organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Cyano-4-{3-[1-(2-hy­dr­oxy­eth­yl)-3,3-di­methyl-1,3-di­hydro­indol-2-yl­­idene]prop-2-en­yl}-5,5-di­methyl-5H-furan-2-yl­­idene)malono­nitrile

aCallaghan Innovation, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@callaghaninnovation.govt.nz

(Received 20 November 2013; accepted 8 December 2013; online 14 December 2013)

The title compound, C25H24N4O2, adopts a cisoid configuration and has twofold orientational disorder of the 2-hy­droxy­ethyl group. The mol­ecule is twisted from planarity so that the dihedral angle between the terminating indol-2-yl­idene and the furan-2-yl­idene moiety mean planes is 12.75 (7)°. Conformational disorder occurs at the indol-2-yl­idene N atom, which results in two orientations for the hy­droxy­ethyl group [occupancy ratio = 0.896 (2):0.104 (2)], and the hy­droxy O atom of the 2-hy­droxy­ethyl group is located over three sites [occupancy ratio = 0.548 (2):0.348 (2):0.104 (2)]. An intra­molecular C—H⋯O hydrogen bond involving the lowest occupancy hy­droxy O atom is observed. In the crystal, the mol­ecules pack in parallel dimeric sheets about centres of symmetry, utilizing O—H⋯N(cyano), C—H⋯N(cyano) and O—H⋯O hydrogen bonds, in two sets parallel to (02-1) and (021) planes.

Related literature

For general background to organic non-linear optical (NLO) materials and details of similar structures, see: Kay et al. (2004[Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321-1330.]); Dalton et al. (1999[Dalton, L. R., Steier, W. H., Robinson, B. H., Zhang, C., Ren, A. & Garner, S. (1999). J. Mater. Chem. 9, 1905-1920.]); Harper et al. (1999[Harper, A. W., Mao, S. S. H., Ra, Y., Zhang, C., Zhu, J. & Dalton, L. R. (1999). Chem. Mater. 11, 2886-2891.]); Kay et al. (2001a[Kay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Barnes, T. H., McKinnie, I. T. & Wyss, C. P. (2001a). J. Mater. Chem. 11, 996-1002.],b[Kay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Wyss, C. P. & Griffin, S. M. (2001b). J. Mater. Chem. 11, 2271-2281.]); Bhuiyan et al. (2011[Bhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 272-283.]); Gainsford et al. (2011[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2011). Acta Cryst. E67, o3026.]); Ma et al. (2002[Ma, H., Jen, A. K.-Y. & Dalton, L. R. (2002). Adv. Mater. 14, 1339-1365.]); Mao et al. (1998[Mao, S. S. H., Ra, Y., Guo, L., Zhang, C. & Dalton, L. R. (1998). Chem. Mater. 10, 146-155.]); Smith et al. (2010[Smith, G. J., Middleton, A. P., Clarke, D. J., Teshome, A., Kay, A. J. & Bhuiyan, M. D. H. (2010). Opt. Mater. 32, 1237-1243.]); Teshome et al. (2009[Teshome, A., Kay, A. J., Woolhouse, A. D., Clays, K., Asselberghs, I. & Smith, G. J. (2009). Opt. Mater. 31, 575-582.]). For the synthesis of the title compound, see: Bhuiyan et al. (2011[Bhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 272-283.]). For the definition of bond-length alternation (BLA), see: Marder et al. (1993[Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524-2526.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of the Cambridge Structural Database (CSD), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C25H24N4O2

  • Mr = 412.48

  • Monoclinic, P 21 /n

  • a = 9.4276 (4) Å

  • b = 21.5486 (9) Å

  • c = 11.1178 (5) Å

  • β = 103.916 (2)°

  • V = 2192.31 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.65 × 0.31 × 0.13 mm

Data collection
  • Bruker–Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.629, Tmax = 0.746

  • 50145 measured reflections

  • 6431 independent reflections

  • 4754 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.155

  • S = 1.03

  • 6431 reflections

  • 311 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A1—H211⋯N3i 0.85 (3) 2.17 (4) 2.925 (3) 148 (6)
O2A2—H212⋯O2A1ii 0.84 2.27 2.939 (4) 137
C8—H8B⋯N1iii 0.98 2.62 3.501 (2) 150
C9—H9C⋯N3iv 0.98 2.60 3.539 (2) 160
C13—H13⋯O2B 0.95 2.57 3.299 (11) 134
C20—H20⋯N2v 0.95 2.65 3.442 (2) 141
C24A—H24A⋯N2v 0.99 2.59 3.555 (2) 166
C25A—H25B⋯N1i 0.99 2.55 3.348 (3) 137
C25B—H25E⋯N2v 0.99 2.45 3.420 (17) 167
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2012, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Organic nonlinear optical (NLO) chromophores containing donor (D) and acceptor (A) units have been widely reported in the literature as the enabling materials for a range of photonic devices (Dalton et al., 1999; Mao et al., 1998; Harper et al., 1999; Ma et al., 2002). We have previously reported a synthetic methodology (Kay et al., 2001a; Kay et al., 2001b, Teshome et al., 2009; Kay et al., 2004; Smith et al., 2010) that allows entry to a number of high figure-of-merit NLO chromophores with aromatisable donors (e.g. 1,4-dihydropyridinylidene, 1,4-dihydroquinolinylidene), and containing the powerful acceptor 4,5,5-trimethyl-3-cyano-2(5H)-furanylidenepropane dinitrile (TCF). While this approach allowed for ease of synthesis and for a controlled increase in the extent of conjugation in the molecules, the resultant 'parent' merocyanines are prone to significant amounts of aggregation (Teshome et al., 2009). As a continuation of this work, we have further developed our synthetic methodology, and extend the series to include chromophores with a non-aromatisable indoline donor group. Here we have synthesized a new NLO chromophore containing an indoline donor, an acceptor based on the well known moiety (2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malononitrile), hereafter CTF, and a conjugated chain of three carbon atoms between the donor and acceptor. The chromophore also contains an hydroxyethyl substituent on the donor nitrogen atom which will allow for covalent attachment of the molecule to a polymer backbone, if needed, in the future.

The asymmetric unit (Figure 1) illustrates the cisoid configuration as compared with the transoid configurations found in the closely related 2-(3-cyano-4-{5-[1-(2-hydroxy-ethyl)-3,3-dimethyl-1,3-dihydro- indol-2-ylidene]-penta-1,3-dienyl}-5,5-dimethyl-5H-furan-2-ylidene) -malononitrile (hereafter TMIPNS, Bhuiyan et al., 2011) and 2-(3-cyano-4-{7-[1-(2-hydroxyethyl)-3,3-dimethylindolin-2-ylidene]hepta-1,3,5-trienyl}-5,5-dimethyl-2,5-dihydrofuran-2-ylidene)malononitrile (Gainsford et al., 2011). The bond length alternation value, BLA (Marder et al., 1993) is 0.011 Å compared with 0.024 Å in related compound TMIPNS. The molecule is twisted from planarity so that the dihedral angle between the terminating indol-2-ylidene and furan-2-ylidene moiety planes is 12.75 (7)%. This twist is less that in TMIPNS (twisted ~19°) but both molecules bend into a similar shape.

The indol-2-ylidene moieties (major conformation) have planar 5- and 6-membered rings that subtend small angles, here 1.75 (8)°, compared with 1.95 (11)° in TMIPNS. The planes through the planar entities (indol-2-ylidene ring, polyene atoms (C11–C13) & five membered ring (C4–C7,O1) are twisted progressively by 9.13 (17) & 5.72 (17)°. These values compare with 8.66 (19) & 9.2 (2)° in TMIPNS, meaning the polyene chain is slightly more coplanar here with the 5-membered furan-2-ylidene ring.

The molecules pack in parallel dimeric sheets about centres of symmetry utilizing an OH···N(cyano) hydrogen bond (Figure 2) in two sets parallel to (021) and (021) planes with principal motif R22(26) (Bernstein et al., 1995). Other weaker interactions CH···N(cyano), and also involving the disordered hydroxy atoms (OH···O) are observed (Table 1).

Related literature top

For general background to organic non-linear optical (NLO) materials and details of similar structures, see: Kay et al. (2004); Dalton et al. (1999); Harper et al. (1999); Kay et al. (2001a,b); Bhuiyan et al. (2011); Gainsford et al. (2011); Ma et al. (2002); Mao et al. (1998); Smith et al. (2010); Teshome et al. (2009). For the synthesis of the title compound, see: Bhuiyan et al. (2011). For the definition of bond-length alternation (BLA), see: Marder et al. (1993). For hydrogen-bond motifs, see: Bernstein et al. (1995). For details of the Cambridge Structural Database (CSD), see: Allen (2002).

Experimental top

We have synthesized the title compound by following the procedure in Bhuiyan et al. (2011). Single crystals were grown by slow ether diffusion into a dichloromethane solution of the compound.

Refinement top

A total of 4 reflections within 2θ 55° were omitted as being partially screened by the backstop. The 5-membered C14—C16,N4 ring was disordered over two sites [0.896 (2):0.104 (2)], giving two major orientations for the 2-hydroxy-ethyl substituents. The oxygen atoms of the hydroxy group on the major conformation (labelled A) were also disordered over two sites; a restraint was applied (SUMP) to ensure total occupancy of the hydroxy OH atoms (3 sites) was unity. To ensure reasonable connectivity, C25A–H and C25A–O bond lengths were restrained to be the same, and all hydroxy O2–H bonds were fixed at 0.84 Å. The hydroxy H atoms were located and refined with Uiso = 1.5Ueq(O). Terminal atoms on the 2-hydroxy ethyl substituents except O2A1 were refined with isotropic linked thermal parameters. Hydrogen atoms bound to carbon were constrained to their expected geometries (C—H 0.98, 0.99 Å): all methyl and tertiary H atoms were refined with Uiso 1.5 or 1.2 times respectively that of the Ueq of their parent atom.

Structure description top

Organic nonlinear optical (NLO) chromophores containing donor (D) and acceptor (A) units have been widely reported in the literature as the enabling materials for a range of photonic devices (Dalton et al., 1999; Mao et al., 1998; Harper et al., 1999; Ma et al., 2002). We have previously reported a synthetic methodology (Kay et al., 2001a; Kay et al., 2001b, Teshome et al., 2009; Kay et al., 2004; Smith et al., 2010) that allows entry to a number of high figure-of-merit NLO chromophores with aromatisable donors (e.g. 1,4-dihydropyridinylidene, 1,4-dihydroquinolinylidene), and containing the powerful acceptor 4,5,5-trimethyl-3-cyano-2(5H)-furanylidenepropane dinitrile (TCF). While this approach allowed for ease of synthesis and for a controlled increase in the extent of conjugation in the molecules, the resultant 'parent' merocyanines are prone to significant amounts of aggregation (Teshome et al., 2009). As a continuation of this work, we have further developed our synthetic methodology, and extend the series to include chromophores with a non-aromatisable indoline donor group. Here we have synthesized a new NLO chromophore containing an indoline donor, an acceptor based on the well known moiety (2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malononitrile), hereafter CTF, and a conjugated chain of three carbon atoms between the donor and acceptor. The chromophore also contains an hydroxyethyl substituent on the donor nitrogen atom which will allow for covalent attachment of the molecule to a polymer backbone, if needed, in the future.

The asymmetric unit (Figure 1) illustrates the cisoid configuration as compared with the transoid configurations found in the closely related 2-(3-cyano-4-{5-[1-(2-hydroxy-ethyl)-3,3-dimethyl-1,3-dihydro- indol-2-ylidene]-penta-1,3-dienyl}-5,5-dimethyl-5H-furan-2-ylidene) -malononitrile (hereafter TMIPNS, Bhuiyan et al., 2011) and 2-(3-cyano-4-{7-[1-(2-hydroxyethyl)-3,3-dimethylindolin-2-ylidene]hepta-1,3,5-trienyl}-5,5-dimethyl-2,5-dihydrofuran-2-ylidene)malononitrile (Gainsford et al., 2011). The bond length alternation value, BLA (Marder et al., 1993) is 0.011 Å compared with 0.024 Å in related compound TMIPNS. The molecule is twisted from planarity so that the dihedral angle between the terminating indol-2-ylidene and furan-2-ylidene moiety planes is 12.75 (7)%. This twist is less that in TMIPNS (twisted ~19°) but both molecules bend into a similar shape.

The indol-2-ylidene moieties (major conformation) have planar 5- and 6-membered rings that subtend small angles, here 1.75 (8)°, compared with 1.95 (11)° in TMIPNS. The planes through the planar entities (indol-2-ylidene ring, polyene atoms (C11–C13) & five membered ring (C4–C7,O1) are twisted progressively by 9.13 (17) & 5.72 (17)°. These values compare with 8.66 (19) & 9.2 (2)° in TMIPNS, meaning the polyene chain is slightly more coplanar here with the 5-membered furan-2-ylidene ring.

The molecules pack in parallel dimeric sheets about centres of symmetry utilizing an OH···N(cyano) hydrogen bond (Figure 2) in two sets parallel to (021) and (021) planes with principal motif R22(26) (Bernstein et al., 1995). Other weaker interactions CH···N(cyano), and also involving the disordered hydroxy atoms (OH···O) are observed (Table 1).

For general background to organic non-linear optical (NLO) materials and details of similar structures, see: Kay et al. (2004); Dalton et al. (1999); Harper et al. (1999); Kay et al. (2001a,b); Bhuiyan et al. (2011); Gainsford et al. (2011); Ma et al. (2002); Mao et al. (1998); Smith et al. (2010); Teshome et al. (2009). For the synthesis of the title compound, see: Bhuiyan et al. (2011). For the definition of bond-length alternation (BLA), see: Marder et al. (1993). For hydrogen-bond motifs, see: Bernstein et al. (1995). For details of the Cambridge Structural Database (CSD), see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2012 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit (Farrugia, 2012); displacement ellipsoids are shown at the 30% probability level. Only the major conformation (A) of ring disorder involving atoms N4,C24,C25 & O2 are shown for clarity.
[Figure 2] Fig. 2. Packing diagram (Mercury; Macrae et al., 2006) of the unit cell; showing important hydrogen bonding as blue lines. Hydrogen atoms are omitted for clarity. The disordered atom O2A1 (see text) is shown labeled as O2; symmetry operation: (i) 1 - x,1 - y,-z.
2-(3-Cyano-4-{3-[1-(2-hydroxyethyl)-3,3-dimethyl-1,3-dihydroindol-2-ylidene]prop-2-enyl}-5,5-dimethyl-5H-furan-2-ylidene)malononitrile top
Crystal data top
C25H24N4O2F(000) = 872
Mr = 412.48Dx = 1.250 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9996 reflections
a = 9.4276 (4) Åθ = 2.4–30.0°
b = 21.5486 (9) ŵ = 0.08 mm1
c = 11.1178 (5) ÅT = 120 K
β = 103.916 (2)°Block, blue
V = 2192.31 (16) Å30.65 × 0.31 × 0.13 mm
Z = 4
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
6431 independent reflections
Radiation source: fine-focus sealed tube4754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.333 pixels mm-1θmax = 30.2°, θmin = 2.7°
φ and ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 3030
Tmin = 0.629, Tmax = 0.746l = 1515
50145 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.0008P]
where P = (Fo2 + 2Fc2)/3
6431 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.38 e Å3
8 restraintsΔρmin = 0.52 e Å3
Crystal data top
C25H24N4O2V = 2192.31 (16) Å3
Mr = 412.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4276 (4) ŵ = 0.08 mm1
b = 21.5486 (9) ÅT = 120 K
c = 11.1178 (5) Å0.65 × 0.31 × 0.13 mm
β = 103.916 (2)°
Data collection top
Bruker–Nonius APEXII CCD area-detector
diffractometer
6431 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4754 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.746Rint = 0.041
50145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0568 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
6431 reflectionsΔρmin = 0.52 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.63766 (11)0.63737 (5)0.49304 (11)0.0335 (2)
N10.14137 (16)0.57222 (8)0.39517 (18)0.0514 (4)
N20.36701 (16)0.73490 (7)0.56984 (15)0.0421 (3)
N30.34340 (16)0.48266 (8)0.24877 (17)0.0518 (4)
C10.25102 (16)0.59701 (7)0.42748 (15)0.0344 (3)
C20.38498 (15)0.62889 (7)0.46900 (14)0.0302 (3)
C30.37879 (16)0.68746 (7)0.52649 (14)0.0319 (3)
C40.68760 (15)0.55350 (6)0.37397 (13)0.0273 (3)
C50.75963 (14)0.60753 (7)0.45254 (14)0.0281 (3)
C60.51422 (15)0.60667 (7)0.44612 (13)0.0282 (3)
C70.53982 (15)0.55468 (7)0.37537 (13)0.0283 (3)
C80.81902 (17)0.65591 (7)0.37893 (16)0.0361 (3)
H8A0.74220.66830.30670.054*
H8B0.90180.63850.35110.054*
H8C0.85160.69230.43130.054*
C90.87158 (16)0.58711 (7)0.56768 (14)0.0335 (3)
H9A0.90870.62350.61840.050*
H9B0.95270.56610.54350.050*
H9C0.82580.55850.61560.050*
C100.42912 (16)0.51515 (8)0.30741 (15)0.0342 (3)
C110.76702 (15)0.51590 (7)0.31209 (14)0.0300 (3)
H110.86870.52390.32530.036*
C120.70918 (15)0.46773 (7)0.23262 (13)0.0288 (3)
H120.61010.45640.22530.035*
C130.78859 (16)0.43509 (7)0.16310 (14)0.0324 (3)
H130.88940.44470.17570.039*
C140.73222 (15)0.38957 (7)0.07677 (13)0.0289 (3)
C150.57736 (15)0.36373 (6)0.03954 (13)0.0260 (3)
C160.58984 (16)0.31748 (6)0.05962 (13)0.0280 (3)
C170.48672 (18)0.27866 (7)0.13049 (15)0.0358 (3)
H170.39020.27700.11890.043*
C180.5276 (2)0.24182 (8)0.21974 (16)0.0418 (4)
H180.45750.21530.27050.050*
C190.6681 (2)0.24341 (9)0.23514 (16)0.0451 (4)
H190.69320.21810.29690.054*
C200.7737 (2)0.28110 (9)0.16259 (16)0.0445 (4)
H200.87130.28170.17170.053*
C210.72999 (17)0.31800 (8)0.07588 (14)0.0344 (3)
C220.46596 (17)0.41387 (8)0.01844 (16)0.0374 (3)
H22A0.50090.43600.08270.056*
H22B0.45430.44320.04580.056*
H22C0.37170.39430.05540.056*
C230.5323 (2)0.33128 (8)0.14723 (16)0.0458 (4)
H23A0.44040.30890.11580.069*
H23B0.51900.36230.20800.069*
H23C0.60870.30190.18680.069*
N4A0.81429 (15)0.35927 (7)0.01028 (14)0.0290 (3)0.896 (2)
C24A0.96803 (18)0.37120 (9)0.01489 (17)0.0356 (4)0.896 (2)
H24A1.01800.33150.00760.043*0.896 (2)
H24B1.01550.39010.09570.043*0.896 (2)
C25A0.9838 (3)0.41401 (13)0.0880 (3)0.0596 (6)*0.896 (2)
H25A1.08900.41830.08560.072*0.548 (2)
H25B0.93580.39460.16820.072*0.548 (2)
O2A10.9263 (3)0.47186 (17)0.0833 (3)0.0675 (9)0.548 (2)
H2110.844 (4)0.469 (3)0.136 (5)0.101*0.548 (2)
O2A21.1107 (5)0.4305 (2)0.0912 (4)0.0596 (6)*0.348 (2)
H2121.139 (9)0.447 (4)0.021 (4)0.089*0.348 (2)
H25C0.959 (8)0.386 (3)0.161 (5)0.089*0.348 (2)
H25D0.905 (8)0.444 (4)0.120 (10)0.089*0.348 (2)
N4B0.7997 (16)0.3841 (8)0.0305 (15)0.0384 (19)*0.104 (2)
C24B0.9155 (19)0.4140 (8)0.0540 (16)0.0384 (19)*0.104 (2)
H24C0.91530.45700.02260.046*0.104 (2)
H24D0.90110.41670.14510.046*0.104 (2)
C25B1.0719 (17)0.3854 (8)0.0016 (12)0.0384 (19)*0.104 (2)
H25E1.07320.34170.02580.046*0.104 (2)
H25F1.14550.40860.03070.046*0.104 (2)
O2B1.1083 (12)0.3875 (5)0.1268 (10)0.0384 (19)*0.104 (2)
H2B1.06760.41820.15090.058*0.104 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (5)0.0339 (5)0.0413 (6)0.0018 (4)0.0080 (4)0.0115 (5)
N10.0296 (7)0.0499 (9)0.0738 (11)0.0026 (6)0.0107 (7)0.0096 (8)
N20.0428 (8)0.0404 (8)0.0472 (8)0.0028 (6)0.0186 (6)0.0045 (6)
N30.0327 (7)0.0672 (11)0.0592 (10)0.0116 (7)0.0184 (7)0.0276 (8)
C10.0285 (7)0.0352 (8)0.0401 (8)0.0078 (6)0.0094 (6)0.0005 (6)
C20.0278 (7)0.0325 (7)0.0312 (7)0.0042 (5)0.0086 (5)0.0001 (6)
C30.0293 (7)0.0372 (8)0.0315 (7)0.0037 (6)0.0119 (6)0.0022 (6)
C40.0252 (6)0.0279 (6)0.0273 (7)0.0021 (5)0.0032 (5)0.0018 (5)
C50.0221 (6)0.0286 (7)0.0334 (7)0.0027 (5)0.0063 (5)0.0055 (5)
C60.0261 (6)0.0304 (7)0.0276 (7)0.0025 (5)0.0053 (5)0.0002 (5)
C70.0249 (6)0.0304 (7)0.0289 (7)0.0016 (5)0.0051 (5)0.0024 (5)
C80.0343 (7)0.0324 (7)0.0415 (9)0.0020 (6)0.0090 (6)0.0018 (6)
C90.0301 (7)0.0350 (8)0.0326 (7)0.0008 (6)0.0020 (6)0.0045 (6)
C100.0265 (7)0.0414 (8)0.0368 (8)0.0010 (6)0.0114 (6)0.0074 (7)
C110.0236 (6)0.0328 (7)0.0325 (7)0.0026 (5)0.0046 (5)0.0055 (6)
C120.0254 (6)0.0308 (7)0.0294 (7)0.0027 (5)0.0050 (5)0.0037 (5)
C130.0250 (6)0.0367 (8)0.0357 (8)0.0010 (5)0.0077 (5)0.0079 (6)
C140.0273 (6)0.0324 (7)0.0276 (7)0.0044 (5)0.0077 (5)0.0021 (5)
C150.0285 (6)0.0254 (6)0.0245 (6)0.0022 (5)0.0072 (5)0.0017 (5)
C160.0342 (7)0.0250 (6)0.0238 (6)0.0051 (5)0.0050 (5)0.0021 (5)
C170.0409 (8)0.0308 (7)0.0334 (8)0.0008 (6)0.0046 (6)0.0004 (6)
C180.0541 (10)0.0329 (8)0.0327 (8)0.0037 (7)0.0003 (7)0.0061 (6)
C190.0556 (10)0.0445 (9)0.0315 (8)0.0129 (8)0.0034 (7)0.0115 (7)
C200.0431 (9)0.0535 (10)0.0363 (9)0.0114 (8)0.0088 (7)0.0128 (8)
C210.0357 (7)0.0380 (8)0.0284 (7)0.0066 (6)0.0059 (6)0.0054 (6)
C220.0326 (7)0.0357 (8)0.0395 (8)0.0093 (6)0.0003 (6)0.0047 (7)
C230.0701 (12)0.0383 (9)0.0351 (9)0.0105 (8)0.0246 (8)0.0007 (7)
N4A0.0284 (7)0.0327 (7)0.0270 (7)0.0038 (5)0.0088 (5)0.0032 (6)
C24A0.0288 (8)0.0422 (9)0.0379 (9)0.0061 (7)0.0121 (7)0.0006 (7)
O2A10.0470 (15)0.081 (2)0.069 (2)0.0066 (14)0.0018 (13)0.0281 (17)
Geometric parameters (Å, º) top
O1—C61.3312 (17)C16—C171.377 (2)
O1—C51.4790 (16)C17—C181.395 (2)
N1—C11.142 (2)C17—H170.9500
N2—C31.147 (2)C18—C191.377 (3)
N3—C101.147 (2)C18—H180.9500
C1—C21.414 (2)C19—C201.384 (3)
C2—C61.3883 (19)C19—H190.9500
C2—C31.422 (2)C20—C211.386 (2)
C4—C111.3922 (19)C20—H200.9500
C4—C71.3972 (19)C21—N4A1.405 (2)
C4—C51.5148 (19)C21—N4B1.599 (16)
C5—C81.513 (2)C22—H22A0.9800
C5—C91.515 (2)C22—H22B0.9800
C6—C71.423 (2)C22—H22C0.9800
C7—C101.416 (2)C23—H23A0.9800
C8—H8A0.9800C23—H23B0.9800
C8—H8B0.9800C23—H23C0.9800
C8—H8C0.9800N4A—C24A1.461 (2)
C9—H9A0.9800C24A—C25A1.504 (3)
C9—H9B0.9800C24A—H24A0.9900
C9—H9C0.9800C24A—H24B0.9900
C11—C121.387 (2)C25A—O2A11.365 (4)
C11—H110.9500C25A—H25A0.9900
C12—C131.389 (2)C25A—H25B0.9900
C12—H120.9500O2A1—H2110.85 (3)
C13—C141.386 (2)O2A2—H2120.84 (3)
C13—H130.9500N4B—C24B1.35 (2)
C14—N4A1.3588 (19)C24B—C25B1.58 (2)
C14—N4B1.485 (16)C24B—H24C0.9900
C14—C151.524 (2)C24B—H24D0.9900
C15—C161.5116 (19)C25B—O2B1.352 (13)
C15—C231.532 (2)C25B—H25E0.9900
C15—C221.536 (2)C25B—H25F0.9900
C16—C211.376 (2)O2B—H2B0.8400
C6—O1—C5109.57 (11)C18—C17—H17120.8
N1—C1—C2178.50 (18)C19—C18—C17120.84 (16)
C6—C2—C1121.79 (14)C19—C18—H18119.6
C6—C2—C3121.41 (14)C17—C18—H18119.6
C1—C2—C3116.61 (13)C18—C19—C20121.40 (16)
N2—C3—C2176.76 (17)C18—C19—H19119.3
C11—C4—C7132.24 (13)C20—C19—H19119.3
C11—C4—C5120.83 (12)C19—C20—C21116.72 (16)
C7—C4—C5106.83 (12)C19—C20—H20121.6
O1—C5—C8106.32 (11)C21—C20—H20121.6
O1—C5—C4103.66 (10)C16—C21—C20122.82 (15)
C8—C5—C4112.99 (13)C16—C21—N4A108.60 (13)
O1—C5—C9107.67 (12)C20—C21—N4A128.55 (15)
C8—C5—C9112.56 (12)C16—C21—N4B107.5 (6)
C4—C5—C9112.85 (12)C20—C21—N4B124.2 (6)
O1—C6—C2118.67 (13)C15—C22—H22A109.5
O1—C6—C7111.07 (12)C15—C22—H22B109.5
C2—C6—C7130.24 (14)H22A—C22—H22B109.5
C4—C7—C10126.29 (13)C15—C22—H22C109.5
C4—C7—C6108.83 (12)H22A—C22—H22C109.5
C10—C7—C6124.56 (13)H22B—C22—H22C109.5
C5—C8—H8A109.5C15—C23—H23A109.5
C5—C8—H8B109.5C15—C23—H23B109.5
H8A—C8—H8B109.5H23A—C23—H23B109.5
C5—C8—H8C109.5C15—C23—H23C109.5
H8A—C8—H8C109.5H23A—C23—H23C109.5
H8B—C8—H8C109.5H23B—C23—H23C109.5
C5—C9—H9A109.5C14—N4A—C21111.86 (13)
C5—C9—H9B109.5C14—N4A—C24A125.91 (14)
H9A—C9—H9B109.5C21—N4A—C24A121.93 (13)
C5—C9—H9C109.5N4A—C24A—C25A111.10 (17)
H9A—C9—H9C109.5N4A—C24A—H24A109.4
H9B—C9—H9C109.5C25A—C24A—H24A109.4
N3—C10—C7176.92 (17)N4A—C24A—H24B109.4
C12—C11—C4125.07 (13)C25A—C24A—H24B109.4
C12—C11—H11117.5H24A—C24A—H24B108.0
C4—C11—H11117.5O2A1—C25A—C24A114.7 (2)
C11—C12—C13123.45 (13)O2A1—C25A—H25A108.6
C11—C12—H12118.3C24A—C25A—H25A108.6
C13—C12—H12118.3O2A1—C25A—H25B108.6
C14—C13—C12125.12 (13)C24A—C25A—H25B108.6
C14—C13—H13117.4H25A—C25A—H25B107.6
C12—C13—H13117.4C25A—O2A1—H211103 (5)
N4A—C14—C13122.90 (13)C24B—N4B—C14130.0 (13)
C13—C14—N4B116.4 (6)C24B—N4B—C21131.0 (13)
N4A—C14—C15108.08 (12)C14—N4B—C2195.8 (9)
C13—C14—C15129.02 (13)N4B—C24B—C25B117.4 (15)
N4B—C14—C15108.7 (6)N4B—C24B—H24C107.9
C16—C15—C14101.62 (11)C25B—C24B—H24C107.9
C16—C15—C23110.73 (12)N4B—C24B—H24D107.9
C14—C15—C23112.45 (13)C25B—C24B—H24D107.9
C16—C15—C22108.84 (12)H24C—C24B—H24D107.2
C14—C15—C22111.76 (12)O2B—C25B—C24B111.8 (13)
C23—C15—C22111.03 (13)O2B—C25B—H25E109.3
C21—C16—C17119.85 (14)C24B—C25B—H25E109.3
C21—C16—C15109.64 (13)O2B—C25B—H25F109.3
C17—C16—C15130.50 (14)C24B—C25B—H25F109.3
C16—C17—C18118.35 (16)H25E—C25B—H25F107.9
C16—C17—H17120.8C25B—O2B—H2B109.5
C6—O1—C5—C8119.01 (13)C21—C16—C17—C181.6 (2)
C6—O1—C5—C40.33 (15)C15—C16—C17—C18177.65 (14)
C6—O1—C5—C9120.13 (13)C16—C17—C18—C191.1 (2)
C11—C4—C5—O1175.98 (13)C17—C18—C19—C200.4 (3)
C7—C4—C5—O10.88 (15)C18—C19—C20—C211.4 (3)
C11—C4—C5—C861.32 (18)C17—C16—C21—C200.6 (2)
C7—C4—C5—C8115.54 (13)C15—C16—C21—C20178.78 (15)
C11—C4—C5—C967.82 (18)C17—C16—C21—N4A177.63 (14)
C7—C4—C5—C9115.32 (13)C15—C16—C21—N4A2.97 (17)
C5—O1—C6—C2177.33 (13)C17—C16—C21—N4B155.4 (6)
C5—O1—C6—C71.43 (16)C15—C16—C21—N4B24.0 (7)
C1—C2—C6—O1176.75 (14)C19—C20—C21—C160.9 (3)
C3—C2—C6—O18.5 (2)C19—C20—C21—N4A178.75 (17)
C1—C2—C6—C74.8 (3)C19—C20—C21—N4B149.7 (7)
C3—C2—C6—C7169.99 (15)C13—C14—N4A—C21176.54 (15)
C11—C4—C7—C100.9 (3)N4B—C14—N4A—C2191.8 (13)
C5—C4—C7—C10175.45 (15)C15—C14—N4A—C214.19 (18)
C11—C4—C7—C6174.63 (16)C13—C14—N4A—C24A2.7 (3)
C5—C4—C7—C61.72 (16)N4B—C14—N4A—C24A82.0 (13)
O1—C6—C7—C42.04 (17)C15—C14—N4A—C24A177.99 (15)
C2—C6—C7—C4176.53 (15)C16—C21—N4A—C144.59 (19)
O1—C6—C7—C10175.90 (14)C20—C21—N4A—C14177.29 (17)
C2—C6—C7—C102.7 (3)N4B—C21—N4A—C1487.2 (13)
C7—C4—C11—C120.2 (3)C16—C21—N4A—C24A178.68 (15)
C5—C4—C11—C12176.12 (14)C20—C21—N4A—C24A3.2 (3)
C4—C11—C12—C13173.48 (15)N4B—C21—N4A—C24A86.9 (13)
C11—C12—C13—C14175.49 (15)C14—N4A—C24A—C25A96.2 (2)
C12—C13—C14—N4A179.46 (16)C21—N4A—C24A—C25A77.1 (2)
C12—C13—C14—N4B148.2 (7)N4A—C24A—C25A—O2A162.7 (3)
C12—C13—C14—C151.4 (3)N4A—C14—N4B—C24B106 (2)
N4A—C14—C15—C162.18 (15)C13—C14—N4B—C24B5 (2)
C13—C14—C15—C16178.62 (15)C15—C14—N4B—C24B160.6 (16)
N4B—C14—C15—C1627.1 (7)N4A—C14—N4B—C2155.0 (10)
N4A—C14—C15—C23116.24 (15)C13—C14—N4B—C21166.0 (4)
C13—C14—C15—C2363.0 (2)C15—C14—N4B—C2138.5 (9)
N4B—C14—C15—C23145.5 (7)C16—C21—N4B—C24B161.1 (16)
N4A—C14—C15—C22118.10 (14)C20—C21—N4B—C24B7 (2)
C13—C14—C15—C2262.7 (2)N4A—C21—N4B—C24B102 (2)
N4B—C14—C15—C2288.8 (7)C16—C21—N4B—C1438.2 (9)
C14—C15—C16—C210.53 (15)C20—C21—N4B—C14167.5 (3)
C23—C15—C16—C21120.18 (15)N4A—C21—N4B—C1458.5 (10)
C22—C15—C16—C21117.51 (14)C14—N4B—C24B—C25B87 (2)
C14—C15—C16—C17179.84 (15)C21—N4B—C24B—C25B68 (2)
C23—C15—C16—C1760.5 (2)N4B—C24B—C25B—O2B65.8 (19)
C22—C15—C16—C1761.81 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A1—H211···N3i0.85 (3)2.17 (4)2.925 (3)148 (6)
O2A2—H212···O2A1ii0.842.272.939 (4)137
C8—H8B···N1iii0.982.623.501 (2)150
C9—H9C···N3iv0.982.603.539 (2)160
C13—H13···O2B0.952.573.299 (11)134
C20—H20···N2v0.952.653.442 (2)141
C24A—H24A···N2v0.992.593.555 (2)166
C25A—H25B···N1i0.992.553.348 (3)137
C25B—H25E···N2v0.992.453.420 (17)167
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A1—H211···N3i0.85 (3)2.17 (4)2.925 (3)148 (6)
O2A2—H212···O2A1ii0.842.272.939 (4)137
C8—H8B···N1iii0.982.623.501 (2)150.0
C9—H9C···N3iv0.982.603.539 (2)160.3
C13—H13···O2B0.952.573.299 (11)133.5
C20—H20···N2v0.952.653.442 (2)140.8
C24A—H24A···N2v0.992.593.555 (2)165.6
C25A—H25B···N1i0.992.553.348 (3)137.0
C25B—H25E···N2v0.992.453.420 (17)167.4
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+3/2, y1/2, z+1/2.
 

Acknowledgements

We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 272–283.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalton, L. R., Steier, W. H., Robinson, B. H., Zhang, C., Ren, A. & Garner, S. (1999). J. Mater. Chem. 9, 1905–1920.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2011). Acta Cryst. E67, o3026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarper, A. W., Mao, S. S. H., Ra, Y., Zhang, C., Zhu, J. & Dalton, L. R. (1999). Chem. Mater. 11, 2886–2891.  Web of Science CrossRef CAS Google Scholar
First citationKay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Barnes, T. H., McKinnie, I. T. & Wyss, C. P. (2001a). J. Mater. Chem. 11, 996–1002.  Web of Science CSD CrossRef CAS Google Scholar
First citationKay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Wyss, C. P. & Griffin, S. M. (2001b). J. Mater. Chem. 11, 2271–2281.  Web of Science CSD CrossRef CAS Google Scholar
First citationKay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330.  Web of Science CrossRef CAS Google Scholar
First citationMa, H., Jen, A. K.-Y. & Dalton, L. R. (2002). Adv. Mater. 14, 1339–1365.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMao, S. S. H., Ra, Y., Guo, L., Zhang, C. & Dalton, L. R. (1998). Chem. Mater. 10, 146–155.  Web of Science CrossRef CAS Google Scholar
First citationMarder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524–2526.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. J., Middleton, A. P., Clarke, D. J., Teshome, A., Kay, A. J. & Bhuiyan, M. D. H. (2010). Opt. Mater. 32, 1237–1243.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeshome, A., Kay, A. J., Woolhouse, A. D., Clays, K., Asselberghs, I. & Smith, G. J. (2009). Opt. Mater. 31, 575–582.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds