organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Formyl-2-nitro­phenyl 3-nitro-2-methyl­benzoate

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 29 November 2013; accepted 30 November 2013; online 7 December 2013)

In the title formyl nitro aryl benzoate derivative, C15H10N2O7, the benzene rings form a dihedral angle of 4.96 (3)°. The mean plane of the central ester group, C—O—C–(=O)—C (r.m.s. deviation = 0.0484 Å), is twisted away from the formyl nitro aryl and benzoate rings by 46.61 (5) and 49.93 (5)°, respectively. In the crystal, the mol­ecules are packed forming C—H⋯O inter­actions in chains which propagate along [010]. Edge-fused R33(15) rings are generated along this direction.

Related literature

For similar formyl nitro aryl benzoate compounds, see: Moreno-Fuquen et al. (2013a[Moreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013a). Acta Cryst. E69, o793.],b[Moreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013b). Acta Cryst. E69, o1806.]). For information on hydrogen bonds, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For hydrogen-bond graph-sets motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N2O7

  • Mr = 330.25

  • Monoclinic, P 21 /c

  • a = 12.7162 (5) Å

  • b = 8.0719 (2) Å

  • c = 14.1156 (5) Å

  • β = 110.877 (4)°

  • V = 1353.76 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 123 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • 6641 measured reflections

  • 3319 independent reflections

  • 2706 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.04

  • 3319 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O5i 0.95 2.48 3.3457 (18) 152
C12—H12⋯O4ii 0.95 2.71 3.5321 (19) 145
Symmetry codes: (i) [-x-1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound, 4-formyl-2-nitrophenyl 3-nitro-2-methyl benzoate, (I), was synthesized in order to complement the structural information on the formyl nitro aryl benzoates presented in earlier jobs from our research group: 4-formyl-2-nitrophenyl 4-bromo benzoate (F4BrB) (Moreno-Fuquen et al., 2013a) and 4-formyl-2-nitrophenyl 4-cloro benzoate (F2ClB) (Moreno-Fuquen et al., 2013b). The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles show marked similarity with their homologues F4BrB and F2ClB. The benzene rings of (I) form a dihedral angle of 4.96 (3)°, a value which is quite different from the values reported for F4BrB [62.90 (7)°] and F2ClB [19.55 (9)°] similar systems. This planar arrangement may be motivated by the intermolecular interaction between the methyl group and the nitro group of the formyl ring. The ester group C8-O2-C7(O1)-C1 is planar [r.m.s. deviation= 0.0484 Å] and is twisted away from the formyl nitro aryl and benzoate rings by 46.61 (5)° and 49.93 (5)° respectively. The nitro groups form dihedral angles with the adjacent benzene rings of 37.62 (5)° for O3-N1-O4 and 39.67 (5)° for O6-N2-O7. The crystal packing shows no classical hydrogen bonds. The molecules are packed forming weak C-H···O intermolecular interactions in one-dimensional helical chains which propagates along [010] (see Fig. 2]. The C10 atom at (x,y,z) acts as hydrogen-bond donor to formyl atom O5 at (-x-1,+y-1/2,-z+1/2+1) and C12 atom at (x,y,z) acts as hydrogen-bond donor to nitro O4 atom at (x,+y+1,+z) (see Table 1; Nardelli, 1995). The combination of these two contacts generate edge-fused rings R33(15) (Etter, 1990) along [010].

Related literature top

For similar formyl nitro aryl benzoate compounds, see: Moreno-Fuquen et al. (2013a,b). For information on hydrogen bonds, see: Nardelli (1995). For hydrogen-bond graph-sets motifs, see: Etter (1990).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was obtained through a two-step reaction. First, 3-nitro-2-methylbenzoic acid (0.502 g, 1.575 mmol) was refluxed with thionyl chloride (5 mL) in chloroform for an hour. Then, the thionyl chloride was distilled to purify the 3-nitro-2-methyl benzoyl chloride obtained as a pale-yellow translucent liquid. The same reaction flask was rearranged and an equimolar solution of 4-hydroxy-3-nitrobenzaldehyde (0.219 g, 1.575 mmol) in acetonitrile was dropped inside it with 0.03 mL of pyridine. The reaction mixture was taken to room temperature with constant stirring for about an hour. A shiny yellow solid was obtained after leaving the solvent to evaporate. IR spectra were recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. Yellow crystals; m.p 398 (1) K. IR (KBr) 3228.18cm-1, 3079.51 cm-1 (aromatic C-H); 1723.73 cm-1 (ester C=O); 1690.65 cm-1 (benzaldehyde C=O), 1264.29 cm-1 (ester C-O); 1568.29 cm-1, 1532.06 cm-1, 1360.66 cm-1, 1330.49 cm-1 (nitro –NO2); 1121.38 cm-1 (C=C).

Refinement top

All H-atoms were positioned at geometrically idealized positions with C—H distance of 0.95 Å and Uiso(H) = 1.2 times Ueq of the C-atoms to which they were bonded. The coordinates of the H14 atom were refined.

Structure description top

The title compound, 4-formyl-2-nitrophenyl 3-nitro-2-methyl benzoate, (I), was synthesized in order to complement the structural information on the formyl nitro aryl benzoates presented in earlier jobs from our research group: 4-formyl-2-nitrophenyl 4-bromo benzoate (F4BrB) (Moreno-Fuquen et al., 2013a) and 4-formyl-2-nitrophenyl 4-cloro benzoate (F2ClB) (Moreno-Fuquen et al., 2013b). The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles show marked similarity with their homologues F4BrB and F2ClB. The benzene rings of (I) form a dihedral angle of 4.96 (3)°, a value which is quite different from the values reported for F4BrB [62.90 (7)°] and F2ClB [19.55 (9)°] similar systems. This planar arrangement may be motivated by the intermolecular interaction between the methyl group and the nitro group of the formyl ring. The ester group C8-O2-C7(O1)-C1 is planar [r.m.s. deviation= 0.0484 Å] and is twisted away from the formyl nitro aryl and benzoate rings by 46.61 (5)° and 49.93 (5)° respectively. The nitro groups form dihedral angles with the adjacent benzene rings of 37.62 (5)° for O3-N1-O4 and 39.67 (5)° for O6-N2-O7. The crystal packing shows no classical hydrogen bonds. The molecules are packed forming weak C-H···O intermolecular interactions in one-dimensional helical chains which propagates along [010] (see Fig. 2]. The C10 atom at (x,y,z) acts as hydrogen-bond donor to formyl atom O5 at (-x-1,+y-1/2,-z+1/2+1) and C12 atom at (x,y,z) acts as hydrogen-bond donor to nitro O4 atom at (x,+y+1,+z) (see Table 1; Nardelli, 1995). The combination of these two contacts generate edge-fused rings R33(15) (Etter, 1990) along [010].

For similar formyl nitro aryl benzoate compounds, see: Moreno-Fuquen et al. (2013a,b). For information on hydrogen bonds, see: Nardelli (1995). For hydrogen-bond graph-sets motifs, see: Etter (1990).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of helical chains which running along [010]. Symmetry code: (i) -x-1,+y-1/2,-z+1/2+1; (ii) x,+y+1,+z.
4-Formyl-2-nitrophenyl 3-nitro-2-methylbenzoate top
Crystal data top
C15H10N2O7F(000) = 680
Mr = 330.25Dx = 1.620 Mg m3
Monoclinic, P21/cMelting point: 398(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.7162 (5) ÅCell parameters from 6641 reflections
b = 8.0719 (2) Åθ = 3.0–29.5°
c = 14.1156 (5) ŵ = 0.13 mm1
β = 110.877 (4)°T = 123 K
V = 1353.76 (8) Å3Block, pale-yellow
Z = 40.35 × 0.30 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2706 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 29.5°, θmin = 3.0°
ω scansh = 1711
6641 measured reflectionsk = 1110
3319 independent reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.5883P]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C15H10N2O7V = 1353.76 (8) Å3
Mr = 330.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7162 (5) ŵ = 0.13 mm1
b = 8.0719 (2) ÅT = 123 K
c = 14.1156 (5) Å0.35 × 0.30 × 0.20 mm
β = 110.877 (4)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2706 reflections with I > 2σ(I)
6641 measured reflectionsRint = 0.020
3319 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
3319 reflectionsΔρmin = 0.33 e Å3
222 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02565 (8)0.82147 (13)0.96445 (8)0.0165 (2)
O20.00317 (8)0.97501 (13)0.83848 (7)0.0149 (2)
O30.14515 (10)0.70025 (14)0.76210 (9)0.0245 (3)
O40.27370 (10)0.70420 (14)0.83088 (10)0.0283 (3)
O50.44451 (10)1.42910 (14)0.70371 (9)0.0253 (3)
O60.32188 (10)0.37636 (14)0.95119 (9)0.0256 (3)
O70.45585 (9)0.47549 (15)1.08175 (8)0.0246 (3)
N10.20884 (10)0.77299 (16)0.79668 (10)0.0187 (3)
N20.36621 (10)0.48942 (16)1.01005 (9)0.0176 (3)
C10.15564 (12)0.83319 (18)0.94637 (10)0.0137 (3)
C20.22771 (12)0.96879 (18)0.95875 (11)0.0164 (3)
H20.19731.07740.94450.020*
C30.34317 (13)0.94602 (19)0.99163 (11)0.0186 (3)
H30.39211.03861.00170.022*
C40.38658 (12)0.78678 (19)1.00971 (11)0.0178 (3)
H40.46560.76891.03330.021*
C50.31330 (12)0.65466 (18)0.99296 (11)0.0150 (3)
C60.19555 (12)0.66950 (18)0.96223 (10)0.0136 (3)
C70.03361 (12)0.87005 (17)0.92016 (10)0.0136 (3)
C80.11021 (12)1.04391 (18)0.81185 (10)0.0131 (3)
C90.20853 (12)0.95402 (18)0.79489 (10)0.0142 (3)
C100.31127 (12)1.03321 (18)0.77283 (10)0.0149 (3)
H100.37710.97130.76600.018*
C110.31668 (12)1.20438 (18)0.76078 (10)0.0149 (3)
C120.21895 (12)1.29445 (18)0.77370 (11)0.0159 (3)
H120.22311.41100.76380.019*
C130.11619 (12)1.21503 (18)0.80080 (11)0.0154 (3)
H130.04951.27750.81190.018*
C140.42791 (13)1.2872 (2)0.73352 (11)0.0182 (3)
H140.4883 (14)1.218 (2)0.7426 (12)0.016 (4)*
C150.11801 (13)0.52338 (19)0.94709 (12)0.0192 (3)
H15A0.04040.56250.92960.029*
H15B0.13960.45831.00970.029*
H15C0.12340.45400.89200.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0153 (5)0.0170 (5)0.0176 (5)0.0003 (4)0.0063 (4)0.0016 (4)
O20.0115 (5)0.0170 (5)0.0163 (5)0.0026 (4)0.0049 (4)0.0043 (4)
O30.0241 (6)0.0169 (6)0.0302 (6)0.0036 (5)0.0069 (5)0.0063 (5)
O40.0231 (6)0.0180 (6)0.0434 (7)0.0044 (5)0.0113 (5)0.0059 (5)
O50.0229 (6)0.0217 (6)0.0284 (6)0.0090 (5)0.0058 (5)0.0012 (5)
O60.0252 (6)0.0184 (6)0.0321 (6)0.0025 (5)0.0090 (5)0.0027 (5)
O70.0176 (6)0.0309 (7)0.0229 (6)0.0082 (5)0.0041 (5)0.0080 (5)
N10.0156 (6)0.0138 (6)0.0220 (7)0.0015 (5)0.0009 (5)0.0005 (5)
N20.0155 (6)0.0202 (7)0.0188 (6)0.0041 (5)0.0082 (5)0.0040 (5)
C10.0130 (7)0.0165 (7)0.0119 (6)0.0006 (6)0.0048 (5)0.0002 (5)
C20.0177 (7)0.0148 (7)0.0172 (7)0.0006 (6)0.0070 (6)0.0001 (6)
C30.0160 (7)0.0184 (8)0.0210 (7)0.0037 (6)0.0063 (6)0.0015 (6)
C40.0124 (7)0.0224 (8)0.0186 (7)0.0005 (6)0.0054 (6)0.0004 (6)
C50.0153 (7)0.0163 (7)0.0136 (7)0.0037 (6)0.0055 (5)0.0022 (6)
C60.0127 (7)0.0164 (7)0.0118 (6)0.0000 (6)0.0045 (5)0.0004 (5)
C70.0132 (7)0.0115 (7)0.0145 (7)0.0009 (5)0.0031 (5)0.0010 (5)
C80.0117 (7)0.0158 (7)0.0117 (6)0.0026 (5)0.0043 (5)0.0009 (5)
C90.0161 (7)0.0103 (7)0.0153 (7)0.0009 (5)0.0045 (5)0.0001 (5)
C100.0126 (7)0.0166 (7)0.0148 (7)0.0013 (6)0.0041 (5)0.0000 (6)
C110.0151 (7)0.0163 (7)0.0120 (7)0.0022 (6)0.0032 (5)0.0011 (5)
C120.0187 (7)0.0123 (7)0.0156 (7)0.0016 (6)0.0047 (6)0.0005 (5)
C130.0151 (7)0.0152 (7)0.0151 (7)0.0026 (6)0.0045 (5)0.0004 (5)
C140.0161 (7)0.0204 (8)0.0164 (7)0.0026 (6)0.0038 (6)0.0037 (6)
C150.0162 (7)0.0152 (8)0.0263 (8)0.0004 (6)0.0078 (6)0.0022 (6)
Geometric parameters (Å, º) top
O1—C71.2034 (17)C4—H40.9500
O2—C71.3717 (17)C5—C61.408 (2)
O2—C81.3923 (16)C6—C151.503 (2)
O3—N11.2333 (16)C8—C131.389 (2)
O4—N11.2269 (16)C8—C91.391 (2)
O5—C141.2123 (19)C9—C101.387 (2)
O6—N21.2276 (17)C10—C111.391 (2)
O7—N21.2305 (16)C10—H100.9500
N1—C91.4615 (19)C11—C121.395 (2)
N2—C51.4745 (19)C11—C141.486 (2)
C1—C21.398 (2)C12—C131.381 (2)
C1—C61.405 (2)C12—H120.9500
C1—C71.4913 (19)C13—H130.9500
C2—C31.385 (2)C14—H140.992 (17)
C2—H20.9500C15—H15A0.9800
C3—C41.386 (2)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C4—C51.380 (2)
C7—O2—C8118.77 (11)C13—C8—C9119.32 (13)
O4—N1—O3124.66 (13)C13—C8—O2115.89 (13)
O4—N1—C9117.76 (13)C9—C8—O2124.79 (13)
O3—N1—C9117.57 (12)C10—C9—C8121.03 (13)
O6—N2—O7123.78 (13)C10—C9—N1117.17 (13)
O6—N2—C5119.28 (12)C8—C9—N1121.78 (13)
O7—N2—C5116.88 (13)C9—C10—C11119.15 (14)
C2—C1—C6122.21 (13)C9—C10—H10120.4
C2—C1—C7116.91 (13)C11—C10—H10120.4
C6—C1—C7120.81 (13)C10—C11—C12119.93 (14)
C3—C2—C1120.48 (14)C10—C11—C14118.67 (14)
C3—C2—H2119.8C12—C11—C14121.39 (14)
C1—C2—H2119.8C13—C12—C11120.34 (14)
C2—C3—C4119.32 (14)C13—C12—H12119.8
C2—C3—H3120.3C11—C12—H12119.8
C4—C3—H3120.3C12—C13—C8120.07 (14)
C5—C4—C3118.99 (14)C12—C13—H13120.0
C5—C4—H4120.5C8—C13—H13120.0
C3—C4—H4120.5O5—C14—C11123.16 (15)
C4—C5—C6124.48 (14)O5—C14—H14121.8 (10)
C4—C5—N2115.48 (13)C11—C14—H14115.0 (10)
C6—C5—N2120.04 (13)C6—C15—H15A109.5
C1—C6—C5114.42 (13)C6—C15—H15B109.5
C1—C6—C15122.28 (13)H15A—C15—H15B109.5
C5—C6—C15123.30 (13)C6—C15—H15C109.5
O1—C7—O2123.29 (13)H15A—C15—H15C109.5
O1—C7—C1126.50 (13)H15B—C15—H15C109.5
O2—C7—C1110.16 (12)
C6—C1—C2—C32.7 (2)C6—C1—C7—O2131.49 (13)
C7—C1—C2—C3174.41 (13)C7—O2—C8—C13128.15 (13)
C1—C2—C3—C41.6 (2)C7—O2—C8—C952.74 (18)
C2—C3—C4—C51.0 (2)C13—C8—C9—C103.7 (2)
C3—C4—C5—C62.8 (2)O2—C8—C9—C10177.22 (12)
C3—C4—C5—N2177.60 (13)C13—C8—C9—N1174.58 (13)
O6—N2—C5—C4139.54 (14)O2—C8—C9—N14.5 (2)
O7—N2—C5—C437.86 (17)O4—N1—C9—C1037.16 (19)
O6—N2—C5—C640.80 (19)O3—N1—C9—C10141.65 (13)
O7—N2—C5—C6141.79 (14)O4—N1—C9—C8144.49 (14)
C2—C1—C6—C51.0 (2)O3—N1—C9—C836.7 (2)
C7—C1—C6—C5175.99 (12)C8—C9—C10—C114.4 (2)
C2—C1—C6—C15178.84 (13)N1—C9—C10—C11173.94 (13)
C7—C1—C6—C154.2 (2)C9—C10—C11—C121.8 (2)
C4—C5—C6—C11.7 (2)C9—C10—C11—C14177.84 (13)
N2—C5—C6—C1178.63 (12)C10—C11—C12—C131.5 (2)
C4—C5—C6—C15178.42 (14)C14—C11—C12—C13178.86 (13)
N2—C5—C6—C151.2 (2)C11—C12—C13—C82.3 (2)
C8—O2—C7—O17.4 (2)C9—C8—C13—C120.3 (2)
C8—O2—C7—C1170.43 (12)O2—C8—C13—C12179.48 (12)
C2—C1—C7—O1126.35 (16)C10—C11—C14—O5166.20 (14)
C6—C1—C7—O150.8 (2)C12—C11—C14—O513.4 (2)
C2—C1—C7—O251.37 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.952.483.3457 (18)152
C12—H12···O4ii0.952.713.5321 (19)145
Symmetry codes: (i) x1, y1/2, z+3/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.952.483.3457 (18)152.1
C12—H12···O4ii0.952.713.5321 (19)145.2
Symmetry codes: (i) x1, y1/2, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013a). Acta Cryst. E69, o793.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Hernandez, G., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013b). Acta Cryst. E69, o1806.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds