metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ2-iso­propyl­imido-κ2N:N)bis­­[(η5-cyclo­penta­dien­yl)(ethenolato-κO)titanium(IV)]

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: martin.haehnel@catalysis.de

(Received 3 December 2013; accepted 6 December 2013; online 14 December 2013)

The title dinuclear half-sandwich complex, [CpTi(OCH=CH2)(μ2-N-iPr)]2 (Cp = cyclo­penta­dien­yl; iPr = isopropyl), was ob­tained from the reaction of Cp2TiCl2, n-butyl­lithium and iso­propyl­amine in tetra­hydro­furan. Each TiIV atom is coordinated by one Cp ligand, one vin­yloxy unit and two bridging imido groups in a strongly distorted tetra­hedral geometry. There are two half mol­ecules in the asymmetric unit, such that whole mol­ecules being generated by inversion symmetry.

Related literature

For other Ti complexes with both Cp′ (Cp′ = substituted or unsubstituted Cp) ligands and an enolate unit with a terminal =CH2 group, see: Curtis et al. (1984[Curtis, M. D., Thanedar, S. & Butler, W. M. (1984). Organometallics, 3, 1855-1859.]); Veya et al. (1993[Veya, P., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1993). Organometallics, 12, 4892-4898.]); Beckhaus et al. (1994[Beckhaus, R., Strauß, I. & Wagner, T. (1994). J. Organomet. Chem. 464, 155-161.]); Schwartz et al. (1996[Schwartz, D. J., Smith, M. R. III & Andersen, R. A. (1996). Organometallics, 15, 1446-1450.]). For selected examples of half-sandwich CpTi complexes with μ2-bridging imido ligands, see: Vroegop et al. (1983[Vroegop, C. T., Teuben, J. H., van Bolhuis, F. & van der Linden, J. G. M. (1983). J. Chem. Soc. Chem. Commun. pp. 550-552.]); Grigsby et al. (1996[Grigsby, W. J., Olmstead, M. M. & Power, P. P. (1996). J. Organomet. Chem. 513, 173-180.]); Ascenso et al. (2001[Ascenso, J. R., de Azevedo, C. G., Dias, A. R., Duarte, M. T., Eleutério, I., Ferreira, M. J., Gomes, P. T. & Martins, A. M. (2001). J. Organomet. Chem. 632, 17-26.]); Tsurugi et al. (2011[Tsurugi, H., Nagae, H. & Mashima, K. (2011). Chem. Commun. 47, 5620-5622.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti2(C5H5)2(C3H7N)2(C2H3O)2]

  • Mr = 426.26

  • Monoclinic, P 21 /n

  • a = 13.8746 (4) Å

  • b = 9.7484 (2) Å

  • c = 16.3264 (4) Å

  • β = 106.593 (2)°

  • V = 2116.27 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 150 K

  • 0.50 × 0.40 × 0.25 mm

Data collection
  • Stoe IPDS II diffractometer

  • 32869 measured reflections

  • 4625 independent reflections

  • 4211 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.069

  • S = 1.05

  • 4625 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reaction of Cp2TiCl2, n-butyllithium and isopropylamine in THF was investigated to synthesize the new titanocene imido compound Cp2Ti=N-iPr. However, the excess of n-butyllithium led to THF cleavage, involving the formation of vinyloxy species. Substitution of one of the Cp ligands by the vinyloxy ligand was observed, together with the imido unit bridging over two titanium centers, thus forming a dinuclear complex. The asymmetric unit contains two half molecules of the title compound. Each titanium center is coordinated by one Cp ligand, one vinyloxy unit and two bridging imido groups (Fig. 1). The geometry at the titanium centers is strongly distorted tetrahedral. The largest deviation from the ideal tetrahedral angle is observed for N2—Ti2—N2A with 85.84 (4)°. The central four-membered metallacycles Ti1, N1, Ti1A, N1A and Ti2, N2, Ti2A, N2A are planar by virtue of the inversion symmetry.

Related literature top

For other Ti complexes with both Cp' (Cp' = substituted or unsubstituted Cp) ligands and an enolate unit with a terminal CH2 group, see: Curtis et al. (1984); Veya et al. (1993); Beckhaus et al. (1994); Schwartz et al. (1996). For selected examples of half-sandwich CpTi complexes with µ2-bridging imido ligands, see: Vroegop et al. (1983); Grigsby et al. (1996); Ascenso et al. (2001); Tsurugi et al. (2011).

Experimental top

To a stirred solution of isopropylamine (0.3 ml, 3.5 mmol) in 20 ml of THF was added a solution of n-butyllithium (1.6 M, 5.0 ml) in n-hexane at room temperature. After stirring fo 16 h, the reaction mixture was slowly poured into a suspension of Cp2TiCl2 (872 mg, 3.5 mmol) in 15 ml of THF. Immediately, the colour turned dark brown. After additional stirring for 20 h, all volatiles were removed in vacuum and the dark brown residue was suspended in 40 ml of diethylether and filtered. The dark brown solution was then concentrated to 5 ml and stored at -78 °C for 3 days to give dark red crystals of the title compound, suitable for X-ray analysis, which were filtered, washed with cold toluene and dried in vacuum (yield: 256 mg, 34%)

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.95 - 1.00 Å (CH), 0.95 Å (CH2) and 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH, CH2 and 1.5 Ueq(C) for CH3.

Structure description top

The reaction of Cp2TiCl2, n-butyllithium and isopropylamine in THF was investigated to synthesize the new titanocene imido compound Cp2Ti=N-iPr. However, the excess of n-butyllithium led to THF cleavage, involving the formation of vinyloxy species. Substitution of one of the Cp ligands by the vinyloxy ligand was observed, together with the imido unit bridging over two titanium centers, thus forming a dinuclear complex. The asymmetric unit contains two half molecules of the title compound. Each titanium center is coordinated by one Cp ligand, one vinyloxy unit and two bridging imido groups (Fig. 1). The geometry at the titanium centers is strongly distorted tetrahedral. The largest deviation from the ideal tetrahedral angle is observed for N2—Ti2—N2A with 85.84 (4)°. The central four-membered metallacycles Ti1, N1, Ti1A, N1A and Ti2, N2, Ti2A, N2A are planar by virtue of the inversion symmetry.

For other Ti complexes with both Cp' (Cp' = substituted or unsubstituted Cp) ligands and an enolate unit with a terminal CH2 group, see: Curtis et al. (1984); Veya et al. (1993); Beckhaus et al. (1994); Schwartz et al. (1996). For selected examples of half-sandwich CpTi complexes with µ2-bridging imido ligands, see: Vroegop et al. (1983); Grigsby et al. (1996); Ascenso et al. (2001); Tsurugi et al. (2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound in the crystal (the asymmetric unit contains two half molecules; operators for generating equivalent atoms: -x + 2, -y + 1, -z and -x + 1, -y, -z). Hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
Bis(µ2-isopropylimido-κ2N:N)bis[(η5-cyclopentadienyl)(ethenolato-κO)titanium(IV)] top
Crystal data top
[Ti2(C5H5)2(C3H7N)2(C2H3O)2]F(000) = 896
Mr = 426.26Dx = 1.338 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.8746 (4) ÅCell parameters from 4113 reflections
b = 9.7484 (2) Åθ = 2.5–29.5°
c = 16.3264 (4) ŵ = 0.77 mm1
β = 106.593 (2)°T = 150 K
V = 2116.27 (9) Å3Prism, brown
Z = 40.50 × 0.40 × 0.25 mm
Data collection top
Stoe IPDS II
diffractometer
4211 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.0°, θmin = 1.7°
ω scansh = 1717
32869 measured reflectionsk = 1212
4625 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.2691P]
where P = (Fo2 + 2Fc2)/3
4625 reflections(Δ/σ)max = 0.002
239 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ti2(C5H5)2(C3H7N)2(C2H3O)2]V = 2116.27 (9) Å3
Mr = 426.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.8746 (4) ŵ = 0.77 mm1
b = 9.7484 (2) ÅT = 150 K
c = 16.3264 (4) Å0.50 × 0.40 × 0.25 mm
β = 106.593 (2)°
Data collection top
Stoe IPDS II
diffractometer
4211 reflections with I > 2σ(I)
32869 measured reflectionsRint = 0.031
4625 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
4625 reflectionsΔρmin = 0.37 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.00508 (9)0.81266 (12)0.07526 (8)0.0264 (2)
H11.01390.82110.01990.032*
C21.04722 (11)0.90582 (14)0.13237 (9)0.0398 (3)
H2A1.04000.90080.18840.048*
H2B1.08490.97830.11760.048*
C31.10447 (9)0.42926 (12)0.16322 (7)0.0237 (2)
H31.04850.43720.19030.028*
C41.14785 (12)0.28630 (14)0.18057 (9)0.0406 (3)
H4A1.09500.21870.15670.061*
H4B1.17430.27230.24240.061*
H4C1.20230.27530.15390.061*
C51.18229 (11)0.53813 (14)0.20265 (8)0.0344 (3)
H5A1.24020.52850.18010.052*
H5B1.20430.52680.26490.052*
H5C1.15260.62940.18840.052*
C60.83879 (9)0.43737 (12)0.13292 (7)0.0252 (2)
H60.86770.44250.19310.030*
C70.77320 (9)0.53364 (12)0.08185 (8)0.0273 (2)
H70.74980.61530.10150.033*
C80.74794 (9)0.48839 (13)0.00364 (8)0.0273 (2)
H80.70490.53440.05160.033*
C90.79764 (8)0.36312 (12)0.00555 (7)0.0249 (2)
H90.79380.30940.05490.030*
C100.85404 (8)0.33132 (12)0.07872 (7)0.0241 (2)
H100.89510.25250.09610.029*
C110.49256 (11)0.21964 (14)0.14913 (8)0.0350 (3)
H110.42930.23710.10880.042*
C120.54472 (15)0.32585 (17)0.18746 (11)0.0544 (4)
H12A0.60830.31250.22810.065*
H12B0.51880.41600.17450.065*
C130.69659 (8)0.08443 (12)0.03329 (7)0.0232 (2)
H130.69070.18510.02120.028*
C140.75543 (10)0.02130 (15)0.02278 (9)0.0331 (3)
H14A0.71970.03780.08300.050*
H14B0.82240.06310.00930.050*
H14C0.76220.07770.01220.050*
C150.75381 (10)0.06547 (16)0.12745 (8)0.0356 (3)
H15A0.76470.03260.14000.053*
H15B0.81890.11230.13970.053*
H15C0.71460.10450.16310.053*
C160.59925 (10)0.27006 (13)0.09822 (8)0.0324 (3)
H160.64810.28760.06890.039*
C170.61833 (10)0.21581 (14)0.18150 (8)0.0344 (3)
H170.68230.18990.21790.041*
C180.52699 (10)0.20677 (13)0.20118 (7)0.0311 (3)
H180.51810.17450.25350.037*
C190.45087 (9)0.25346 (12)0.13058 (8)0.0278 (2)
H190.38120.25760.12640.033*
C200.49548 (10)0.29353 (12)0.06639 (8)0.0290 (2)
H200.46140.32970.01180.035*
N11.06135 (7)0.44839 (9)0.07062 (6)0.02088 (18)
N20.59469 (7)0.02696 (9)0.01025 (6)0.02089 (19)
O10.95030 (6)0.70628 (8)0.08943 (5)0.02590 (17)
O20.52192 (6)0.08863 (9)0.16262 (5)0.02749 (18)
Ti10.924511 (14)0.532856 (19)0.036855 (12)0.01873 (7)
Ti20.520839 (14)0.05278 (2)0.083057 (12)0.01907 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0297 (6)0.0218 (5)0.0307 (6)0.0005 (4)0.0136 (5)0.0008 (4)
C20.0497 (8)0.0313 (7)0.0409 (7)0.0158 (6)0.0170 (6)0.0048 (5)
C30.0243 (5)0.0265 (5)0.0189 (5)0.0013 (4)0.0038 (4)0.0020 (4)
C40.0452 (8)0.0312 (7)0.0392 (7)0.0105 (6)0.0020 (6)0.0085 (5)
C50.0363 (7)0.0388 (7)0.0224 (6)0.0076 (5)0.0010 (5)0.0016 (5)
C60.0251 (5)0.0286 (6)0.0236 (5)0.0064 (4)0.0095 (4)0.0016 (4)
C70.0257 (6)0.0252 (6)0.0347 (6)0.0023 (4)0.0143 (5)0.0006 (4)
C80.0207 (5)0.0302 (6)0.0295 (6)0.0024 (4)0.0049 (4)0.0067 (5)
C90.0241 (5)0.0252 (5)0.0255 (5)0.0081 (4)0.0073 (4)0.0012 (4)
C100.0229 (5)0.0214 (5)0.0287 (5)0.0040 (4)0.0085 (4)0.0035 (4)
C110.0456 (7)0.0327 (7)0.0274 (6)0.0083 (5)0.0115 (5)0.0013 (5)
C120.0804 (12)0.0327 (8)0.0472 (9)0.0012 (8)0.0135 (8)0.0030 (6)
C130.0202 (5)0.0248 (5)0.0243 (5)0.0029 (4)0.0056 (4)0.0009 (4)
C140.0251 (6)0.0422 (7)0.0344 (7)0.0009 (5)0.0125 (5)0.0040 (5)
C150.0239 (6)0.0536 (8)0.0260 (6)0.0080 (5)0.0018 (5)0.0013 (5)
C160.0336 (6)0.0290 (6)0.0376 (7)0.0114 (5)0.0151 (5)0.0100 (5)
C170.0317 (6)0.0356 (7)0.0307 (6)0.0024 (5)0.0006 (5)0.0136 (5)
C180.0449 (7)0.0275 (6)0.0219 (5)0.0021 (5)0.0112 (5)0.0057 (4)
C190.0324 (6)0.0229 (5)0.0304 (6)0.0021 (4)0.0128 (5)0.0038 (4)
C200.0398 (7)0.0203 (5)0.0272 (6)0.0017 (5)0.0102 (5)0.0002 (4)
N10.0226 (4)0.0200 (4)0.0188 (4)0.0035 (3)0.0040 (4)0.0004 (3)
N20.0197 (4)0.0225 (5)0.0204 (4)0.0011 (3)0.0057 (4)0.0004 (3)
O10.0328 (4)0.0215 (4)0.0257 (4)0.0057 (3)0.0119 (3)0.0039 (3)
O20.0341 (4)0.0281 (4)0.0199 (4)0.0015 (3)0.0071 (3)0.0021 (3)
Ti10.02048 (11)0.01844 (11)0.01757 (11)0.00347 (7)0.00591 (8)0.00093 (6)
Ti20.02010 (11)0.02133 (11)0.01558 (10)0.00042 (7)0.00478 (8)0.00092 (6)
Geometric parameters (Å, º) top
C1—C21.3133 (18)C13—N21.4665 (14)
C1—O11.3443 (14)C13—C141.5198 (16)
C1—H10.9500C13—C151.5267 (16)
C2—H2A0.9500C13—H131.0000
C2—H2B0.9500C14—H14A0.9800
C3—N11.4703 (14)C14—H14B0.9800
C3—C41.5124 (17)C14—H14C0.9800
C3—C51.5197 (17)C15—H15A0.9800
C3—H31.0000C15—H15B0.9800
C4—H4A0.9800C15—H15C0.9800
C4—H4B0.9800C16—C201.4028 (18)
C4—H4C0.9800C16—C171.4118 (19)
C5—H5A0.9800C16—Ti22.3617 (12)
C5—H5B0.9800C16—H160.9500
C5—H5C0.9800C17—C181.3963 (19)
C6—C71.4039 (17)C17—Ti22.3869 (12)
C6—C101.4155 (16)C17—H170.9500
C6—Ti12.4096 (11)C18—C191.3986 (18)
C6—H60.9500C18—Ti22.4262 (11)
C7—C81.4093 (18)C18—H180.9500
C7—Ti12.4140 (12)C19—C201.4158 (16)
C7—H70.9500C19—Ti22.4087 (11)
C8—C91.4071 (17)C19—H190.9500
C8—Ti12.3878 (11)C20—Ti22.3773 (12)
C8—H80.9500C20—H200.9500
C9—C101.4094 (16)N1—Ti1i1.8296 (9)
C9—Ti12.3706 (11)N1—Ti11.9972 (10)
C9—H90.9500N2—Ti2ii1.8864 (9)
C10—Ti12.3801 (11)N2—Ti21.9398 (9)
C10—H100.9500O1—Ti11.8834 (8)
C11—C121.315 (2)O2—Ti21.8913 (8)
C11—O21.3395 (16)Ti1—N1i1.8296 (9)
C11—H110.9500Ti1—Ti1i2.7725 (4)
C12—H12A0.9500Ti2—N2ii1.8864 (9)
C12—H12B0.9500Ti2—Ti2ii2.8022 (4)
C2—C1—O1124.77 (11)C19—C18—H18125.9
C2—C1—H1117.6Ti2—C18—H18121.7
O1—C1—H1117.6C18—C19—C20108.23 (11)
C1—C2—H2A120.0C18—C19—Ti273.87 (7)
C1—C2—H2B120.0C20—C19—Ti271.58 (7)
H2A—C2—H2B120.0C18—C19—H19125.9
N1—C3—C4109.44 (10)C20—C19—H19125.9
N1—C3—C5112.22 (9)Ti2—C19—H19120.4
C4—C3—C5111.57 (10)C16—C20—C19107.48 (11)
N1—C3—H3107.8C16—C20—Ti272.18 (7)
C4—C3—H3107.8C19—C20—Ti274.01 (7)
C5—C3—H3107.8C16—C20—H20126.3
C3—C4—H4A109.5C19—C20—H20126.3
C3—C4—H4B109.5Ti2—C20—H20119.4
H4A—C4—H4B109.5C3—N1—Ti1i151.07 (8)
C3—C4—H4C109.5C3—N1—Ti1114.31 (7)
H4A—C4—H4C109.5Ti1i—N1—Ti192.75 (4)
H4B—C4—H4C109.5C13—N2—Ti2ii133.70 (7)
C3—C5—H5A109.5C13—N2—Ti2129.43 (7)
C3—C5—H5B109.5Ti2ii—N2—Ti294.16 (4)
H5A—C5—H5B109.5C1—O1—Ti1131.09 (7)
C3—C5—H5C109.5C11—O2—Ti2129.76 (8)
H5A—C5—H5C109.5N1i—Ti1—O1106.79 (4)
H5B—C5—H5C109.5N1i—Ti1—N187.25 (4)
C7—C6—C10107.71 (10)O1—Ti1—N1101.68 (4)
C7—C6—Ti173.25 (6)N1i—Ti1—C993.65 (4)
C10—C6—Ti171.67 (6)O1—Ti1—C9142.01 (4)
C7—C6—H6126.1N1—Ti1—C9111.16 (4)
C10—C6—H6126.1N1i—Ti1—C10121.55 (4)
Ti1—C6—H6120.7O1—Ti1—C10130.56 (4)
C6—C7—C8108.34 (11)N1—Ti1—C1090.95 (4)
C6—C7—Ti172.91 (7)C9—Ti1—C1034.52 (4)
C8—C7—Ti171.91 (7)N1i—Ti1—C897.76 (4)
C6—C7—H7125.8O1—Ti1—C8109.60 (4)
C8—C7—H7125.8N1—Ti1—C8145.17 (4)
Ti1—C7—H7121.1C9—Ti1—C834.40 (4)
C9—C8—C7107.98 (10)C10—Ti1—C857.08 (4)
C9—C8—Ti172.13 (6)N1i—Ti1—C6150.56 (4)
C7—C8—Ti173.96 (7)O1—Ti1—C696.60 (4)
C9—C8—H8126.0N1—Ti1—C6105.55 (4)
C7—C8—H8126.0C9—Ti1—C657.12 (4)
Ti1—C8—H8119.7C10—Ti1—C634.37 (4)
C8—C9—C10107.96 (10)C8—Ti1—C656.77 (4)
C8—C9—Ti173.47 (6)N1i—Ti1—C7129.22 (4)
C10—C9—Ti173.11 (6)O1—Ti1—C785.81 (4)
C8—C9—H9126.0N1—Ti1—C7139.30 (4)
C10—C9—H9126.0C9—Ti1—C756.86 (4)
Ti1—C9—H9119.3C10—Ti1—C756.70 (4)
C9—C10—C6108.01 (10)C8—Ti1—C734.13 (4)
C9—C10—Ti172.37 (6)C6—Ti1—C733.84 (4)
C6—C10—Ti173.96 (6)N1i—Ti1—Ti1i46.02 (3)
C9—C10—H10126.0O1—Ti1—Ti1i109.66 (3)
C6—C10—H10126.0N1—Ti1—Ti1i41.24 (3)
Ti1—C10—H10119.5C9—Ti1—Ti1i107.58 (3)
C12—C11—O2124.91 (14)C10—Ti1—Ti1i110.93 (3)
C12—C11—H11117.5C8—Ti1—Ti1i132.88 (3)
O2—C11—H11117.5C6—Ti1—Ti1i140.16 (3)
C11—C12—H12A120.0C7—Ti1—Ti1i164.44 (3)
C11—C12—H12B120.0N2ii—Ti2—O2107.20 (4)
H12A—C12—H12B120.0N2ii—Ti2—N285.84 (4)
N2—C13—C14109.58 (9)O2—Ti2—N2103.11 (4)
N2—C13—C15113.45 (9)N2ii—Ti2—C16117.65 (4)
C14—C13—C15110.07 (10)O2—Ti2—C16131.96 (4)
N2—C13—H13107.9N2—Ti2—C1696.63 (4)
C14—C13—H13107.9N2ii—Ti2—C2088.59 (4)
C15—C13—H13107.9O2—Ti2—C20140.36 (4)
C13—C14—H14A109.5N2—Ti2—C20114.35 (4)
C13—C14—H14B109.5C16—Ti2—C2034.43 (5)
H14A—C14—H14B109.5N2ii—Ti2—C17145.09 (4)
C13—C14—H14C109.5O2—Ti2—C1797.53 (4)
H14A—C14—H14C109.5N2—Ti2—C17112.49 (4)
H14B—C14—H14C109.5C16—Ti2—C1734.59 (5)
C13—C15—H15A109.5C20—Ti2—C1757.08 (5)
C13—C15—H15B109.5N2ii—Ti2—C1992.34 (4)
H15A—C15—H15B109.5O2—Ti2—C19107.19 (4)
C13—C15—H15C109.5N2—Ti2—C19148.75 (4)
H15A—C15—H15C109.5C16—Ti2—C1956.89 (4)
H15B—C15—H15C109.5C20—Ti2—C1934.41 (4)
C20—C16—C17107.95 (11)C17—Ti2—C1956.31 (4)
C20—C16—Ti273.39 (7)N2ii—Ti2—C18123.60 (4)
C17—C16—Ti273.68 (7)O2—Ti2—C1885.03 (4)
C20—C16—H16126.0N2—Ti2—C18146.12 (4)
C17—C16—H16126.0C16—Ti2—C1856.71 (4)
Ti2—C16—H16118.8C20—Ti2—C1856.67 (4)
C18—C17—C16108.20 (11)C17—Ti2—C1833.72 (5)
C18—C17—Ti274.68 (7)C19—Ti2—C1833.63 (4)
C16—C17—Ti271.73 (7)N2ii—Ti2—Ti2ii43.66 (3)
C18—C17—H17125.9O2—Ti2—Ti2ii110.86 (3)
C16—C17—H17125.9N2—Ti2—Ti2ii42.18 (3)
Ti2—C17—H17119.5C16—Ti2—Ti2ii113.10 (3)
C17—C18—C19108.13 (11)C20—Ti2—Ti2ii105.60 (3)
C17—C18—Ti271.60 (7)C17—Ti2—Ti2ii144.77 (4)
C19—C18—Ti272.50 (7)C19—Ti2—Ti2ii128.26 (3)
C17—C18—H18125.9C18—Ti2—Ti2ii161.30 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ti2(C5H5)2(C3H7N)2(C2H3O)2]
Mr426.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)13.8746 (4), 9.7484 (2), 16.3264 (4)
β (°) 106.593 (2)
V3)2116.27 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.50 × 0.40 × 0.25
Data collection
DiffractometerStoe IPDS II
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
32869, 4625, 4211
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 1.05
No. of reflections4625
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationAscenso, J. R., de Azevedo, C. G., Dias, A. R., Duarte, M. T., Eleutério, I., Ferreira, M. J., Gomes, P. T. & Martins, A. M. (2001). J. Organomet. Chem. 632, 17–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeckhaus, R., Strauß, I. & Wagner, T. (1994). J. Organomet. Chem. 464, 155–161.  CSD CrossRef CAS Web of Science Google Scholar
First citationCurtis, M. D., Thanedar, S. & Butler, W. M. (1984). Organometallics, 3, 1855–1859.  CSD CrossRef CAS Web of Science Google Scholar
First citationGrigsby, W. J., Olmstead, M. M. & Power, P. P. (1996). J. Organomet. Chem. 513, 173–180.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchwartz, D. J., Smith, M. R. III & Andersen, R. A. (1996). Organometallics, 15, 1446–1450.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTsurugi, H., Nagae, H. & Mashima, K. (2011). Chem. Commun. 47, 5620–5622.  Web of Science CSD CrossRef CAS Google Scholar
First citationVeya, P., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1993). Organometallics, 12, 4892–4898.  CSD CrossRef CAS Web of Science Google Scholar
First citationVroegop, C. T., Teuben, J. H., van Bolhuis, F. & van der Linden, J. G. M. (1983). J. Chem. Soc. Chem. Commun. pp. 550–552.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds