metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Bromo­mercurio)ferrocene

aInstitut für Anorganische und Analytische Chemie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and bInstitut für Organische Chemie und Chemische Biologie, Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bats@chemie.uni-frankfurt.de

(Received 2 December 2013; accepted 4 December 2013; online 11 December 2013)

The asymmetric unit of the title compound, [Fe(C5H5)(C5H4BrHg)], contains two independent mol­ecules, A and B, in which the Hg—C bond lengths are 2.045 (6) and 2.046 (6) Å, the Hg—Br bond lengths are 2.4511 (9) and 2.4562 (7) Å, and the C—Hg—Br angles are 176.42 (17) and 177.32 (17)°. The two cyclo­penta­dienyl rings of mol­ecule A are eclipsed, while those of mol­ecule B are almost staggered. The HgBr groups are connected by inter­molecular Hg⋯Br contacts of 3.3142 (9)–3.4895 (11) Å, forming layers parallel to (001). These layers contain both four-membered (HgBr)2 and eight-membered (HgBr)4 rings. Ferrocene–ferrocene C—H⋯π contacts connect the mol­ecular layers along the c-axis direction.

Related literature

For synthetic background, see: Fish & Rosenblum (1965[Fish, R. W. & Rosenblum, M. (1965). J. Org. Chem. 30, 1253-1254.]); Guillaneux & Kagan (1995[Guillaneux, D. & Kagan, H. B. (1995). J. Org. Chem. 60, 2502-2505.]). For chemical background, see: Lerner (2005[Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781-798.]). For related structures, see: Meyer-Wegner et al. (2012[Meyer-Wegner, F., Lerner, H.-W., Sinke, T. & Bolte, M. (2012). Acta Cryst. E68, m424.]); Hayashi et al. (2011[Hayashi, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). Z. Anorg. Allg. Chem. 637, 646-649.]); Franz et al. (2011[Franz, D., Lerner, H.-W. & Bolte, M. (2011). Acta Cryst. E67, m1395.]); Wiberg et al. (1997[Wiberg, N., Amelunxen, K., Lerner, H.-W., Nöth, H., Appel, A., Knizek, J. & Polborn, K. (1997). Z. Anorg. Allg. Chem. 623, 1861-1870.], 2001[Wiberg, N., Niedermayer, W., Lerner, H.-W. & Bolte, M. (2001). Z. Anorg. Allg. Chem. 627, 1043-1047.]); Margraf et al. (2004[Margraf, G., Lerner, H.-W., Bolte, M. & Wagner, M. (2004). Z. Anorg. Allg. Chem. 630, 217-218.]); Sünkel & Kiessling (2001[Sünkel, K. & Kiessling, T. (2001). J. Organomet. Chem. 637, 796-799.]); Romanov et al. (2007[Romanov, A. S., Yakovenko, A. A., Antipin, M. Yu., Lindline, J. & Timofeeva, T. V. (2007). Acta Cryst. E63, m1297-m1299.]); Singh et al. (2005[Singh, G., Bali, S., Singh, A. K., Drake, J. E., Macdonald, C. L. B., Hursthouse, M. B. & Little, M. E. (2005). Inorg. Chim. Acta, 358, 912-918.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • [FeHgBr(C5H5)(C5H4)]

  • Mr = 465.52

  • Triclinic, [P \overline 1]

  • a = 7.6484 (14) Å

  • b = 9.5715 (17) Å

  • c = 14.394 (3) Å

  • α = 75.120 (12)°

  • β = 87.548 (12)°

  • γ = 83.298 (12)°

  • V = 1011.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 20.49 mm−1

  • T = 166 K

  • 0.65 × 0.28 × 0.05 mm

Data collection
  • Siemens SMART 1K CCD diffractometer

  • Absorption correction: numerical (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.010, Tmax = 0.361

  • 16880 measured reflections

  • 5759 independent reflections

  • 4942 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.10

  • 5759 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 2.78 e Å−3

  • Δρmin = −1.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C6–C10 and C16–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg2iv 0.95 2.91 3.794 (8) 156
C19—H19ACg1iii 0.95 2.78 3.618 (8) 148
Symmetry codes: (iii) -x+1, -y+1, -z+1; (iv) x, y, z-1.

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Our group has recently reported on the chemical and structural features of compounds containing the group 12 elements Zn, Cd and Hg (Meyer-Wegner et al., 2012; Hayashi et al., 2011; Franz et al., 2011; Lerner, 2005; Wiberg et al., 1997; Wiberg et al., 2001; Margraf et al., 2004). To extend our long-standing investigations in this field, we are currently studying the title compound 1-(bromomercurio)ferrocene. A protocol for the synthesis of 1-(chloromercurio)ferrocene has been reported by Fish & Rosenblum (1965). However, we were not able to prepare the title compound using that method. Therefore we decided to synthesize the compound via a new route by the reaction of 1-(tri-n-butylstannyl)ferrocene with HgBr2 (see experimental section). Here we report the crystal structure of the resulting compound.

The asymmetric unit of the title compound contains two independent molecules (A, Fig.1 and B, Fig. 2). The molecular conformations of the ferrocene groups are different: the two cyclopentadienyl rings of molecule A are eclipsed while those of molecule B are almost staggered. The HgBr group is slightly displaced from the cyclopentadienyl ring to which the Hg atom is attached [deviations from plane of five-membered ring: Hg1 0.096 (10) Å, Br1 0.263 (17) Å, Hg2 0.067 (11) Å, Br2 0.293 (19) Å]. This out-of-plane distortion is in opposite directions for molecules A and B and therefore may result mainly from intermolecular interactions·The angle between the planes of the two cyclopentadienyl rings is 3.1 (4)° for molecule A and 2.1 (5)° for molecule B.

For the corresponding 1-(chloromercurio)ferrocene two polymorphic crystal structures have been reported, a triclinic structure (Sünkel & Kießling, 2001) and a monoclinic structure (Romanov et al., 2007). The title compound 1-(bromomercurio)ferrocene is isomorphous with the triclinic polymorph of 1-(chloromercurio)ferrocene.

Each HgBr group is connected by four long Hg···Br contacts to three neighboring HgBr groups as shown in Fig. 3. These additional Hg···Br contacts result in layers of molecules parallel to the (001) plane. Molecule A is connected by two Hg···Br contacts to a symmetry-related molecule A to form a four-membered (HgBr)2 ring. A similar four-membered ring is formed by two symmetry-related molecules B. Two molecules A and two molecules B are connected by four additional Hg···Br contacts to form eight-membered (HgBr)4 rings. No intermolecular Hg···Br contacts occur in the crystal structure of 1-(bromomercurio)-2,4,6-trimethylbenzene (Meyer-Wegner et al., 2012). There an undistorted HgBr single bond length of 2.4307 (8) Å was found which is about 0.02 Å shorter than the values of 2.4511 (9) and 2.4562 (7) Å observed for molecules A and B of the title compound. In the crystal structure of 1-(bromomercurio)-4-methoxybenzene (Singh et al., 2005) each HgBr bond is connected to the HgBr bonds of four neighboring molecules via intermolecular Hg···Br contacts of 3.4041 (7) to 3.5461 (7) Å and the HgBr single bond length is elongated to 2.4700 (7) Å. Although the long intermolecular Hg···Br contact distances are near the value of 3.40 Å, generally taken as the non-bonding distance between Hg and Br (Bondi, 1964), they do result in a small lengthening of the HgBr single bond.

The layers are connected along the c-axis direction by ferrocene···ferrocene contacts (Fig. 4). There is a weak intermolecular Cferrocene—H···πferrocene interaction between the C3—H3A bond and the cyclopentadienyl ring labelled C16—C20 from an adjacent layer (first entry in Table 1). An additional Cferrocene—H···πferrocene interaction connects the ferrocene groups within a single layer (second entry in Table 2).

Related literature top

For synthetic background, see: Fish & Rosenblum (1965); Guillaneux & Kagan (1995) and for chemical background, see: Lerner (2005). For related structures, see: Meyer-Wegner et al. (2012); Hayashi et al. (2011); Franz et al. (2011); Wiberg et al. (1997); Wiberg et al. (2001); Margraf et al. (2004); Sünkel & Kießling (2001); Romanov et al. (2007); Singh et al. (2005). For van der Waals radii, see: Bondi (1964).

Experimental top

The starting material 1-(tri-n-butylstannyl)ferrocene was prepared as described by Guillaneux & Kagan (1995). The starting material (5.583 g, 11.75 mmol) was dissolved in CH2Cl2 (20 ml) and was added to HgBr2 (4.248 g, 11.79 mmol, 1 equivalent) in CH2Cl2 (80 ml). The reaction mixture was stirred for 30 minutes at room temperature and then filtered. All volatiles were removed in vacuo and the resulting solid residue was washed with n-hexane (250 ml). Drying to constant mass yielded the title compound 1-(bromomercurio)ferrocene (3.714 g, 7.978 mmol, 68%). The compound was recrystallized from CH2Cl2/n-pentane (1:1), resulting in brown blades. 1H and 13C{1H} NMR spectra were recorded at 298 K on a Bruker Avance 300 spectrometer using D6-benzene as solvent. Chemical shifts are reported in p.p.m. relative to Si(CH3)4 and were referenced to residual solvent signals. 1H (300.0 MHz): δ=3.48 (vtr, 3JHH=4JHH=1.7 Hz, 2H, Ar—H), 3.84 (s, 5H, C5H5), 4.05 (vtr, 3JHH=4JHH=1.7 Hz, 2H, Ar—H); 13C{1H} (100.6 MHz): δ=68.6 (C5H5), 69.7 (Ar—C), 72.7 (Ar—C), n.o. (ipso-C). Abbreviations: s=singlet, vtr=virtual triplet, n.o.=signal not observed. Elemental analysis (%) for C10H9BrFeHg: calculated C 25.80, H 1.95; found: C 25.52, H 1.96.

Refinement top

H atoms were positioned geometrically and treated as riding: C—H=0.95 Å and Uiso(H)=1.2Ueq(C). The minimum and maximum residual peaks of -1.93 and +2.78 e.Å-3 in the difference Fourier synthesis are found at about 0.9 Å from the Hg atoms.

Structure description top

Our group has recently reported on the chemical and structural features of compounds containing the group 12 elements Zn, Cd and Hg (Meyer-Wegner et al., 2012; Hayashi et al., 2011; Franz et al., 2011; Lerner, 2005; Wiberg et al., 1997; Wiberg et al., 2001; Margraf et al., 2004). To extend our long-standing investigations in this field, we are currently studying the title compound 1-(bromomercurio)ferrocene. A protocol for the synthesis of 1-(chloromercurio)ferrocene has been reported by Fish & Rosenblum (1965). However, we were not able to prepare the title compound using that method. Therefore we decided to synthesize the compound via a new route by the reaction of 1-(tri-n-butylstannyl)ferrocene with HgBr2 (see experimental section). Here we report the crystal structure of the resulting compound.

The asymmetric unit of the title compound contains two independent molecules (A, Fig.1 and B, Fig. 2). The molecular conformations of the ferrocene groups are different: the two cyclopentadienyl rings of molecule A are eclipsed while those of molecule B are almost staggered. The HgBr group is slightly displaced from the cyclopentadienyl ring to which the Hg atom is attached [deviations from plane of five-membered ring: Hg1 0.096 (10) Å, Br1 0.263 (17) Å, Hg2 0.067 (11) Å, Br2 0.293 (19) Å]. This out-of-plane distortion is in opposite directions for molecules A and B and therefore may result mainly from intermolecular interactions·The angle between the planes of the two cyclopentadienyl rings is 3.1 (4)° for molecule A and 2.1 (5)° for molecule B.

For the corresponding 1-(chloromercurio)ferrocene two polymorphic crystal structures have been reported, a triclinic structure (Sünkel & Kießling, 2001) and a monoclinic structure (Romanov et al., 2007). The title compound 1-(bromomercurio)ferrocene is isomorphous with the triclinic polymorph of 1-(chloromercurio)ferrocene.

Each HgBr group is connected by four long Hg···Br contacts to three neighboring HgBr groups as shown in Fig. 3. These additional Hg···Br contacts result in layers of molecules parallel to the (001) plane. Molecule A is connected by two Hg···Br contacts to a symmetry-related molecule A to form a four-membered (HgBr)2 ring. A similar four-membered ring is formed by two symmetry-related molecules B. Two molecules A and two molecules B are connected by four additional Hg···Br contacts to form eight-membered (HgBr)4 rings. No intermolecular Hg···Br contacts occur in the crystal structure of 1-(bromomercurio)-2,4,6-trimethylbenzene (Meyer-Wegner et al., 2012). There an undistorted HgBr single bond length of 2.4307 (8) Å was found which is about 0.02 Å shorter than the values of 2.4511 (9) and 2.4562 (7) Å observed for molecules A and B of the title compound. In the crystal structure of 1-(bromomercurio)-4-methoxybenzene (Singh et al., 2005) each HgBr bond is connected to the HgBr bonds of four neighboring molecules via intermolecular Hg···Br contacts of 3.4041 (7) to 3.5461 (7) Å and the HgBr single bond length is elongated to 2.4700 (7) Å. Although the long intermolecular Hg···Br contact distances are near the value of 3.40 Å, generally taken as the non-bonding distance between Hg and Br (Bondi, 1964), they do result in a small lengthening of the HgBr single bond.

The layers are connected along the c-axis direction by ferrocene···ferrocene contacts (Fig. 4). There is a weak intermolecular Cferrocene—H···πferrocene interaction between the C3—H3A bond and the cyclopentadienyl ring labelled C16—C20 from an adjacent layer (first entry in Table 1). An additional Cferrocene—H···πferrocene interaction connects the ferrocene groups within a single layer (second entry in Table 2).

For synthetic background, see: Fish & Rosenblum (1965); Guillaneux & Kagan (1995) and for chemical background, see: Lerner (2005). For related structures, see: Meyer-Wegner et al. (2012); Hayashi et al. (2011); Franz et al. (2011); Wiberg et al. (1997); Wiberg et al. (2001); Margraf et al. (2004); Sünkel & Kießling (2001); Romanov et al. (2007); Singh et al. (2005). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of molecule A, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of an arbitrary radius.
[Figure 2] Fig. 2. The structure of molecule B, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of an arbitrary radius.
[Figure 3] Fig. 3. A layer of molecules connected by intermolecular Hg···Br contacts (broken lines). Arbitrary view direction near [0–11]. The ferrocene groups, except for the Hg-bound C atoms, have been omitted for clarity. Colour codes: C black, Hg purple, Br red. Symmetry codes: (i) -x + 1, -y, -z + 1, (ii) -x, -y, -z + 1, (iii) -x + 1, -y + 1, -z + 1. A and B represent molecules A and B.
[Figure 4] Fig. 4. The crystal packing of the title compound viewed down [100]. H atoms have been omitted for clarity. Intermolecular Hg···Br contacts are shown as broken lines. A and B represent molecules A and B. Colour codes as for Fig. 3.
1-(Bromomercurio)ferrocene top
Crystal data top
[FeHgBr(C5H5)(C5H4)]Z = 4
Mr = 465.52F(000) = 840
Triclinic, P1Dx = 3.057 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6484 (14) ÅCell parameters from 153 reflections
b = 9.5715 (17) Åθ = 3–23°
c = 14.394 (3) ŵ = 20.49 mm1
α = 75.120 (12)°T = 166 K
β = 87.548 (12)°Blade, brown
γ = 83.298 (12)°0.65 × 0.28 × 0.05 mm
V = 1011.3 (3) Å3
Data collection top
Siemens SMART 1K CCD
diffractometer
5759 independent reflections
Radiation source: normal-focus sealed tube4942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: numerical
(SHELXTL; Sheldrick, 2008)
h = 1010
Tmin = 0.010, Tmax = 0.361k = 1313
16880 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.037P)2 + 4P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5759 reflectionsΔρmax = 2.78 e Å3
236 parametersΔρmin = 1.93 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (2)
Crystal data top
[FeHgBr(C5H5)(C5H4)]γ = 83.298 (12)°
Mr = 465.52V = 1011.3 (3) Å3
Triclinic, P1Z = 4
a = 7.6484 (14) ÅMo Kα radiation
b = 9.5715 (17) ŵ = 20.49 mm1
c = 14.394 (3) ÅT = 166 K
α = 75.120 (12)°0.65 × 0.28 × 0.05 mm
β = 87.548 (12)°
Data collection top
Siemens SMART 1K CCD
diffractometer
5759 independent reflections
Absorption correction: numerical
(SHELXTL; Sheldrick, 2008)
4942 reflections with I > 2σ(I)
Tmin = 0.010, Tmax = 0.361Rint = 0.081
16880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.10Δρmax = 2.78 e Å3
5759 reflectionsΔρmin = 1.93 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.24751 (3)0.03490 (2)0.406074 (17)0.02741 (8)
Hg20.28108 (3)0.38606 (2)0.552272 (16)0.02422 (8)
Br10.18713 (12)0.04795 (8)0.57243 (5)0.04088 (18)
Br20.55928 (8)0.29653 (7)0.48471 (5)0.03010 (14)
Fe10.45120 (10)0.13645 (8)0.16271 (6)0.01728 (15)
Fe20.01347 (10)0.41228 (8)0.76191 (6)0.01701 (15)
C10.2858 (7)0.0275 (6)0.2658 (4)0.0228 (11)
C20.1899 (7)0.1127 (7)0.1840 (5)0.0250 (12)
H2A0.09790.18830.18450.030*
C30.2543 (8)0.0659 (7)0.1011 (5)0.0275 (12)
H3A0.21300.10460.03740.033*
C40.3919 (8)0.0492 (7)0.1313 (5)0.0268 (12)
H4A0.45850.10100.09120.032*
C50.4121 (8)0.0729 (6)0.2332 (5)0.0237 (11)
H5A0.49480.14300.27220.028*
C60.5781 (8)0.2740 (8)0.2176 (5)0.0305 (13)
H6A0.56350.28690.28080.037*
C70.4793 (8)0.3539 (6)0.1362 (5)0.0289 (13)
H7A0.38810.43050.13540.035*
C80.5405 (8)0.2994 (7)0.0558 (5)0.0277 (12)
H8A0.49690.33230.00780.033*
C90.6786 (8)0.1869 (7)0.0887 (5)0.0269 (12)
H9A0.74430.13130.05050.032*
C100.7021 (7)0.1715 (7)0.1882 (5)0.0283 (13)
H10A0.78620.10420.22810.034*
C110.0541 (7)0.4524 (7)0.6167 (4)0.0223 (11)
C120.0904 (8)0.3691 (7)0.6451 (5)0.0267 (12)
H12A0.09920.27570.63530.032*
C130.2200 (8)0.4497 (7)0.6908 (5)0.0282 (13)
H13A0.32960.41950.71710.034*
C140.1548 (8)0.5847 (7)0.6898 (5)0.0290 (13)
H14A0.21380.66010.71520.035*
C150.0141 (8)0.5857 (6)0.6441 (4)0.0242 (11)
H15A0.08740.66200.63370.029*
C160.1635 (10)0.2313 (8)0.8352 (5)0.0332 (14)
H16A0.20810.15150.81010.040*
C170.0008 (10)0.2464 (8)0.8831 (5)0.0357 (16)
H17A0.08500.17810.89620.043*
C180.0171 (9)0.3811 (9)0.9082 (5)0.0339 (14)
H18A0.11490.41960.94030.041*
C190.1387 (9)0.4490 (8)0.8768 (5)0.0312 (13)
H19A0.16410.53990.88480.037*
C200.2490 (8)0.3556 (8)0.8313 (5)0.0315 (14)
H20A0.36140.37380.80310.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03585 (13)0.02139 (12)0.02352 (12)0.00544 (9)0.00906 (9)0.00357 (9)
Hg20.02487 (12)0.02667 (12)0.01967 (12)0.00328 (8)0.00183 (8)0.00630 (9)
Br10.0666 (5)0.0293 (3)0.0270 (3)0.0080 (3)0.0131 (3)0.0086 (3)
Br20.0271 (3)0.0312 (3)0.0310 (3)0.0051 (2)0.0038 (2)0.0104 (3)
Fe10.0159 (3)0.0169 (3)0.0182 (4)0.0034 (3)0.0003 (3)0.0023 (3)
Fe20.0165 (3)0.0165 (3)0.0184 (4)0.0027 (3)0.0009 (3)0.0048 (3)
C10.024 (2)0.020 (2)0.023 (3)0.010 (2)0.008 (2)0.002 (2)
C20.017 (2)0.025 (3)0.033 (3)0.007 (2)0.001 (2)0.005 (3)
C30.027 (3)0.031 (3)0.024 (3)0.013 (2)0.005 (2)0.002 (3)
C40.034 (3)0.022 (3)0.028 (3)0.008 (2)0.000 (2)0.011 (2)
C50.027 (3)0.019 (2)0.024 (3)0.004 (2)0.002 (2)0.002 (2)
C60.030 (3)0.037 (3)0.030 (3)0.016 (3)0.003 (3)0.015 (3)
C70.027 (3)0.016 (2)0.042 (4)0.006 (2)0.002 (3)0.003 (3)
C80.030 (3)0.025 (3)0.025 (3)0.013 (2)0.003 (2)0.003 (2)
C90.024 (3)0.030 (3)0.028 (3)0.007 (2)0.010 (2)0.008 (3)
C100.016 (2)0.033 (3)0.033 (3)0.008 (2)0.000 (2)0.002 (3)
C110.023 (2)0.024 (3)0.019 (3)0.001 (2)0.001 (2)0.005 (2)
C120.026 (3)0.032 (3)0.026 (3)0.003 (2)0.007 (2)0.012 (3)
C130.020 (2)0.032 (3)0.034 (3)0.001 (2)0.005 (2)0.012 (3)
C140.025 (3)0.025 (3)0.033 (3)0.005 (2)0.006 (2)0.005 (3)
C150.025 (3)0.020 (3)0.025 (3)0.002 (2)0.007 (2)0.004 (2)
C160.042 (4)0.027 (3)0.027 (3)0.007 (3)0.008 (3)0.004 (3)
C170.042 (4)0.032 (3)0.028 (3)0.018 (3)0.009 (3)0.008 (3)
C180.028 (3)0.049 (4)0.025 (3)0.008 (3)0.003 (3)0.011 (3)
C190.035 (3)0.036 (3)0.028 (3)0.011 (3)0.006 (3)0.013 (3)
C200.020 (3)0.041 (4)0.030 (3)0.002 (2)0.004 (2)0.003 (3)
Geometric parameters (Å, º) top
Hg1—C12.046 (6)C3—C41.426 (9)
Hg1—Br12.4511 (9)C3—H3A0.9500
Hg1—Br2i3.3558 (9)C4—C51.438 (9)
Hg1—Br1ii3.4895 (11)C4—H4A0.9500
Hg2—C112.045 (6)C5—H5A0.9500
Hg2—Br22.4562 (7)C6—C101.415 (10)
Hg2—Br2iii3.3142 (9)C6—C71.416 (10)
Hg2—Br13.3341 (10)C6—H6A0.9500
Br1—Hg1ii3.4895 (11)C7—C81.428 (10)
Br2—Hg2iii3.3142 (9)C7—H7A0.9500
Br2—Hg1i3.3558 (9)C8—C91.420 (9)
Fe1—C22.039 (5)C8—H8A0.9500
Fe1—C32.041 (6)C9—C101.419 (9)
Fe1—C92.042 (6)C9—H9A0.9500
Fe1—C42.045 (6)C10—H10A0.9500
Fe1—C82.048 (6)C11—C121.423 (8)
Fe1—C62.048 (6)C11—C151.426 (8)
Fe1—C102.050 (6)C12—C131.427 (9)
Fe1—C52.050 (6)C12—H12A0.9500
Fe1—C72.052 (6)C13—C141.435 (9)
Fe1—C12.059 (5)C13—H13A0.9500
Fe2—C162.032 (7)C14—C151.424 (8)
Fe2—C112.042 (6)C14—H14A0.9500
Fe2—C122.044 (6)C15—H15A0.9500
Fe2—C172.045 (7)C16—C201.411 (10)
Fe2—C132.045 (6)C16—C171.418 (11)
Fe2—C152.046 (6)C16—H16A0.9500
Fe2—C202.046 (6)C17—C181.416 (11)
Fe2—C142.048 (6)C17—H17A0.9500
Fe2—C182.056 (7)C18—C191.424 (9)
Fe2—C192.071 (6)C18—H18A0.9500
C1—C21.425 (9)C19—C201.420 (10)
C1—C51.432 (8)C19—H19A0.9500
C2—C31.427 (9)C20—H20A0.9500
C2—H2A0.9500
C1—Hg1—Br1177.32 (17)C1—C2—C3109.0 (5)
C1—Hg1—Br2i99.46 (17)C1—C2—Fe170.4 (3)
Br1—Hg1—Br2i82.33 (3)C3—C2—Fe169.6 (3)
C1—Hg1—Br1ii96.81 (16)C1—C2—H2A125.5
Br1—Hg1—Br1ii80.94 (3)C3—C2—H2A125.5
Br2i—Hg1—Br1ii97.82 (2)Fe1—C2—H2A126.1
C11—Hg2—Br2176.42 (17)C4—C3—C2107.7 (5)
C11—Hg2—Br2iii94.10 (17)C4—C3—Fe169.7 (3)
Br2—Hg2—Br2iii87.16 (2)C2—C3—Fe169.5 (3)
C11—Hg2—Br195.97 (17)C4—C3—H3A126.2
Br2—Hg2—Br182.77 (3)C2—C3—H3A126.2
Br2iii—Hg2—Br1169.922 (19)Fe1—C3—H3A126.2
Hg1—Br1—Hg298.97 (3)C3—C4—C5107.9 (6)
Hg1—Br1—Hg1ii99.06 (3)C3—C4—Fe169.4 (3)
Hg2—Br1—Hg1ii121.04 (3)C5—C4—Fe169.6 (3)
Hg2—Br2—Hg2iii92.84 (2)C3—C4—H4A126.0
Hg2—Br2—Hg1i118.45 (3)C5—C4—H4A126.0
Hg2iii—Br2—Hg1i128.28 (2)Fe1—C4—H4A126.5
C2—Fe1—C340.9 (3)C1—C5—C4108.1 (5)
C2—Fe1—C9157.9 (3)C1—C5—Fe169.9 (3)
C3—Fe1—C9121.0 (3)C4—C5—Fe169.3 (3)
C2—Fe1—C468.7 (3)C1—C5—H5A126.0
C3—Fe1—C440.8 (3)C4—C5—H5A126.0
C9—Fe1—C4105.8 (3)Fe1—C5—H5A126.4
C2—Fe1—C8122.1 (3)C10—C6—C7108.1 (6)
C3—Fe1—C8104.7 (3)C10—C6—Fe169.9 (4)
C9—Fe1—C840.6 (3)C7—C6—Fe170.0 (3)
C4—Fe1—C8119.7 (3)C10—C6—H6A125.9
C2—Fe1—C6123.9 (3)C7—C6—H6A125.9
C3—Fe1—C6158.2 (3)Fe1—C6—H6A125.8
C9—Fe1—C668.1 (3)C6—C7—C8108.3 (6)
C4—Fe1—C6160.7 (3)C6—C7—Fe169.6 (4)
C8—Fe1—C668.5 (3)C8—C7—Fe169.5 (3)
C2—Fe1—C10160.1 (3)C6—C7—H7A125.9
C3—Fe1—C10158.3 (3)C8—C7—H7A125.9
C9—Fe1—C1040.6 (3)Fe1—C7—H7A126.6
C4—Fe1—C10123.2 (3)C9—C8—C7107.2 (6)
C8—Fe1—C1068.4 (3)C9—C8—Fe169.4 (3)
C6—Fe1—C1040.4 (3)C7—C8—Fe169.8 (3)
C2—Fe1—C568.5 (2)C9—C8—H8A126.4
C3—Fe1—C568.9 (3)C7—C8—H8A126.4
C9—Fe1—C5122.2 (3)Fe1—C8—H8A125.9
C4—Fe1—C541.1 (3)C10—C9—C8108.5 (6)
C8—Fe1—C5156.8 (3)C10—C9—Fe170.0 (3)
C6—Fe1—C5125.4 (3)C8—C9—Fe169.9 (3)
C10—Fe1—C5108.8 (3)C10—C9—H9A125.7
C2—Fe1—C7108.0 (2)C8—C9—H9A125.7
C3—Fe1—C7121.1 (3)Fe1—C9—H9A125.9
C9—Fe1—C768.1 (3)C6—C10—C9107.9 (6)
C4—Fe1—C7156.2 (3)C6—C10—Fe169.7 (3)
C8—Fe1—C740.7 (3)C9—C10—Fe169.4 (3)
C6—Fe1—C740.4 (3)C6—C10—H10A126.0
C10—Fe1—C767.9 (3)C9—C10—H10A126.0
C5—Fe1—C7161.5 (3)Fe1—C10—H10A126.4
C2—Fe1—C140.7 (2)C12—C11—C15107.9 (5)
C3—Fe1—C169.0 (3)C12—C11—Fe269.7 (3)
C9—Fe1—C1159.2 (3)C15—C11—Fe269.7 (3)
C4—Fe1—C168.9 (3)C12—C11—Hg2125.1 (5)
C8—Fe1—C1159.6 (3)C15—C11—Hg2126.9 (4)
C6—Fe1—C1109.8 (3)Fe2—C11—Hg2124.6 (3)
C10—Fe1—C1124.4 (3)C11—C12—C13108.4 (6)
C5—Fe1—C140.8 (2)C11—C12—Fe269.6 (3)
C7—Fe1—C1124.8 (3)C13—C12—Fe269.6 (4)
C16—Fe2—C11112.4 (3)C11—C12—H12A125.8
C16—Fe2—C12108.9 (3)C13—C12—H12A125.8
C11—Fe2—C1240.8 (2)Fe2—C12—H12A126.6
C16—Fe2—C1740.7 (3)C12—C13—C14107.6 (6)
C11—Fe2—C17142.1 (3)C12—C13—Fe269.5 (3)
C12—Fe2—C17112.4 (3)C14—C13—Fe269.6 (4)
C16—Fe2—C13134.6 (3)C12—C13—H13A126.2
C11—Fe2—C1368.9 (3)C14—C13—H13A126.2
C12—Fe2—C1340.8 (3)Fe2—C13—H13A126.3
C17—Fe2—C13109.3 (3)C15—C14—C13107.9 (5)
C16—Fe2—C15142.9 (3)C15—C14—Fe269.6 (3)
C11—Fe2—C1540.8 (2)C13—C14—Fe269.4 (4)
C12—Fe2—C1568.6 (3)C15—C14—H14A126.0
C17—Fe2—C15176.2 (3)C13—C14—H14A126.0
C13—Fe2—C1568.8 (3)Fe2—C14—H14A126.6
C16—Fe2—C2040.5 (3)C14—C15—C11108.2 (5)
C11—Fe2—C20110.1 (3)C14—C15—Fe269.7 (4)
C12—Fe2—C20135.1 (3)C11—C15—Fe269.4 (3)
C17—Fe2—C2068.1 (3)C14—C15—H15A125.9
C13—Fe2—C20174.7 (3)C11—C15—H15A125.9
C15—Fe2—C20114.0 (3)Fe2—C15—H15A126.5
C16—Fe2—C14175.3 (3)C20—C16—C17108.1 (6)
C11—Fe2—C1468.7 (2)C20—C16—Fe270.3 (4)
C12—Fe2—C1468.7 (3)C17—C16—Fe270.1 (4)
C17—Fe2—C14135.8 (3)C20—C16—H16A125.9
C13—Fe2—C1441.0 (3)C17—C16—H16A125.9
C15—Fe2—C1440.7 (2)Fe2—C16—H16A125.2
C20—Fe2—C14144.0 (3)C18—C17—C16107.9 (6)
C16—Fe2—C1868.2 (3)C18—C17—Fe270.2 (4)
C11—Fe2—C18176.5 (3)C16—C17—Fe269.2 (4)
C12—Fe2—C18142.7 (3)C18—C17—H17A126.0
C17—Fe2—C1840.4 (3)C16—C17—H17A126.0
C13—Fe2—C18113.4 (3)Fe2—C17—H17A126.1
C15—Fe2—C18136.8 (3)C17—C18—C19108.1 (6)
C20—Fe2—C1868.0 (3)C17—C18—Fe269.4 (4)
C14—Fe2—C18111.0 (3)C19—C18—Fe270.4 (4)
C16—Fe2—C1968.1 (3)C17—C18—H18A125.9
C11—Fe2—C19136.3 (3)C19—C18—H18A125.9
C12—Fe2—C19175.3 (3)Fe2—C18—H18A125.9
C17—Fe2—C1968.0 (3)C20—C19—C18107.4 (6)
C13—Fe2—C19143.8 (3)C20—C19—Fe268.9 (4)
C15—Fe2—C19111.4 (3)C18—C19—Fe269.2 (4)
C20—Fe2—C1940.3 (3)C20—C19—H19A126.3
C14—Fe2—C19114.6 (3)C18—C19—H19A126.3
C18—Fe2—C1940.4 (3)Fe2—C19—H19A127.1
C2—C1—C5107.3 (5)C16—C20—C19108.4 (6)
C2—C1—Hg1127.8 (4)C16—C20—Fe269.2 (4)
C5—C1—Hg1124.8 (5)C19—C20—Fe270.8 (4)
C2—C1—Fe168.9 (3)C16—C20—H20A125.8
C5—C1—Fe169.3 (3)C19—C20—H20A125.8
Hg1—C1—Fe1129.4 (3)Fe2—C20—H20A125.8
C5—C1—C2—C30.3 (6)C15—C11—C12—C130.4 (7)
Hg1—C1—C2—C3176.7 (4)Fe2—C11—C12—C1359.0 (4)
Fe1—C1—C2—C359.1 (4)Hg2—C11—C12—C13177.7 (4)
C5—C1—C2—Fe158.8 (4)C15—C11—C12—Fe259.4 (4)
Hg1—C1—C2—Fe1124.2 (4)Hg2—C11—C12—Fe2118.7 (4)
C1—C2—C3—C40.1 (6)C11—C12—C13—C140.4 (7)
Fe1—C2—C3—C459.5 (4)Fe2—C12—C13—C1459.4 (5)
C1—C2—C3—Fe159.6 (4)C11—C12—C13—Fe259.0 (4)
C2—C3—C4—C50.1 (6)C12—C13—C14—C150.3 (8)
Fe1—C3—C4—C559.2 (4)Fe2—C13—C14—C1559.1 (5)
C2—C3—C4—Fe159.3 (4)C12—C13—C14—Fe259.4 (4)
C2—C1—C5—C40.4 (6)C13—C14—C15—C110.0 (7)
Hg1—C1—C5—C4176.7 (4)Fe2—C14—C15—C1159.0 (4)
Fe1—C1—C5—C458.9 (4)C13—C14—C15—Fe259.0 (5)
C2—C1—C5—Fe158.6 (4)C12—C11—C15—C140.3 (7)
Hg1—C1—C5—Fe1124.3 (4)Fe2—C11—C15—C1459.2 (4)
C3—C4—C5—C10.3 (7)Hg2—C11—C15—C14177.8 (5)
Fe1—C4—C5—C159.4 (4)C12—C11—C15—Fe259.4 (4)
C3—C4—C5—Fe159.1 (4)Hg2—C11—C15—Fe2118.6 (5)
C10—C6—C7—C80.8 (7)C20—C16—C17—C180.5 (8)
Fe1—C6—C7—C858.9 (4)Fe2—C16—C17—C1859.8 (5)
C10—C6—C7—Fe159.7 (4)C20—C16—C17—Fe260.3 (5)
C6—C7—C8—C90.7 (6)C16—C17—C18—C190.8 (8)
Fe1—C7—C8—C959.6 (4)Fe2—C17—C18—C1959.9 (5)
C6—C7—C8—Fe159.0 (4)C16—C17—C18—Fe259.1 (5)
C7—C8—C9—C100.3 (7)C17—C18—C19—C200.8 (8)
Fe1—C8—C9—C1059.6 (4)Fe2—C18—C19—C2058.5 (5)
C7—C8—C9—Fe159.9 (4)C17—C18—C19—Fe259.3 (5)
C7—C6—C10—C90.7 (7)C17—C16—C20—C190.0 (8)
Fe1—C6—C10—C959.1 (4)Fe2—C16—C20—C1960.2 (5)
C7—C6—C10—Fe159.7 (4)C17—C16—C20—Fe260.2 (5)
C8—C9—C10—C60.2 (7)C18—C19—C20—C160.5 (8)
Fe1—C9—C10—C659.3 (4)Fe2—C19—C20—C1659.2 (5)
C8—C9—C10—Fe159.5 (4)C18—C19—C20—Fe258.7 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6–C10 and C16–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg2iv0.952.913.794 (8)156
C19—H19A···Cg1iii0.952.783.618 (8)148
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6–C10 and C16–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg2iv0.952.913.794 (8)156
C19—H19A···Cg1iii0.952.783.618 (8)148
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y, z1.
 

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationFish, R. W. & Rosenblum, M. (1965). J. Org. Chem. 30, 1253–1254.  CrossRef CAS Web of Science Google Scholar
First citationFranz, D., Lerner, H.-W. & Bolte, M. (2011). Acta Cryst. E67, m1395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuillaneux, D. & Kagan, H. B. (1995). J. Org. Chem. 60, 2502–2505.  CrossRef CAS Web of Science Google Scholar
First citationHayashi, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). Z. Anorg. Allg. Chem. 637, 646–649.  Web of Science CSD CrossRef CAS Google Scholar
First citationLerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798.  Web of Science CrossRef CAS Google Scholar
First citationMargraf, G., Lerner, H.-W., Bolte, M. & Wagner, M. (2004). Z. Anorg. Allg. Chem. 630, 217–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeyer-Wegner, F., Lerner, H.-W., Sinke, T. & Bolte, M. (2012). Acta Cryst. E68, m424.  CSD CrossRef IUCr Journals Google Scholar
First citationRomanov, A. S., Yakovenko, A. A., Antipin, M. Yu., Lindline, J. & Timofeeva, T. V. (2007). Acta Cryst. E63, m1297–m1299.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSingh, G., Bali, S., Singh, A. K., Drake, J. E., Macdonald, C. L. B., Hursthouse, M. B. & Little, M. E. (2005). Inorg. Chim. Acta, 358, 912–918.  Web of Science CSD CrossRef CAS Google Scholar
First citationSünkel, K. & Kiessling, T. (2001). J. Organomet. Chem. 637, 796–799.  Google Scholar
First citationWiberg, N., Amelunxen, K., Lerner, H.-W., Nöth, H., Appel, A., Knizek, J. & Polborn, K. (1997). Z. Anorg. Allg. Chem. 623, 1861–1870.  Web of Science CSD CrossRef CAS Google Scholar
First citationWiberg, N., Niedermayer, W., Lerner, H.-W. & Bolte, M. (2001). Z. Anorg. Allg. Chem. 627, 1043–1047.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds