organic compounds
2-(3-Cyano-4-{3-[1-(2-hydroxyethyl)-3,3-dimethyl-1,3-dihydroindol-2-ylidene]prop-2-enyl}-5,5-dimethyl-5H-furan-2-ylidene)malononitrile
aCallaghan Innovation, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@callaghaninnovation.govt.nz
The title compound, C25H24N4O2, adopts a cisoid configuration and has twofold orientational disorder of the 2-hydroxyethyl group. The molecule is twisted from planarity so that the dihedral angle between the terminating indol-2-ylidene and the furan-2-ylidene moiety mean planes is 12.75 (7)°. occurs at the indol-2-ylidene N atom, which results in two orientations for the hydroxyethyl group [occupancy ratio = 0.896 (2):0.104 (2)], and the hydroxy O atom of the 2-hydroxyethyl group is located over three sites [occupancy ratio = 0.548 (2):0.348 (2):0.104 (2)]. An intramolecular C—H⋯O hydrogen bond involving the lowest occupancy hydroxy O atom is observed. In the crystal, the molecules pack in parallel dimeric sheets about centres of symmetry, utilizing O—H⋯N(cyano), C—H⋯N(cyano) and O—H⋯O hydrogen bonds, in two sets parallel to (02-1) and (021) planes.
CCDC reference: 975723
Related literature
For general background to organic non-linear optical (NLO) materials and details of similar structures, see: Kay et al. (2004); Dalton et al. (1999); Harper et al. (1999); Kay et al. (2001a,b); Bhuiyan et al. (2011); Gainsford et al. (2011); Ma et al. (2002); Mao et al. (1998); Smith et al. (2010); Teshome et al. (2009). For the synthesis of the title compound, see: Bhuiyan et al. (2011). For the definition of bond-length alternation (BLA), see: Marder et al. (1993). For hydrogen-bond motifs, see: Bernstein et al. (1995). For details of the Cambridge Structural Database (CSD), see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2012, PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).
Supporting information
CCDC reference: 975723
https://doi.org/10.1107/S1600536813033242/pk2507sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813033242/pk2507Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813033242/pk2507Isup3.cml
We have synthesized the title compound by following the procedure in Bhuiyan et al. (2011). Single crystals were grown by slow ether diffusion into a dichloromethane solution of the compound.
A total of 4 reflections within 2θ 55° were omitted as being partially screened by the backstop. The 5-membered C14—C16,N4 ring was disordered over two sites [0.896 (2):0.104 (2)], giving two major orientations for the 2-hydroxy-ethyl substituents. The oxygen atoms of the hydroxy group on the major conformation (labelled A) were also disordered over two sites; a restraint was applied (SUMP) to ensure total occupancy of the hydroxy OH atoms (3 sites) was unity. To ensure reasonable connectivity, C25A–H and C25A–O bond lengths were restrained to be the same, and all hydroxy O2–H bonds were fixed at 0.84 Å. The hydroxy H atoms were located and refined with Uiso = 1.5Ueq(O). Terminal atoms on the 2-hydroxy ethyl substituents except O2A1 were refined with isotropic linked thermal parameters. Hydrogen atoms bound to carbon were constrained to their expected geometries (C—H 0.98, 0.99 Å): all methyl and tertiary H atoms were refined with Uiso 1.5 or 1.2 times respectively that of the Ueq of their parent atom.
Organic nonlinear optical (NLO) chromophores containing donor (D) and acceptor (A) units have been widely reported in the literature as the enabling materials for a range of photonic devices (Dalton et al., 1999; Mao et al., 1998; Harper et al., 1999; Ma et al., 2002). We have previously reported a synthetic methodology (Kay et al., 2001a; Kay et al., 2001b, Teshome et al., 2009; Kay et al., 2004; Smith et al., 2010) that allows entry to a number of high figure-of-merit NLO chromophores with aromatisable donors (e.g. 1,4-dihydropyridinylidene, 1,4-dihydroquinolinylidene), and containing the powerful acceptor 4,5,5-trimethyl-3-cyano-2(5H)-furanylidenepropane dinitrile (TCF). While this approach allowed for ease of synthesis and for a controlled increase in the extent of conjugation in the molecules, the resultant 'parent' merocyanines are prone to significant amounts of aggregation (Teshome et al., 2009). As a continuation of this work, we have further developed our synthetic methodology, and extend the series to include chromophores with a non-aromatisable indoline donor group. Here we have synthesized a new NLO chromophore containing an indoline donor, an acceptor based on the well known moiety (2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malononitrile), hereafter CTF, and a conjugated chain of three carbon atoms between the donor and acceptor. The chromophore also contains an hydroxyethyl substituent on the donor nitrogen atom which will allow for covalent attachment of the molecule to a polymer backbone, if needed, in the future.
The ~19°) but both molecules bend into a similar shape.
(Figure 1) illustrates the cisoid configuration as compared with the transoid configurations found in the closely related 2-(3-cyano-4-{5-[1-(2-hydroxy-ethyl)-3,3-dimethyl-1,3-dihydro- indol-2-ylidene]-penta-1,3-dienyl}-5,5-dimethyl-5H-furan-2-ylidene) -malononitrile (hereafter TMIPNS, Bhuiyan et al., 2011) and 2-(3-cyano-4-{7-[1-(2-hydroxyethyl)-3,3-dimethylindolin-2-ylidene]hepta-1,3,5-trienyl}-5,5-dimethyl-2,5-dihydrofuran-2-ylidene)malononitrile (Gainsford et al., 2011). The bond length alternation value, BLA (Marder et al., 1993) is 0.011 Å compared with 0.024 Å in related compound TMIPNS. The molecule is twisted from planarity so that the dihedral angle between the terminating indol-2-ylidene and furan-2-ylidene moiety planes is 12.75 (7)%. This twist is less that in TMIPNS (twistedThe indol-2-ylidene moieties (major conformation) have planar 5- and 6-membered rings that subtend small angles, here 1.75 (8)°, compared with 1.95 (11)° in TMIPNS. The planes through the planar entities (indol-2-ylidene ring, polyene atoms (C11–C13) & five membered ring (C4–C7,O1) are twisted progressively by 9.13 (17) & 5.72 (17)°. These values compare with 8.66 (19) & 9.2 (2)° in TMIPNS, meaning the polyene chain is slightly more coplanar here with the 5-membered furan-2-ylidene ring.
The molecules pack in parallel dimeric sheets about centres of symmetry utilizing an O–H···N(cyano) hydrogen bond (Figure 2) in two sets parallel to (021) and (021) planes with principal motif R22(26) (Bernstein et al., 1995). Other weaker interactions C–H···N(cyano), and also involving the disordered hydroxy atoms (O–H···O) are observed (Table 1).
For general background to organic non-linear optical (NLO) materials and details of similar structures, see: Kay et al. (2004); Dalton et al. (1999); Harper et al. (1999); Kay et al. (2001a,b); Bhuiyan et al. (2011); Gainsford et al. (2011); Ma et al. (2002); Mao et al. (1998); Smith et al. (2010); Teshome et al. (2009). For the synthesis of the title compound, see: Bhuiyan et al. (2011). For the definition of bond-length alternation (BLA), see: Marder et al. (1993). For hydrogen-bond motifs, see: Bernstein et al. (1995). For details of the Cambridge Structural Database (CSD), see: Allen (2002).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2012 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).Fig. 1. Molecular structure of the asymmetric unit (Farrugia, 2012); displacement ellipsoids are shown at the 30% probability level. Only the major conformation (A) of ring disorder involving atoms N4,C24,C25 & O2 are shown for clarity. | |
Fig. 2. Packing diagram (Mercury; Macrae et al., 2006) of the unit cell; showing important hydrogen bonding as blue lines. Hydrogen atoms are omitted for clarity. The disordered atom O2A1 (see text) is shown labeled as O2; symmetry operation: (i) 1 - x,1 - y,-z. |
C25H24N4O2 | F(000) = 872 |
Mr = 412.48 | Dx = 1.250 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9996 reflections |
a = 9.4276 (4) Å | θ = 2.4–30.0° |
b = 21.5486 (9) Å | µ = 0.08 mm−1 |
c = 11.1178 (5) Å | T = 120 K |
β = 103.916 (2)° | Block, blue |
V = 2192.31 (16) Å3 | 0.65 × 0.31 × 0.13 mm |
Z = 4 |
Bruker–Nonius APEXII CCD area-detector diffractometer | 6431 independent reflections |
Radiation source: fine-focus sealed tube | 4754 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 8.333 pixels mm-1 | θmax = 30.2°, θmin = 2.7° |
φ and ω scans | h = −13→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −30→30 |
Tmin = 0.629, Tmax = 0.746 | l = −15→15 |
50145 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0688P)2 + 1.0008P] where P = (Fo2 + 2Fc2)/3 |
6431 reflections | (Δ/σ)max < 0.001 |
311 parameters | Δρmax = 0.38 e Å−3 |
8 restraints | Δρmin = −0.52 e Å−3 |
C25H24N4O2 | V = 2192.31 (16) Å3 |
Mr = 412.48 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.4276 (4) Å | µ = 0.08 mm−1 |
b = 21.5486 (9) Å | T = 120 K |
c = 11.1178 (5) Å | 0.65 × 0.31 × 0.13 mm |
β = 103.916 (2)° |
Bruker–Nonius APEXII CCD area-detector diffractometer | 6431 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 4754 reflections with I > 2σ(I) |
Tmin = 0.629, Tmax = 0.746 | Rint = 0.041 |
50145 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 8 restraints |
wR(F2) = 0.155 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.38 e Å−3 |
6431 reflections | Δρmin = −0.52 e Å−3 |
311 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.63766 (11) | 0.63737 (5) | 0.49304 (11) | 0.0335 (2) | |
N1 | 0.14137 (16) | 0.57222 (8) | 0.39517 (18) | 0.0514 (4) | |
N2 | 0.36701 (16) | 0.73490 (7) | 0.56984 (15) | 0.0421 (3) | |
N3 | 0.34340 (16) | 0.48266 (8) | 0.24877 (17) | 0.0518 (4) | |
C1 | 0.25102 (16) | 0.59701 (7) | 0.42748 (15) | 0.0344 (3) | |
C2 | 0.38498 (15) | 0.62889 (7) | 0.46900 (14) | 0.0302 (3) | |
C3 | 0.37879 (16) | 0.68746 (7) | 0.52649 (14) | 0.0319 (3) | |
C4 | 0.68760 (15) | 0.55350 (6) | 0.37397 (13) | 0.0273 (3) | |
C5 | 0.75963 (14) | 0.60753 (7) | 0.45254 (14) | 0.0281 (3) | |
C6 | 0.51422 (15) | 0.60667 (7) | 0.44612 (13) | 0.0282 (3) | |
C7 | 0.53982 (15) | 0.55468 (7) | 0.37537 (13) | 0.0283 (3) | |
C8 | 0.81902 (17) | 0.65591 (7) | 0.37893 (16) | 0.0361 (3) | |
H8A | 0.7422 | 0.6683 | 0.3067 | 0.054* | |
H8B | 0.9018 | 0.6385 | 0.3511 | 0.054* | |
H8C | 0.8516 | 0.6923 | 0.4313 | 0.054* | |
C9 | 0.87158 (16) | 0.58711 (7) | 0.56768 (14) | 0.0335 (3) | |
H9A | 0.9087 | 0.6235 | 0.6184 | 0.050* | |
H9B | 0.9527 | 0.5661 | 0.5435 | 0.050* | |
H9C | 0.8258 | 0.5585 | 0.6156 | 0.050* | |
C10 | 0.42912 (16) | 0.51515 (8) | 0.30741 (15) | 0.0342 (3) | |
C11 | 0.76702 (15) | 0.51590 (7) | 0.31209 (14) | 0.0300 (3) | |
H11 | 0.8687 | 0.5239 | 0.3253 | 0.036* | |
C12 | 0.70918 (15) | 0.46773 (7) | 0.23262 (13) | 0.0288 (3) | |
H12 | 0.6101 | 0.4564 | 0.2253 | 0.035* | |
C13 | 0.78859 (16) | 0.43509 (7) | 0.16310 (14) | 0.0324 (3) | |
H13 | 0.8894 | 0.4447 | 0.1757 | 0.039* | |
C14 | 0.73222 (15) | 0.38957 (7) | 0.07677 (13) | 0.0289 (3) | |
C15 | 0.57736 (15) | 0.36373 (6) | 0.03954 (13) | 0.0260 (3) | |
C16 | 0.58984 (16) | 0.31748 (6) | −0.05962 (13) | 0.0280 (3) | |
C17 | 0.48672 (18) | 0.27866 (7) | −0.13049 (15) | 0.0358 (3) | |
H17 | 0.3902 | 0.2770 | −0.1189 | 0.043* | |
C18 | 0.5276 (2) | 0.24182 (8) | −0.21974 (16) | 0.0418 (4) | |
H18 | 0.4575 | 0.2153 | −0.2705 | 0.050* | |
C19 | 0.6681 (2) | 0.24341 (9) | −0.23514 (16) | 0.0451 (4) | |
H19 | 0.6932 | 0.2181 | −0.2969 | 0.054* | |
C20 | 0.7737 (2) | 0.28110 (9) | −0.16259 (16) | 0.0445 (4) | |
H20 | 0.8713 | 0.2817 | −0.1717 | 0.053* | |
C21 | 0.72999 (17) | 0.31800 (8) | −0.07588 (14) | 0.0344 (3) | |
C22 | 0.46596 (17) | 0.41387 (8) | −0.01844 (16) | 0.0374 (3) | |
H22A | 0.5009 | 0.4360 | −0.0827 | 0.056* | |
H22B | 0.4543 | 0.4432 | 0.0458 | 0.056* | |
H22C | 0.3717 | 0.3943 | −0.0554 | 0.056* | |
C23 | 0.5323 (2) | 0.33128 (8) | 0.14723 (16) | 0.0458 (4) | |
H23A | 0.4404 | 0.3089 | 0.1158 | 0.069* | |
H23B | 0.5190 | 0.3623 | 0.2080 | 0.069* | |
H23C | 0.6087 | 0.3019 | 0.1868 | 0.069* | |
N4A | 0.81429 (15) | 0.35927 (7) | 0.01028 (14) | 0.0290 (3) | 0.896 (2) |
C24A | 0.96803 (18) | 0.37120 (9) | 0.01489 (17) | 0.0356 (4) | 0.896 (2) |
H24A | 1.0180 | 0.3315 | 0.0076 | 0.043* | 0.896 (2) |
H24B | 1.0155 | 0.3901 | 0.0957 | 0.043* | 0.896 (2) |
C25A | 0.9838 (3) | 0.41401 (13) | −0.0880 (3) | 0.0596 (6)* | 0.896 (2) |
H25A | 1.0890 | 0.4183 | −0.0856 | 0.072* | 0.548 (2) |
H25B | 0.9358 | 0.3946 | −0.1682 | 0.072* | 0.548 (2) |
O2A1 | 0.9263 (3) | 0.47186 (17) | −0.0833 (3) | 0.0675 (9) | 0.548 (2) |
H211 | 0.844 (4) | 0.469 (3) | −0.136 (5) | 0.101* | 0.548 (2) |
O2A2 | 1.1107 (5) | 0.4305 (2) | −0.0912 (4) | 0.0596 (6)* | 0.348 (2) |
H212 | 1.139 (9) | 0.447 (4) | −0.021 (4) | 0.089* | 0.348 (2) |
H25C | 0.959 (8) | 0.386 (3) | −0.161 (5) | 0.089* | 0.348 (2) |
H25D | 0.905 (8) | 0.444 (4) | −0.120 (10) | 0.089* | 0.348 (2) |
N4B | 0.7997 (16) | 0.3841 (8) | −0.0305 (15) | 0.0384 (19)* | 0.104 (2) |
C24B | 0.9155 (19) | 0.4140 (8) | −0.0540 (16) | 0.0384 (19)* | 0.104 (2) |
H24C | 0.9153 | 0.4570 | −0.0226 | 0.046* | 0.104 (2) |
H24D | 0.9011 | 0.4167 | −0.1451 | 0.046* | 0.104 (2) |
C25B | 1.0719 (17) | 0.3854 (8) | 0.0016 (12) | 0.0384 (19)* | 0.104 (2) |
H25E | 1.0732 | 0.3417 | −0.0258 | 0.046* | 0.104 (2) |
H25F | 1.1455 | 0.4086 | −0.0307 | 0.046* | 0.104 (2) |
O2B | 1.1083 (12) | 0.3875 (5) | 0.1268 (10) | 0.0384 (19)* | 0.104 (2) |
H2B | 1.0676 | 0.4182 | 0.1509 | 0.058* | 0.104 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0254 (5) | 0.0339 (5) | 0.0413 (6) | 0.0018 (4) | 0.0080 (4) | −0.0115 (5) |
N1 | 0.0296 (7) | 0.0499 (9) | 0.0738 (11) | 0.0026 (6) | 0.0107 (7) | −0.0096 (8) |
N2 | 0.0428 (8) | 0.0404 (8) | 0.0472 (8) | 0.0028 (6) | 0.0186 (6) | −0.0045 (6) |
N3 | 0.0327 (7) | 0.0672 (11) | 0.0592 (10) | −0.0116 (7) | 0.0184 (7) | −0.0276 (8) |
C1 | 0.0285 (7) | 0.0352 (8) | 0.0401 (8) | 0.0078 (6) | 0.0094 (6) | −0.0005 (6) |
C2 | 0.0278 (7) | 0.0325 (7) | 0.0312 (7) | 0.0042 (5) | 0.0086 (5) | −0.0001 (6) |
C3 | 0.0293 (7) | 0.0372 (8) | 0.0315 (7) | 0.0037 (6) | 0.0119 (6) | 0.0022 (6) |
C4 | 0.0252 (6) | 0.0279 (6) | 0.0273 (7) | 0.0021 (5) | 0.0032 (5) | −0.0018 (5) |
C5 | 0.0221 (6) | 0.0286 (7) | 0.0334 (7) | 0.0027 (5) | 0.0063 (5) | −0.0055 (5) |
C6 | 0.0261 (6) | 0.0304 (7) | 0.0276 (7) | 0.0025 (5) | 0.0053 (5) | 0.0002 (5) |
C7 | 0.0249 (6) | 0.0304 (7) | 0.0289 (7) | 0.0016 (5) | 0.0051 (5) | −0.0024 (5) |
C8 | 0.0343 (7) | 0.0324 (7) | 0.0415 (9) | 0.0020 (6) | 0.0090 (6) | 0.0018 (6) |
C9 | 0.0301 (7) | 0.0350 (8) | 0.0326 (7) | 0.0008 (6) | 0.0020 (6) | −0.0045 (6) |
C10 | 0.0265 (7) | 0.0414 (8) | 0.0368 (8) | −0.0010 (6) | 0.0114 (6) | −0.0074 (7) |
C11 | 0.0236 (6) | 0.0328 (7) | 0.0325 (7) | 0.0026 (5) | 0.0046 (5) | −0.0055 (6) |
C12 | 0.0254 (6) | 0.0308 (7) | 0.0294 (7) | 0.0027 (5) | 0.0050 (5) | −0.0037 (5) |
C13 | 0.0250 (6) | 0.0367 (8) | 0.0357 (8) | 0.0010 (5) | 0.0077 (5) | −0.0079 (6) |
C14 | 0.0273 (6) | 0.0324 (7) | 0.0276 (7) | 0.0044 (5) | 0.0077 (5) | −0.0021 (5) |
C15 | 0.0285 (6) | 0.0254 (6) | 0.0245 (6) | 0.0022 (5) | 0.0072 (5) | 0.0017 (5) |
C16 | 0.0342 (7) | 0.0250 (6) | 0.0238 (6) | 0.0051 (5) | 0.0050 (5) | 0.0021 (5) |
C17 | 0.0409 (8) | 0.0308 (7) | 0.0334 (8) | 0.0008 (6) | 0.0046 (6) | −0.0004 (6) |
C18 | 0.0541 (10) | 0.0329 (8) | 0.0327 (8) | 0.0037 (7) | −0.0003 (7) | −0.0061 (6) |
C19 | 0.0556 (10) | 0.0445 (9) | 0.0315 (8) | 0.0129 (8) | 0.0034 (7) | −0.0115 (7) |
C20 | 0.0431 (9) | 0.0535 (10) | 0.0363 (9) | 0.0114 (8) | 0.0088 (7) | −0.0128 (8) |
C21 | 0.0357 (7) | 0.0380 (8) | 0.0284 (7) | 0.0066 (6) | 0.0059 (6) | −0.0054 (6) |
C22 | 0.0326 (7) | 0.0357 (8) | 0.0395 (8) | 0.0093 (6) | 0.0003 (6) | −0.0047 (7) |
C23 | 0.0701 (12) | 0.0383 (9) | 0.0351 (9) | −0.0105 (8) | 0.0246 (8) | −0.0007 (7) |
N4A | 0.0284 (7) | 0.0327 (7) | 0.0270 (7) | 0.0038 (5) | 0.0088 (5) | −0.0032 (6) |
C24A | 0.0288 (8) | 0.0422 (9) | 0.0379 (9) | 0.0061 (7) | 0.0121 (7) | −0.0006 (7) |
O2A1 | 0.0470 (15) | 0.081 (2) | 0.069 (2) | −0.0066 (14) | 0.0018 (13) | 0.0281 (17) |
O1—C6 | 1.3312 (17) | C16—C17 | 1.377 (2) |
O1—C5 | 1.4790 (16) | C17—C18 | 1.395 (2) |
N1—C1 | 1.142 (2) | C17—H17 | 0.9500 |
N2—C3 | 1.147 (2) | C18—C19 | 1.377 (3) |
N3—C10 | 1.147 (2) | C18—H18 | 0.9500 |
C1—C2 | 1.414 (2) | C19—C20 | 1.384 (3) |
C2—C6 | 1.3883 (19) | C19—H19 | 0.9500 |
C2—C3 | 1.422 (2) | C20—C21 | 1.386 (2) |
C4—C11 | 1.3922 (19) | C20—H20 | 0.9500 |
C4—C7 | 1.3972 (19) | C21—N4A | 1.405 (2) |
C4—C5 | 1.5148 (19) | C21—N4B | 1.599 (16) |
C5—C8 | 1.513 (2) | C22—H22A | 0.9800 |
C5—C9 | 1.515 (2) | C22—H22B | 0.9800 |
C6—C7 | 1.423 (2) | C22—H22C | 0.9800 |
C7—C10 | 1.416 (2) | C23—H23A | 0.9800 |
C8—H8A | 0.9800 | C23—H23B | 0.9800 |
C8—H8B | 0.9800 | C23—H23C | 0.9800 |
C8—H8C | 0.9800 | N4A—C24A | 1.461 (2) |
C9—H9A | 0.9800 | C24A—C25A | 1.504 (3) |
C9—H9B | 0.9800 | C24A—H24A | 0.9900 |
C9—H9C | 0.9800 | C24A—H24B | 0.9900 |
C11—C12 | 1.387 (2) | C25A—O2A1 | 1.365 (4) |
C11—H11 | 0.9500 | C25A—H25A | 0.9900 |
C12—C13 | 1.389 (2) | C25A—H25B | 0.9900 |
C12—H12 | 0.9500 | O2A1—H211 | 0.85 (3) |
C13—C14 | 1.386 (2) | O2A2—H212 | 0.84 (3) |
C13—H13 | 0.9500 | N4B—C24B | 1.35 (2) |
C14—N4A | 1.3588 (19) | C24B—C25B | 1.58 (2) |
C14—N4B | 1.485 (16) | C24B—H24C | 0.9900 |
C14—C15 | 1.524 (2) | C24B—H24D | 0.9900 |
C15—C16 | 1.5116 (19) | C25B—O2B | 1.352 (13) |
C15—C23 | 1.532 (2) | C25B—H25E | 0.9900 |
C15—C22 | 1.536 (2) | C25B—H25F | 0.9900 |
C16—C21 | 1.376 (2) | O2B—H2B | 0.8400 |
C6—O1—C5 | 109.57 (11) | C18—C17—H17 | 120.8 |
N1—C1—C2 | 178.50 (18) | C19—C18—C17 | 120.84 (16) |
C6—C2—C1 | 121.79 (14) | C19—C18—H18 | 119.6 |
C6—C2—C3 | 121.41 (14) | C17—C18—H18 | 119.6 |
C1—C2—C3 | 116.61 (13) | C18—C19—C20 | 121.40 (16) |
N2—C3—C2 | 176.76 (17) | C18—C19—H19 | 119.3 |
C11—C4—C7 | 132.24 (13) | C20—C19—H19 | 119.3 |
C11—C4—C5 | 120.83 (12) | C19—C20—C21 | 116.72 (16) |
C7—C4—C5 | 106.83 (12) | C19—C20—H20 | 121.6 |
O1—C5—C8 | 106.32 (11) | C21—C20—H20 | 121.6 |
O1—C5—C4 | 103.66 (10) | C16—C21—C20 | 122.82 (15) |
C8—C5—C4 | 112.99 (13) | C16—C21—N4A | 108.60 (13) |
O1—C5—C9 | 107.67 (12) | C20—C21—N4A | 128.55 (15) |
C8—C5—C9 | 112.56 (12) | C16—C21—N4B | 107.5 (6) |
C4—C5—C9 | 112.85 (12) | C20—C21—N4B | 124.2 (6) |
O1—C6—C2 | 118.67 (13) | C15—C22—H22A | 109.5 |
O1—C6—C7 | 111.07 (12) | C15—C22—H22B | 109.5 |
C2—C6—C7 | 130.24 (14) | H22A—C22—H22B | 109.5 |
C4—C7—C10 | 126.29 (13) | C15—C22—H22C | 109.5 |
C4—C7—C6 | 108.83 (12) | H22A—C22—H22C | 109.5 |
C10—C7—C6 | 124.56 (13) | H22B—C22—H22C | 109.5 |
C5—C8—H8A | 109.5 | C15—C23—H23A | 109.5 |
C5—C8—H8B | 109.5 | C15—C23—H23B | 109.5 |
H8A—C8—H8B | 109.5 | H23A—C23—H23B | 109.5 |
C5—C8—H8C | 109.5 | C15—C23—H23C | 109.5 |
H8A—C8—H8C | 109.5 | H23A—C23—H23C | 109.5 |
H8B—C8—H8C | 109.5 | H23B—C23—H23C | 109.5 |
C5—C9—H9A | 109.5 | C14—N4A—C21 | 111.86 (13) |
C5—C9—H9B | 109.5 | C14—N4A—C24A | 125.91 (14) |
H9A—C9—H9B | 109.5 | C21—N4A—C24A | 121.93 (13) |
C5—C9—H9C | 109.5 | N4A—C24A—C25A | 111.10 (17) |
H9A—C9—H9C | 109.5 | N4A—C24A—H24A | 109.4 |
H9B—C9—H9C | 109.5 | C25A—C24A—H24A | 109.4 |
N3—C10—C7 | 176.92 (17) | N4A—C24A—H24B | 109.4 |
C12—C11—C4 | 125.07 (13) | C25A—C24A—H24B | 109.4 |
C12—C11—H11 | 117.5 | H24A—C24A—H24B | 108.0 |
C4—C11—H11 | 117.5 | O2A1—C25A—C24A | 114.7 (2) |
C11—C12—C13 | 123.45 (13) | O2A1—C25A—H25A | 108.6 |
C11—C12—H12 | 118.3 | C24A—C25A—H25A | 108.6 |
C13—C12—H12 | 118.3 | O2A1—C25A—H25B | 108.6 |
C14—C13—C12 | 125.12 (13) | C24A—C25A—H25B | 108.6 |
C14—C13—H13 | 117.4 | H25A—C25A—H25B | 107.6 |
C12—C13—H13 | 117.4 | C25A—O2A1—H211 | 103 (5) |
N4A—C14—C13 | 122.90 (13) | C24B—N4B—C14 | 130.0 (13) |
C13—C14—N4B | 116.4 (6) | C24B—N4B—C21 | 131.0 (13) |
N4A—C14—C15 | 108.08 (12) | C14—N4B—C21 | 95.8 (9) |
C13—C14—C15 | 129.02 (13) | N4B—C24B—C25B | 117.4 (15) |
N4B—C14—C15 | 108.7 (6) | N4B—C24B—H24C | 107.9 |
C16—C15—C14 | 101.62 (11) | C25B—C24B—H24C | 107.9 |
C16—C15—C23 | 110.73 (12) | N4B—C24B—H24D | 107.9 |
C14—C15—C23 | 112.45 (13) | C25B—C24B—H24D | 107.9 |
C16—C15—C22 | 108.84 (12) | H24C—C24B—H24D | 107.2 |
C14—C15—C22 | 111.76 (12) | O2B—C25B—C24B | 111.8 (13) |
C23—C15—C22 | 111.03 (13) | O2B—C25B—H25E | 109.3 |
C21—C16—C17 | 119.85 (14) | C24B—C25B—H25E | 109.3 |
C21—C16—C15 | 109.64 (13) | O2B—C25B—H25F | 109.3 |
C17—C16—C15 | 130.50 (14) | C24B—C25B—H25F | 109.3 |
C16—C17—C18 | 118.35 (16) | H25E—C25B—H25F | 107.9 |
C16—C17—H17 | 120.8 | C25B—O2B—H2B | 109.5 |
C6—O1—C5—C8 | 119.01 (13) | C21—C16—C17—C18 | −1.6 (2) |
C6—O1—C5—C4 | −0.33 (15) | C15—C16—C17—C18 | 177.65 (14) |
C6—O1—C5—C9 | −120.13 (13) | C16—C17—C18—C19 | 1.1 (2) |
C11—C4—C5—O1 | 175.98 (13) | C17—C18—C19—C20 | 0.4 (3) |
C7—C4—C5—O1 | −0.88 (15) | C18—C19—C20—C21 | −1.4 (3) |
C11—C4—C5—C8 | 61.32 (18) | C17—C16—C21—C20 | 0.6 (2) |
C7—C4—C5—C8 | −115.54 (13) | C15—C16—C21—C20 | −178.78 (15) |
C11—C4—C5—C9 | −67.82 (18) | C17—C16—C21—N4A | −177.63 (14) |
C7—C4—C5—C9 | 115.32 (13) | C15—C16—C21—N4A | 2.97 (17) |
C5—O1—C6—C2 | −177.33 (13) | C17—C16—C21—N4B | 155.4 (6) |
C5—O1—C6—C7 | 1.43 (16) | C15—C16—C21—N4B | −24.0 (7) |
C1—C2—C6—O1 | −176.75 (14) | C19—C20—C21—C16 | 0.9 (3) |
C3—C2—C6—O1 | 8.5 (2) | C19—C20—C21—N4A | 178.75 (17) |
C1—C2—C6—C7 | 4.8 (3) | C19—C20—C21—N4B | −149.7 (7) |
C3—C2—C6—C7 | −169.99 (15) | C13—C14—N4A—C21 | −176.54 (15) |
C11—C4—C7—C10 | −0.9 (3) | N4B—C14—N4A—C21 | −91.8 (13) |
C5—C4—C7—C10 | 175.45 (15) | C15—C14—N4A—C21 | 4.19 (18) |
C11—C4—C7—C6 | −174.63 (16) | C13—C14—N4A—C24A | −2.7 (3) |
C5—C4—C7—C6 | 1.72 (16) | N4B—C14—N4A—C24A | 82.0 (13) |
O1—C6—C7—C4 | −2.04 (17) | C15—C14—N4A—C24A | 177.99 (15) |
C2—C6—C7—C4 | 176.53 (15) | C16—C21—N4A—C14 | −4.59 (19) |
O1—C6—C7—C10 | −175.90 (14) | C20—C21—N4A—C14 | 177.29 (17) |
C2—C6—C7—C10 | 2.7 (3) | N4B—C21—N4A—C14 | 87.2 (13) |
C7—C4—C11—C12 | −0.2 (3) | C16—C21—N4A—C24A | −178.68 (15) |
C5—C4—C11—C12 | −176.12 (14) | C20—C21—N4A—C24A | 3.2 (3) |
C4—C11—C12—C13 | 173.48 (15) | N4B—C21—N4A—C24A | −86.9 (13) |
C11—C12—C13—C14 | −175.49 (15) | C14—N4A—C24A—C25A | −96.2 (2) |
C12—C13—C14—N4A | 179.46 (16) | C21—N4A—C24A—C25A | 77.1 (2) |
C12—C13—C14—N4B | 148.2 (7) | N4A—C24A—C25A—O2A1 | 62.7 (3) |
C12—C13—C14—C15 | −1.4 (3) | N4A—C14—N4B—C24B | −106 (2) |
N4A—C14—C15—C16 | −2.18 (15) | C13—C14—N4B—C24B | 5 (2) |
C13—C14—C15—C16 | 178.62 (15) | C15—C14—N4B—C24B | 160.6 (16) |
N4B—C14—C15—C16 | 27.1 (7) | N4A—C14—N4B—C21 | 55.0 (10) |
N4A—C14—C15—C23 | 116.24 (15) | C13—C14—N4B—C21 | 166.0 (4) |
C13—C14—C15—C23 | −63.0 (2) | C15—C14—N4B—C21 | −38.5 (9) |
N4B—C14—C15—C23 | 145.5 (7) | C16—C21—N4B—C24B | −161.1 (16) |
N4A—C14—C15—C22 | −118.10 (14) | C20—C21—N4B—C24B | −7 (2) |
C13—C14—C15—C22 | 62.7 (2) | N4A—C21—N4B—C24B | 102 (2) |
N4B—C14—C15—C22 | −88.8 (7) | C16—C21—N4B—C14 | 38.2 (9) |
C14—C15—C16—C21 | −0.53 (15) | C20—C21—N4B—C14 | −167.5 (3) |
C23—C15—C16—C21 | −120.18 (15) | N4A—C21—N4B—C14 | −58.5 (10) |
C22—C15—C16—C21 | 117.51 (14) | C14—N4B—C24B—C25B | 87 (2) |
C14—C15—C16—C17 | −179.84 (15) | C21—N4B—C24B—C25B | −68 (2) |
C23—C15—C16—C17 | 60.5 (2) | N4B—C24B—C25B—O2B | −65.8 (19) |
C22—C15—C16—C17 | −61.81 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2A1—H211···N3i | 0.85 (3) | 2.17 (4) | 2.925 (3) | 148 (6) |
O2A2—H212···O2A1ii | 0.84 | 2.27 | 2.939 (4) | 137 |
C8—H8B···N1iii | 0.98 | 2.62 | 3.501 (2) | 150 |
C9—H9C···N3iv | 0.98 | 2.60 | 3.539 (2) | 160 |
C13—H13···O2B | 0.95 | 2.57 | 3.299 (11) | 134 |
C20—H20···N2v | 0.95 | 2.65 | 3.442 (2) | 141 |
C24A—H24A···N2v | 0.99 | 2.59 | 3.555 (2) | 166 |
C25A—H25B···N1i | 0.99 | 2.55 | 3.348 (3) | 137 |
C25B—H25E···N2v | 0.99 | 2.45 | 3.420 (17) | 167 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+3/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2A1—H211···N3i | 0.85 (3) | 2.17 (4) | 2.925 (3) | 148 (6) |
O2A2—H212···O2A1ii | 0.84 | 2.27 | 2.939 (4) | 137 |
C8—H8B···N1iii | 0.98 | 2.62 | 3.501 (2) | 150.0 |
C9—H9C···N3iv | 0.98 | 2.60 | 3.539 (2) | 160.3 |
C13—H13···O2B | 0.95 | 2.57 | 3.299 (11) | 133.5 |
C20—H20···N2v | 0.95 | 2.65 | 3.442 (2) | 140.8 |
C24A—H24A···N2v | 0.99 | 2.59 | 3.555 (2) | 165.6 |
C25A—H25B···N1i | 0.99 | 2.55 | 3.348 (3) | 137.0 |
C25B—H25E···N2v | 0.99 | 2.45 | 3.420 (17) | 167.4 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+3/2, y−1/2, −z+1/2. |
Acknowledgements
We thank Dr J. Wikaira of the University of Canterbury, New Zealand, for the data collection.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 272–283. Web of Science CrossRef CAS Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dalton, L. R., Steier, W. H., Robinson, B. H., Zhang, C., Ren, A. & Garner, S. (1999). J. Mater. Chem. 9, 1905–1920. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2011). Acta Cryst. E67, o3026. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harper, A. W., Mao, S. S. H., Ra, Y., Zhang, C., Zhu, J. & Dalton, L. R. (1999). Chem. Mater. 11, 2886–2891. Web of Science CrossRef CAS Google Scholar
Kay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Barnes, T. H., McKinnie, I. T. & Wyss, C. P. (2001a). J. Mater. Chem. 11, 996–1002. Web of Science CSD CrossRef CAS Google Scholar
Kay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Wyss, C. P. & Griffin, S. M. (2001b). J. Mater. Chem. 11, 2271–2281. Web of Science CSD CrossRef CAS Google Scholar
Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330. Web of Science CrossRef CAS Google Scholar
Ma, H., Jen, A. K.-Y. & Dalton, L. R. (2002). Adv. Mater. 14, 1339–1365. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mao, S. S. H., Ra, Y., Guo, L., Zhang, C. & Dalton, L. R. (1998). Chem. Mater. 10, 146–155. Web of Science CrossRef CAS Google Scholar
Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524–2526. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. J., Middleton, A. P., Clarke, D. J., Teshome, A., Kay, A. J. & Bhuiyan, M. D. H. (2010). Opt. Mater. 32, 1237–1243. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teshome, A., Kay, A. J., Woolhouse, A. D., Clays, K., Asselberghs, I. & Smith, G. J. (2009). Opt. Mater. 31, 575–582. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic nonlinear optical (NLO) chromophores containing donor (D) and acceptor (A) units have been widely reported in the literature as the enabling materials for a range of photonic devices (Dalton et al., 1999; Mao et al., 1998; Harper et al., 1999; Ma et al., 2002). We have previously reported a synthetic methodology (Kay et al., 2001a; Kay et al., 2001b, Teshome et al., 2009; Kay et al., 2004; Smith et al., 2010) that allows entry to a number of high figure-of-merit NLO chromophores with aromatisable donors (e.g. 1,4-dihydropyridinylidene, 1,4-dihydroquinolinylidene), and containing the powerful acceptor 4,5,5-trimethyl-3-cyano-2(5H)-furanylidenepropane dinitrile (TCF). While this approach allowed for ease of synthesis and for a controlled increase in the extent of conjugation in the molecules, the resultant 'parent' merocyanines are prone to significant amounts of aggregation (Teshome et al., 2009). As a continuation of this work, we have further developed our synthetic methodology, and extend the series to include chromophores with a non-aromatisable indoline donor group. Here we have synthesized a new NLO chromophore containing an indoline donor, an acceptor based on the well known moiety (2-(3-cyano-4,5,5-trimethyl-5H-furan-2-ylidene)-malononitrile), hereafter CTF, and a conjugated chain of three carbon atoms between the donor and acceptor. The chromophore also contains an hydroxyethyl substituent on the donor nitrogen atom which will allow for covalent attachment of the molecule to a polymer backbone, if needed, in the future.
The asymmetric unit (Figure 1) illustrates the cisoid configuration as compared with the transoid configurations found in the closely related 2-(3-cyano-4-{5-[1-(2-hydroxy-ethyl)-3,3-dimethyl-1,3-dihydro- indol-2-ylidene]-penta-1,3-dienyl}-5,5-dimethyl-5H-furan-2-ylidene) -malononitrile (hereafter TMIPNS, Bhuiyan et al., 2011) and 2-(3-cyano-4-{7-[1-(2-hydroxyethyl)-3,3-dimethylindolin-2-ylidene]hepta-1,3,5-trienyl}-5,5-dimethyl-2,5-dihydrofuran-2-ylidene)malononitrile (Gainsford et al., 2011). The bond length alternation value, BLA (Marder et al., 1993) is 0.011 Å compared with 0.024 Å in related compound TMIPNS. The molecule is twisted from planarity so that the dihedral angle between the terminating indol-2-ylidene and furan-2-ylidene moiety planes is 12.75 (7)%. This twist is less that in TMIPNS (twisted ~19°) but both molecules bend into a similar shape.
The indol-2-ylidene moieties (major conformation) have planar 5- and 6-membered rings that subtend small angles, here 1.75 (8)°, compared with 1.95 (11)° in TMIPNS. The planes through the planar entities (indol-2-ylidene ring, polyene atoms (C11–C13) & five membered ring (C4–C7,O1) are twisted progressively by 9.13 (17) & 5.72 (17)°. These values compare with 8.66 (19) & 9.2 (2)° in TMIPNS, meaning the polyene chain is slightly more coplanar here with the 5-membered furan-2-ylidene ring.
The molecules pack in parallel dimeric sheets about centres of symmetry utilizing an O–H···N(cyano) hydrogen bond (Figure 2) in two sets parallel to (021) and (021) planes with principal motif R22(26) (Bernstein et al., 1995). Other weaker interactions C–H···N(cyano), and also involving the disordered hydroxy atoms (O–H···O) are observed (Table 1).