3)0.0887 (12)
C10.4254 (3)0.1614 (2)0.7278 (2)0.0517 (9)
C20.5065 (4)0.2405 (3)0.7921 (3)0.0583 (10)
C30.3224 (4)0.1222 (3)0.7567 (3)0.0636 (11)
H30.30520.14270.81820.076*
C40.2452 (4)0.0522 (3)0.6933 (3)0.0602 (10)
H40.17650.02680.71430.072*
C50.3647 (3)0.0556 (2)0.5767 (2)0.0490 (9)
H50.38060.03270.51480.059*
C60.4468 (3)0.1251 (2)0.6347 (2)0.0516 (9)
H60.51620.14780.61180.062*
C70.4598 (5)0.2980 (3)0.8773 (3)0.0776 (13)
H70.37860.28560.89560.093*
C80.5339 (6)0.3730 (3)0.9344 (3)0.0919 (16)
H80.50070.41060.99130.11*
C90.6958 (5)0.3408 (4)0.8324 (4)0.0938 (16)
H90.7770.35560.81610.113*
C100.6279 (4)0.2627 (3)0.7704 (3)0.0837 (14)
H100.66420.22540.71450.1*
C110.1404 (4)0.3636 (3)0.3194 (2)0.0538 (10)
C120.2251 (4)0.4474 (3)0.2685 (3)0.0605 (10)
C130.1842 (4)0.2761 (3)0.3651 (3)0.0786 (14)
H130.27050.26680.36340.094*
C140.1030 (4)0.2013 (3)0.4138 (3)0.0778 (14)
H140.13680.14240.44310.093*
C150.0627 (4)0.2928 (3)0.3749 (3)0.0853 (15)
H150.14940.30050.3770.102*
C160.0126 (4)0.3702 (3)0.3238 (3)0.0846 (15)
H160.02390.42780.29180.101*
C170.1911 (5)0.5364 (3)0.2540 (3)0.0911 (16)
H170.11450.54370.27630.109*
C180.2705 (6)0.6136 (4)0.2066 (4)0.1049 (18)
H180.24620.67220.19880.126*
C190.4141 (5)0.5272 (5)0.1853 (3)0.0924 (16)
H190.49160.52310.16190.111*
C200.3392 (5)0.4428 (4)0.2345 (3)0.0889 (15)
H200.36820.38510.24330.107*
C210.2930 (3)0.1908 (2)0.5415 (3)0.0523 (9)
C220.3932 (4)0.2327 (3)0.5724 (3)0.0592 (10)
C230.3760 (4)0.2431 (3)0.6515 (3)0.0746 (12)
H230.30060.22580.68490.089*
C240.4712 (5)0.2794 (4)0.6811 (4)0.1020 (17)
H240.45950.28660.73420.122*
C250.5817 (6)0.3044 (4)0.6327 (5)0.116 (2)
H250.64540.32890.65270.14*
C260.5993 (5)0.2940 (5)0.5558 (5)0.124 (2)
H260.67530.31120.52310.149*
C270.5054 (4)0.2580 (4)0.5248 (4)0.0937 (16)
H270.51860.25090.47160.112*
C280.1194 (3)0.0033 (2)0.6124 (2)0.0420 (8)
C290.1875 (3)0.0308 (2)0.6794 (2)0.0431 (8)
C300.3148 (4)0.0119 (3)0.7003 (3)0.0595 (10)
H300.35780.01710.67160.071*
C310.3783 (4)0.0354 (4)0.7630 (3)0.0842 (14)
H310.4640.0230.77630.101*
C320.3144 (6)0.0772 (4)0.8054 (3)0.0948 (16)
H320.35690.09230.84840.114*
C330.1893 (5)0.0970 (3)0.7856 (3)0.0824 (14)
H330.14720.12570.8150.099*
C340.1249 (4)0.0747 (3)0.7221 (3)0.0609 (10)
H340.03990.08910.70790.073*
O50.3391 (4)0.6953 (3)0.0736 (3)0.1194 (14)
O60.5022 (4)0.7786 (2)0.0694 (2)0.1021 (11)
H6A0.53580.72650.09940.153*
C420.3856 (6)0.7699 (4)0.0509 (3)0.0842 (14)
C430.3183 (4)0.8629 (3)0.0038 (3)0.0627 (11)
C440.1891 (5)0.8649 (4)0.0154 (3)0.0866 (14)
H440.1460.80940.01060.104*
C450.1230 (5)0.9484 (5)0.0651 (4)0.1014 (17)
H450.03550.94950.07250.122*
C460.1856 (6)1.0296 (4)0.1035 (4)0.1030 (18)
H460.14081.08630.13650.124*
C470.3141 (6)1.0277 (3)0.0935 (3)0.0933 (16)
H470.35711.08310.12080.112*
C480.3802 (5)0.9451 (3)0.0436 (3)0.0749 (12)
H480.46780.94460.03660.09*
O70.0189 (3)0.6991 (2)0.4128 (2)0.0877 (9)
H7A0.07350.74150.40320.132*
O80.0534 (3)0.7343 (2)0.2686 (3)0.0932 (10)
C490.0020 (4)0.6876 (3)0.3376 (4)0.0683 (12)
C500.1003 (4)0.6121 (3)0.3495 (3)0.0649 (11)
C510.1503 (4)0.6056 (3)0.2726 (4)0.0782 (13)
H510.12150.64780.21560.094*
C520.2422 (5)0.5369 (4)0.2805 (5)0.0965 (16)
H520.27540.53260.2290.116*
C530.2843 (6)0.4755 (4)0.3636 (6)0.1079 (19)
H530.34670.42920.36850.129*
C540.2367 (5)0.4804 (4)0.4403 (5)0.1045 (18)
H540.26610.43770.49690.125*
C550.1436 (5)0.5500 (3)0.4328 (4)0.0834 (14)
H550.11090.55410.48460.1*
O90.2055 (3)0.4497 (2)0.0229 (2)0.0972 (10)
H9A0.24730.49770.00880.146*
O100.0947 (3)0.4821 (2)0.1046 (2)0.1078 (12)
C350.1129 (5)0.4338 (3)0.0259 (4)0.0774 (13)
C360.0322 (4)0.3462 (3)0.0283 (3)0.0711 (12)
C370.0617 (5)0.3194 (4)0.0164 (4)0.1078 (19)
H370.07450.35560.07810.129*
C380.1384 (6)0.2389 (4)0.0287 (4)0.118 (2)
H380.20140.22050.00260.141*
C390.1209 (6)0.1874 (4)0.1187 (4)0.1061 (18)
H390.1730.13390.14980.127*
C400.0265 (6)0.2138 (4)0.1645 (4)0.1014 (17)
H400.01380.1780.22620.122*
C410.0491 (5)0.2937 (3)0.1181 (3)0.0863 (14)
H410.11280.31190.14910.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0362 (3)0.0504 (3)0.0510 (3)0.0013 (2)0.0021 (2)0.0252 (2)
O10.0409 (15)0.0625 (16)0.0784 (18)0.0047 (12)0.0067 (13)0.0421 (14)
O20.0486 (16)0.0696 (17)0.0632 (17)0.0057 (13)0.0042 (13)0.0378 (15)
O30.0380 (15)0.0825 (18)0.0580 (16)0.0074 (13)0.0108 (12)0.0280 (14)
O40.0479 (16)0.0741 (17)0.0585 (16)0.0023 (13)0.0033 (12)0.0400 (14)
N10.0431 (19)0.0514 (19)0.0581 (19)0.0026 (15)0.0005 (15)0.0230 (16)
N20.089 (3)0.100 (3)0.078 (3)0.026 (3)0.013 (2)0.031 (3)
N30.0403 (18)0.0574 (18)0.0470 (19)0.0008 (14)0.0029 (14)0.0246 (15)
N50.101 (3)0.070 (3)0.077 (3)0.016 (2)0.021 (3)0.017 (2)
C10.043 (2)0.055 (2)0.055 (2)0.0056 (18)0.0011 (18)0.0213 (19)
C20.055 (3)0.051 (2)0.063 (3)0.0023 (19)0.008 (2)0.019 (2)
C30.061 (3)0.077 (3)0.048 (2)0.011 (2)0.002 (2)0.025 (2)
C40.049 (2)0.075 (3)0.060 (3)0.008 (2)0.005 (2)0.034 (2)
C50.037 (2)0.058 (2)0.048 (2)0.0008 (17)0.0086 (17)0.0211 (19)
C60.033 (2)0.057 (2)0.062 (2)0.0048 (17)0.0045 (18)0.024 (2)
C70.084 (3)0.073 (3)0.063 (3)0.014 (3)0.000 (2)0.019 (2)
C80.108 (5)0.081 (3)0.068 (3)0.018 (3)0.001 (3)0.018 (3)
C90.059 (3)0.088 (3)0.109 (4)0.018 (3)0.005 (3)0.022 (3)
C100.061 (3)0.079 (3)0.085 (3)0.014 (2)0.005 (3)0.014 (3)
C110.046 (2)0.059 (2)0.053 (2)0.0037 (19)0.0004 (18)0.021 (2)
C120.051 (3)0.067 (3)0.061 (3)0.009 (2)0.002 (2)0.026 (2)
C130.046 (3)0.076 (3)0.088 (3)0.010 (2)0.021 (2)0.009 (3)
C140.060 (3)0.060 (3)0.091 (3)0.016 (2)0.020 (2)0.008 (2)
C150.047 (3)0.062 (3)0.115 (4)0.002 (2)0.004 (3)0.009 (3)
C160.054 (3)0.055 (3)0.115 (4)0.003 (2)0.012 (3)0.009 (3)
C170.067 (3)0.067 (3)0.114 (4)0.012 (3)0.010 (3)0.016 (3)
C180.099 (5)0.079 (4)0.115 (5)0.019 (3)0.006 (4)0.025 (3)
C190.072 (4)0.125 (5)0.089 (4)0.013 (3)0.025 (3)0.056 (4)
C200.079 (4)0.087 (3)0.105 (4)0.020 (3)0.036 (3)0.046 (3)
C210.041 (2)0.045 (2)0.069 (3)0.0019 (17)0.003 (2)0.024 (2)
C220.047 (2)0.064 (2)0.076 (3)0.0024 (19)0.007 (2)0.038 (2)
C230.055 (3)0.094 (3)0.087 (3)0.008 (2)0.008 (2)0.050 (3)
C240.075 (4)0.151 (5)0.121 (4)0.015 (4)0.005 (3)0.096 (4)
C250.078 (4)0.158 (6)0.155 (6)0.038 (4)0.005 (4)0.103 (5)
C260.077 (4)0.186 (6)0.151 (6)0.068 (4)0.023 (4)0.105 (5)
C270.063 (3)0.129 (4)0.116 (4)0.042 (3)0.024 (3)0.076 (4)
C280.034 (2)0.0437 (19)0.0396 (19)0.0041 (16)0.0016 (16)0.0107 (16)
C290.041 (2)0.0428 (19)0.043 (2)0.0038 (16)0.0002 (16)0.0167 (16)
C300.047 (2)0.075 (3)0.064 (3)0.005 (2)0.012 (2)0.038 (2)
C310.058 (3)0.124 (4)0.091 (3)0.010 (3)0.025 (3)0.067 (3)
C320.096 (4)0.122 (4)0.091 (4)0.001 (3)0.024 (3)0.072 (3)
C330.093 (4)0.096 (4)0.082 (3)0.007 (3)0.001 (3)0.061 (3)
C340.055 (3)0.070 (3)0.065 (3)0.004 (2)0.001 (2)0.036 (2)
O50.145 (4)0.067 (2)0.124 (3)0.001 (2)0.011 (3)0.022 (2)
O60.107 (3)0.089 (2)0.102 (3)0.032 (2)0.035 (2)0.035 (2)
C420.100 (4)0.090 (4)0.067 (3)0.016 (3)0.004 (3)0.040 (3)
C430.070 (3)0.067 (3)0.050 (2)0.017 (2)0.004 (2)0.027 (2)
C440.087 (4)0.085 (3)0.092 (4)0.003 (3)0.001 (3)0.041 (3)
C450.065 (4)0.125 (5)0.124 (5)0.015 (4)0.012 (3)0.065 (4)
C460.107 (5)0.097 (4)0.094 (4)0.036 (4)0.027 (4)0.033 (3)
C470.101 (4)0.073 (3)0.092 (4)0.001 (3)0.008 (3)0.023 (3)
C480.071 (3)0.077 (3)0.066 (3)0.010 (3)0.008 (2)0.022 (2)
O70.084 (2)0.082 (2)0.095 (2)0.0141 (17)0.0120 (18)0.0397 (19)
O80.075 (2)0.102 (2)0.107 (3)0.0221 (19)0.018 (2)0.050 (2)
C490.053 (3)0.064 (3)0.092 (4)0.006 (2)0.009 (3)0.038 (3)
C500.047 (3)0.056 (3)0.091 (3)0.009 (2)0.008 (2)0.031 (3)
C510.058 (3)0.083 (3)0.102 (4)0.003 (3)0.005 (3)0.048 (3)
C520.071 (4)0.101 (4)0.143 (5)0.001 (3)0.013 (3)0.079 (4)
C530.087 (4)0.075 (4)0.163 (6)0.008 (3)0.014 (4)0.056 (4)
C540.093 (4)0.067 (3)0.124 (5)0.006 (3)0.003 (4)0.015 (3)
C550.075 (3)0.062 (3)0.100 (4)0.001 (3)0.017 (3)0.025 (3)
O90.095 (3)0.089 (2)0.091 (2)0.0281 (19)0.011 (2)0.0262 (19)
O100.103 (3)0.089 (2)0.085 (3)0.017 (2)0.000 (2)0.002 (2)
C350.072 (3)0.073 (3)0.076 (3)0.005 (3)0.011 (3)0.022 (3)
C360.066 (3)0.061 (3)0.072 (3)0.001 (2)0.009 (2)0.015 (2)
C370.095 (4)0.099 (4)0.087 (4)0.018 (3)0.011 (3)0.004 (3)
C380.099 (4)0.104 (4)0.113 (5)0.033 (4)0.011 (4)0.018 (4)
C390.093 (4)0.080 (4)0.109 (5)0.016 (3)0.019 (4)0.008 (3)
C400.108 (5)0.091 (4)0.076 (3)0.006 (3)0.016 (3)0.009 (3)
C410.092 (4)0.082 (3)0.077 (3)0.008 (3)0.013 (3)0.028 (3)
Geometric parameters (Å, º) top
Co1—O31.999 (2)C26—C271.384 (6)
Co1—O42.013 (2)C26—H260.93
Co1—N12.142 (3)C27—H270.93
Co1—N32.157 (3)C28—O4i1.257 (4)
Co1—O12.176 (2)C28—C291.491 (5)
Co1—O22.220 (2)C29—C301.385 (5)
O1—C211.275 (4)C29—C341.385 (5)
O2—C211.250 (4)C30—C311.374 (5)
O3—C281.247 (4)C30—H300.93
O4—C28i1.257 (4)C31—C321.364 (6)
N1—C141.321 (5)C31—H310.93
N1—C151.327 (5)C32—C331.363 (6)
N2—C191.290 (6)C32—H320.93
N2—C181.311 (6)C33—C341.380 (6)
N3—C41.324 (4)C33—H330.93
N3—C51.338 (4)C34—H340.93
N5—C91.320 (6)O5—C421.204 (6)
N5—C81.324 (6)O6—C421.302 (6)
C1—C31.383 (5)O6—H6A0.82
C1—C61.392 (5)C42—C431.497 (6)
C1—C21.482 (5)C43—C481.370 (6)
C2—C101.375 (6)C43—C441.374 (6)
C2—C71.385 (5)C44—C451.374 (7)
C3—C41.385 (5)C44—H440.93
C3—H30.93C45—C461.359 (7)
C4—H40.93C45—H450.93
C5—C61.376 (5)C46—C471.362 (7)
C5—H50.93C46—H460.93
C6—H60.93C47—C481.365 (6)
C7—C81.367 (6)C47—H470.93
C7—H70.93C48—H480.93
C8—H80.93O7—C491.330 (5)
C9—C101.388 (6)O7—H7A0.82
C9—H90.93O8—C491.198 (5)
C10—H100.93C49—C501.482 (6)
C11—C131.358 (5)C50—C551.366 (6)
C11—C161.359 (5)C50—C511.390 (6)
C11—C121.482 (5)C51—C521.373 (6)
C12—C201.359 (6)C51—H510.93
C12—C171.391 (6)C52—C531.356 (8)
C13—C141.368 (6)C52—H520.93
C13—H130.93C53—C541.368 (8)
C14—H140.93C53—H530.93
C15—C161.367 (6)C54—C551.394 (7)
C15—H150.93C54—H540.93
C16—H160.93C55—H550.93
C17—C181.375 (6)O9—C351.316 (5)
C17—H170.93O9—H9A0.82
C18—H180.93O10—C351.196 (5)
C19—C201.427 (7)C35—C361.507 (6)
C19—H190.93C36—C411.350 (6)
C20—H200.93C36—C371.362 (6)
C21—C221.491 (5)C37—C381.385 (7)
C22—C271.368 (5)C37—H370.93
C22—C231.382 (5)C38—C391.352 (7)
C23—C241.383 (6)C38—H380.93
C23—H230.93C39—C401.372 (7)
C24—C251.358 (7)C39—H390.93
C24—H240.93C40—C411.377 (7)
C25—C261.346 (7)C40—H400.93
C25—H250.93C41—H410.93
O3—Co1—O4111.24 (10)C23—C24—H24119.9
O3—Co1—N193.58 (11)C26—C25—C24120.2 (5)
O4—Co1—N193.96 (11)C26—C25—H25119.9
O3—Co1—N387.57 (11)C24—C25—H25119.9
O4—Co1—N389.12 (11)C25—C26—C27120.7 (5)
N1—Co1—N3176.07 (11)C25—C26—H26119.7
O3—Co1—O196.72 (10)C27—C26—H26119.7
O4—Co1—O1151.17 (10)C22—C27—C26120.0 (5)
N1—Co1—O191.07 (10)C22—C27—H27120
N3—Co1—O185.06 (10)C26—C27—H27120
O3—Co1—O2155.49 (10)O3—C28—O4i124.4 (3)
O4—Co1—O291.70 (10)O3—C28—C29118.8 (3)
N1—Co1—O293.29 (10)O4i—C28—C29116.8 (3)
N3—Co1—O284.17 (10)C30—C29—C34119.0 (3)
O1—Co1—O259.65 (9)C30—C29—C28120.1 (3)
C21—O1—Co190.4 (2)C34—C29—C28120.9 (3)
C21—O2—Co189.0 (2)C31—C30—C29120.8 (4)
C28—O3—Co1157.9 (2)C31—C30—H30119.6
C28i—O4—Co1133.3 (2)C29—C30—H30119.6
C14—N1—C15114.3 (3)C32—C31—C30119.3 (4)
C14—N1—Co1122.7 (3)C32—C31—H31120.3
C15—N1—Co1122.8 (3)C30—C31—H31120.3
C19—N2—C18118.2 (5)C33—C32—C31121.1 (4)
C4—N3—C5116.6 (3)C33—C32—H32119.5
C4—N3—Co1121.2 (2)C31—C32—H32119.5
C5—N3—Co1122.2 (2)C32—C33—C34120.1 (4)
C9—N5—C8117.2 (4)C32—C33—H33119.9
C3—C1—C6116.7 (3)C34—C33—H33119.9
C3—C1—C2121.9 (3)C33—C34—C29119.7 (4)
C6—C1—C2121.3 (3)C33—C34—H34120.2
C10—C2—C7116.9 (4)C29—C34—H34120.2
C10—C2—C1122.8 (4)C42—O6—H6A109.6
C7—C2—C1120.3 (4)O5—C42—O6123.4 (5)
C1—C3—C4119.5 (4)O5—C42—C43124.3 (6)
C1—C3—H3120.2O6—C42—C43112.3 (5)
C4—C3—H3120.2C48—C43—C44119.0 (4)
N3—C4—C3123.9 (4)C48—C43—C42122.9 (5)
N3—C4—H4118C44—C43—C42118.1 (5)
C3—C4—H4118C43—C44—C45120.3 (5)
N3—C5—C6123.6 (3)C43—C44—H44119.9
N3—C5—H5118.2C45—C44—H44119.9
C6—C5—H5118.2C46—C45—C44120.1 (5)
C5—C6—C1119.7 (3)C46—C45—H45120
C5—C6—H6120.2C44—C45—H45120
C1—C6—H6120.2C45—C46—C47119.8 (5)
C8—C7—C2119.5 (5)C45—C46—H46120.1
C8—C7—H7120.3C47—C46—H46120.1
C2—C7—H7120.3C46—C47—C48120.5 (5)
N5—C8—C7123.8 (5)C46—C47—H47119.8
N5—C8—H8118.1C48—C47—H47119.8
C7—C8—H8118.1C47—C48—C43120.3 (5)
N5—C9—C10122.9 (5)C47—C48—H48119.8
N5—C9—H9118.5C43—C48—H48119.8
C10—C9—H9118.5C49—O7—H7A109.3
C2—C10—C9119.7 (4)O8—C49—O7122.7 (4)
C2—C10—H10120.2O8—C49—C50124.7 (5)
C9—C10—H10120.2O7—C49—C50112.5 (5)
C13—C11—C16115.6 (4)C55—C50—C51119.5 (4)
C13—C11—C12122.9 (4)C55—C50—C49122.2 (5)
C16—C11—C12121.5 (4)C51—C50—C49118.3 (4)
C20—C12—C17116.1 (4)C52—C51—C50120.2 (5)
C20—C12—C11123.2 (4)C52—C51—H51119.9
C17—C12—C11120.7 (4)C50—C51—H51119.9
C11—C13—C14120.8 (4)C53—C52—C51119.9 (5)
C11—C13—H13119.6C53—C52—H52120.1
C14—C13—H13119.6C51—C52—H52120.1
N1—C14—C13124.3 (4)C52—C53—C54121.1 (5)
N1—C14—H14117.9C52—C53—H53119.5
C13—C14—H14117.9C54—C53—H53119.5
N1—C15—C16124.5 (4)C53—C54—C55119.4 (6)
N1—C15—H15117.8C53—C54—H54120.3
C16—C15—H15117.8C55—C54—H54120.3
C11—C16—C15120.4 (4)C50—C55—C54119.9 (5)
C11—C16—H16119.8C50—C55—H55120
C15—C16—H16119.8C54—C55—H55120
C18—C17—C12120.1 (5)C35—O9—H9A109.7
C18—C17—H17119.9O10—C35—O9124.4 (5)
C12—C17—H17119.9O10—C35—C36123.1 (5)
N2—C18—C17123.3 (5)O9—C35—C36112.5 (4)
N2—C18—H18118.3C41—C36—C37119.1 (4)
C17—C18—H18118.3C41—C36—C35123.2 (5)
N2—C19—C20122.6 (5)C37—C36—C35117.7 (4)
N2—C19—H19118.7C36—C37—C38120.9 (5)
C20—C19—H19118.7C36—C37—H37119.5
C12—C20—C19119.6 (5)C38—C37—H37119.5
C12—C20—H20120.2C39—C38—C37119.3 (6)
C19—C20—H20120.2C39—C38—H38120.3
O2—C21—O1120.0 (3)C37—C38—H38120.3
O2—C21—C22120.3 (3)C38—C39—C40120.2 (5)
O1—C21—C22119.7 (4)C38—C39—H39119.9
C27—C22—C23119.0 (4)C40—C39—H39119.9
C27—C22—C21120.6 (4)C39—C40—C41119.4 (5)
C23—C22—C21120.3 (4)C39—C40—H40120.3
C22—C23—C24119.9 (4)C41—C40—H40120.3
C22—C23—H23120C36—C41—C40121.0 (5)
C24—C23—H23120C36—C41—H41119.5
C25—C24—C23120.2 (5)C40—C41—H41119.5
C25—C24—H24119.9
O3—Co1—O1—C21167.4 (2)C11—C12—C17—C18179.9 (4)
O4—Co1—O1—C211.4 (3)C19—N2—C18—C172.2 (9)
N1—Co1—O1—C2198.8 (2)C12—C17—C18—N21.2 (9)
N3—Co1—O1—C2180.5 (2)C18—N2—C19—C201.3 (8)
O2—Co1—O1—C215.7 (2)C17—C12—C20—C191.6 (7)
O3—Co1—O2—C2111.0 (4)C11—C12—C20—C19179.1 (4)
O4—Co1—O2—C21170.8 (2)N2—C19—C20—C120.6 (8)
N1—Co1—O2—C2195.1 (2)Co1—O2—C21—O19.8 (3)
N3—Co1—O2—C2181.9 (2)Co1—O2—C21—C22168.1 (3)
O1—Co1—O2—C215.8 (2)Co1—O1—C21—O210.0 (3)
O4—Co1—O3—C2869.3 (7)Co1—O1—C21—C22167.9 (3)
N1—Co1—O3—C2826.4 (7)O2—C21—C22—C273.6 (6)
N3—Co1—O3—C28157.4 (7)O1—C21—C22—C27178.4 (4)
O1—Co1—O3—C28117.9 (7)O2—C21—C22—C23173.8 (4)
O2—Co1—O3—C28132.4 (6)O1—C21—C22—C234.2 (6)
O3—Co1—O4—C28i18.2 (3)C27—C22—C23—C240.5 (7)
N1—Co1—O4—C28i77.2 (3)C21—C22—C23—C24177.9 (4)
N3—Co1—O4—C28i105.2 (3)C22—C23—C24—C250.2 (8)
O1—Co1—O4—C28i176.7 (3)C23—C24—C25—C260.1 (10)
O2—Co1—O4—C28i170.6 (3)C24—C25—C26—C270.2 (11)
O3—Co1—N1—C1423.0 (3)C23—C22—C27—C260.5 (8)
O4—Co1—N1—C1488.6 (3)C21—C22—C27—C26177.9 (5)
O1—Co1—N1—C14119.8 (3)C25—C26—C27—C220.2 (10)
O2—Co1—N1—C14179.4 (3)Co1—O3—C28—O4i65.7 (8)
O3—Co1—N1—C15152.1 (3)Co1—O3—C28—C29114.8 (6)
O4—Co1—N1—C1596.3 (3)O3—C28—C29—C30175.8 (3)
O1—Co1—N1—C1555.3 (3)O4i—C28—C29—C304.7 (5)
O2—Co1—N1—C154.3 (3)O3—C28—C29—C344.7 (5)
O3—Co1—N3—C441.7 (3)O4i—C28—C29—C34174.9 (3)
O4—Co1—N3—C4153.0 (3)C34—C29—C30—C310.6 (6)
O1—Co1—N3—C455.3 (3)C28—C29—C30—C31179.0 (4)
O2—Co1—N3—C4115.2 (3)C29—C30—C31—C320.6 (7)
O3—Co1—N3—C5140.8 (3)C30—C31—C32—C330.9 (8)
O4—Co1—N3—C529.5 (3)C31—C32—C33—C340.2 (8)
O1—Co1—N3—C5122.3 (3)C32—C33—C34—C291.0 (7)
O2—Co1—N3—C562.3 (3)C30—C29—C34—C331.3 (6)
C3—C1—C2—C10160.3 (4)C28—C29—C34—C33178.2 (4)
C6—C1—C2—C1022.2 (6)O5—C42—C43—C48166.7 (5)
C3—C1—C2—C721.8 (6)O6—C42—C43—C4811.4 (6)
C6—C1—C2—C7155.8 (4)O5—C42—C43—C4412.2 (7)
C6—C1—C3—C41.6 (6)O6—C42—C43—C44169.6 (4)
C2—C1—C3—C4176.0 (4)C48—C43—C44—C450.9 (7)
C5—N3—C4—C31.5 (6)C42—C43—C44—C45179.9 (4)
Co1—N3—C4—C3179.2 (3)C43—C44—C45—C460.3 (8)
C1—C3—C4—N30.0 (6)C44—C45—C46—C470.8 (9)
C4—N3—C5—C61.4 (5)C45—C46—C47—C481.3 (9)
Co1—N3—C5—C6179.0 (3)C46—C47—C48—C430.7 (8)
N3—C5—C6—C10.3 (5)C44—C43—C48—C470.4 (7)
C3—C1—C6—C51.8 (5)C42—C43—C48—C47179.3 (4)
C2—C1—C6—C5175.9 (3)O8—C49—C50—C55167.8 (4)
C10—C2—C7—C80.8 (7)O7—C49—C50—C5512.5 (6)
C1—C2—C7—C8177.3 (4)O8—C49—C50—C5112.8 (6)
C9—N5—C8—C70.0 (8)O7—C49—C50—C51166.9 (4)
C2—C7—C8—N50.1 (8)C55—C50—C51—C520.2 (6)
C8—N5—C9—C100.7 (8)C49—C50—C51—C52179.7 (4)
C7—C2—C10—C91.4 (7)C50—C51—C52—C530.1 (7)
C1—C2—C10—C9176.6 (4)C51—C52—C53—C540.2 (9)
N5—C9—C10—C21.5 (8)C52—C53—C54—C550.3 (9)
C13—C11—C12—C2025.2 (6)C51—C50—C55—C540.4 (7)
C16—C11—C12—C20155.5 (5)C49—C50—C55—C54179.8 (4)
C13—C11—C12—C17154.0 (5)C53—C54—C55—C500.4 (8)
C16—C11—C12—C1725.2 (6)O10—C35—C36—C41177.0 (5)
C16—C11—C13—C141.6 (7)O9—C35—C36—C413.8 (7)
C12—C11—C13—C14177.7 (4)O10—C35—C36—C373.2 (7)
C15—N1—C14—C132.8 (7)O9—C35—C36—C37176.0 (5)
Co1—N1—C14—C13172.6 (4)C41—C36—C37—C380.8 (9)
C11—C13—C14—N11.3 (8)C35—C36—C37—C38179.1 (5)
C14—N1—C15—C161.7 (7)C36—C37—C38—C391.1 (10)
Co1—N1—C15—C16173.8 (4)C37—C38—C39—C401.1 (10)
C13—C11—C16—C152.7 (7)C38—C39—C40—C410.8 (9)
C12—C11—C16—C15176.6 (4)C37—C36—C41—C400.4 (8)
N1—C15—C16—C111.1 (8)C35—C36—C41—C40179.5 (5)
C20—C12—C17—C180.8 (7)C39—C40—C41—C360.4 (8)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···N2ii0.821.912.726 (5)177
O7—H7A···O1iii0.821.862.656 (4)164
O9—H9A···N5iv0.821.912.732 (5)176
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···N2i0.821.912.726 (5)177
O7—H7A···O1ii0.821.862.656 (4)164
O9—H9A···N5iii0.821.912.732 (5)176
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x1, y+1, z1.
 

Acknowledgements

The authors acknowledge financial support from the Consejo Nacional de Ciencia y Tecnología (CONACyT), Fondo Mixto Veracruz (127835).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationBlessing, R. H. (1989). J. Appl. Cryst. 22, 396–397.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurugesapandian, B. & Roesky, P. W. (2011a). Inorg. Chem. 50, 1698–1704.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMurugesapandian, B. & Roesky, P. W. (2011b). Eur. J. Inorg. Chem. pp. 4103–4108.  Web of Science CSD CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S.-J. & Kim, Y. (2009). Polyhedron, 28, 1241–1252.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, S.-T., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2007). Cryst. Growth Des. 7, 1746–1752.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Z.-X., Li, Y., Li, K.-C., Song, W.-D. & Li, Q.-S. (2007). Inorg. Chem. Commun. 10, 1276–1280.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds