organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The 1:1 co-crystal of triphen­yl(2,3,5,6-tetra­fluoro­benz­yl)phospho­nium bromide and 1,1,2,2-tetra­fluoro-1,2-di­iodo­ethane

aNFMLab, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Via Mancinelli, 7, I-20131 Milano, Italy, and bLaboratory of Biopolymers and Supramolecular Nanomaterials, Universitè Libre de Bruxelles (ULB), Campus de la Plaine, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
*Correspondence e-mail: giancarlo.terraneo@polimi.it

(Received 17 March 2013; accepted 29 November 2013; online 4 December 2013)

The title compound, C25H18F4P+·Br·C2F4I2, is a 1:1 co-crystal of triphen­yl(2,3,5,6-tetra­fluoro­benz­yl)phospho­nium (TTPB) bromide and 1,1,2,2-tetra­fluoro-1,2-di­iodo­ethane (TFDIE). The crystal structure consists of a framework of TTPB cations held together by C—H⋯Br inter­actions. In this framework, infinite channels along [100] are filled by TFDIE mol­ecules held together in infinite ribbons by short F⋯F [2.863 (2)–2.901 (2)Å] inter­actions. The structure contains halogen bonds (XB) and hydrogen bonds (HB) in the bromide coordination sphere. TFDIE functions as a monodentate XB donor as only one I atom is linked to the Br anion and forms a short and directional inter­action [I⋯Br 3.1798 (7) Å and C—I⋯Br 177.76 (5)°]. The coordination sphere of the bromide anion is completed by two short HBs of about 2.8 Å (for H⋯Br) with the acidic methyl­ene H atoms and two longer HBs of about 3.0 Å with H atoms of the phenyl rings. Surprisingly neither the second iodine atom of TFDIE nor the H atom on the tetra­fluoro­phenyl group make any short contacts.

Related literature

For a general discussion on halogen bonds (XBs) involving anionic halogen-bonding acceptors, see: for oxyanions, Abate et al. (2011[Abate, A., Martì-Rujas, J., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2011). Cryst. Growth Des. 11, 4220-4226.]); for chloride and bromide, Abate et al. (2009[Abate, A., Biella, S., Cavallo, G., Meyer, F., Neukirch, H., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2009). J. Fluorine Chem. 130, 1171-1177.]); for iodide, Metrangolo et al. (2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Chem. Commun. pp. 1635-1637.]). For examples of reliable XB donors in an ionic context, see: Cavallo et al. (2010[Cavallo, G., Biella, S., Lü, J., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2010). J. Fluorine Chem. 131, 1165-1172.]); Metrangolo et al. (2009[Metrangolo, P., Pilati, T., Terraneo, G., Biella, S. & Resnati, G. (2009). CrystEngComm, 11, 1187-1196.]); Logothetis et al. (2004[Logothetis, T. M., Meyer, F., Metrangolo, P., Pilati, T. & Resnati, G. (2004). New J. Chem. 28, 760-763.]). For different supra­molecular structures of halogen-bonded (poly)anions, see for: discrete adducts, Gattuso et al. (2007[Gattuso, G., Pappalardo, A., Parisi, M., Pisigatti, I., Crea, F., Liantonio, R., Metrangolo, P., Navarrini, W., Resnati, G., Pilati, T. & Pappalardo, S. (2007). Tetrahedron, 63, 4951-4958.]); infinite chains, Gattuso et al. (2006[Gattuso, G., Liantonio, R., Metrangolo, P., Meyer, F., Pappalardo, A., Parisi, M., Pilati, T., Pisagatti, I. & Resnati, G. (2006). Supramol. Chem. 18, 235-243.]); comb-like arrays, Biella et al. (2009[Biella, S., Gattuso, G., Notti, A., Metrangolo, P., Pappalardo, S., Parisi, M. F., Pilati, T., Resnati, G. & Terraneo, G. (2009). Supramol. Chem. 21, 149-156.]); 'ring and stick' one-dimensional chains, Gattuso et al. (2009[Gattuso, G., Notti, A., Pappalardo, S., Parisi, M. F., Pilati, T., Resnati, G. & Terraneo, G. (2009). CrystEngComm, 11, 1204-1206.]); two-dimensional layers showing Borromean inter­penetration, Liantonio et al. (2006[Liantonio, R., Metrangolo, P., Meyer, F., Pilati, T., Navarrini, W. & Resnati, G. (2006). Chem. Commun. pp. 1819-1821.]). For very short XBs in the presence of HBs, see: Cametti et al. (2012[Cametti, M., Raatikainen, K., Metrangolo, P., Pilati, T., Terraneo, G. & Resnati, G. (2012). Org. Biomol. Chem. 10, 1329-1333.]); Gattuso et al. (2007[Gattuso, G., Pappalardo, A., Parisi, M., Pisigatti, I., Crea, F., Liantonio, R., Metrangolo, P., Navarrini, W., Resnati, G., Pilati, T. & Pappalardo, S. (2007). Tetrahedron, 63, 4951-4958.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For van der Waals radii, see Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C25H18F4P+·Br·C2F4I2

  • Mr = 859.09

  • Triclinic, [P \overline 1]

  • a = 9.6451 (10) Å

  • b = 10.9491 (12) Å

  • c = 13.8425 (15) Å

  • α = 78.07 (2)°

  • β = 79.08 (2)°

  • γ = 76.76 (2)°

  • V = 1376.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.87 mm−1

  • T = 90 K

  • 0.26 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.795, Tmax = 1.000

  • 21807 measured reflections

  • 10912 independent reflections

  • 9550 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.04

  • 10912 reflections

  • 424 parameters

  • 153 restraints

  • All H-atom parameters refined

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯Br1 0.92 (2) 2.80 (2) 3.6866 (19) 163 (2)
C19—H19B⋯Br1i 0.92 (2) 2.83 (2) 3.7263 (19) 166 (2)
C16—H16⋯Br1ii 0.94 (1) 2.99 (2) 3.910 (2) 168 (2)
C11—H11⋯Br1iii 0.93 (1) 3.03 (2) 3.725 (2) 133 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y+1, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2012.

Supporting information


Comment top

We have recently reported how oxyanions (Abate et al., 2011) and chloride, bromide, (Abate et al., 2009) or, more commonly, iodide anions (Metrangolo et al., 2008) are effective acceptors of halogen bonds (XB) when interacting with a variety of XB donors, e.g. di- (Cavallo et al., 2010) or tri-haloperfluorocarbons (Metrangolo et al., 2009), haloimidazolium (Cametti et al., 2012) or halopyridinium (Logothetis et al., 2004) derivatives. In particular, naked halide anions were proven to work as particularly versatile XB acceptors and afforded supramolecular (poly)anions with quite different structures, e.g. discrete adducts (Gattuso et al., 2007), infinite one-dimensional chains (Gattuso et al., 2006), comb-like arrays (Biella et al., 2009), 'ring and stick' one-dimensional chains (Gattuso et al., 2009), and two-dimensional layers showing Borromean interpenetration (Liantonio et al., 2006). In most of these structures, halide anions prefer to work as polydentate XB acceptors also when some H atoms in the cation could work as particularly effective hydrogen bond (HB) donor sites. In the present structure (Fig. 1), the bromide anion forms only one XB despite the composition of the system could allow for the bromide to function as a bidentate XB acceptor. Surprisingly, one iodine atom of TFDIE is not involved in any short contact. The positive phosphorus atom and the tetrafluorophenyl residue promote the acidity of the benzylic H atoms and they are both involved in short, probably strong, HBs with bromide anions, the coordination sphere of which is completed by two long, probably weak, HB interactions with H atoms of the non fluorinated phenyl rings (see Table A). A CSD search (CSD version 5.33; Allen (2002)) of C—I···Br- interactions shows that the I···Br- distances observed here (I···Br- 3.1798 (7) Å) is below the lower quartile of the corresponding dataset (48 hits; mean I···Br- distance: 3.399 Å; minimum I···Br- distance: 3.093 Å), thus suggesting it is quite strong. The structural packing (Fig. 2) presents some interesting features. The tetrafluoro-1,2-diiodoethane molecules segregate in channels surrounded by cation molecules and do not show any rotational disorder. All the F atoms are engaged in F···F short contacts and produce an infinite ribbon (Fig. 3) which is anchored to the surrounding cations by H···F and C···F short contacts. Table B reports all the short contacts involving diiodoperfluoroethane molecules.

Related literature top

For a general discussion on halogen bonds (XBs) involving anionic halogen-bonding acceptors, see: for oxyanions, Abate et al. (2011); for chloride and bromide, Abate et al. (2009); for iodide, Metrangolo et al. (2008). For examples of reliable XB donors in an ionic context, see: Cavallo et al. (2010); Metrangolo et al. (2009); Logothetis et al. (2004). For different supramolecular structures of halogen-bonded (poly)anions, see: discrete adducts, Gattuso et al. (2007); infinite chains, Gattuso et al. (2006); comb-like arrays, Biella et al. (2009); 'ring and stick' one-dimensional chains, Gattuso et al. (2009); two-dimensional layers showing Borromean interpenetration, Liantonio et al. (2006). For very short XBs in presence of HBs, see: Cametti et al. (2012); Gattuso et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For van der Waals radii, see Bondi (1964).

Experimental top

In order to prepare the complex, a vial containing a CHCl3 solution of the two starting components (1:1 molar ratio) was sealed in a wide mouth vessel containg vaseline oil. Slow and isothermal CHCl3 diffusion furnished good quality crystals.

Refinement top

All H atoms were located from difference Fourier maps and were then refined isotropically using a soft C—H distance restraint SADI 0.02 for all of them.

Structure description top

We have recently reported how oxyanions (Abate et al., 2011) and chloride, bromide, (Abate et al., 2009) or, more commonly, iodide anions (Metrangolo et al., 2008) are effective acceptors of halogen bonds (XB) when interacting with a variety of XB donors, e.g. di- (Cavallo et al., 2010) or tri-haloperfluorocarbons (Metrangolo et al., 2009), haloimidazolium (Cametti et al., 2012) or halopyridinium (Logothetis et al., 2004) derivatives. In particular, naked halide anions were proven to work as particularly versatile XB acceptors and afforded supramolecular (poly)anions with quite different structures, e.g. discrete adducts (Gattuso et al., 2007), infinite one-dimensional chains (Gattuso et al., 2006), comb-like arrays (Biella et al., 2009), 'ring and stick' one-dimensional chains (Gattuso et al., 2009), and two-dimensional layers showing Borromean interpenetration (Liantonio et al., 2006). In most of these structures, halide anions prefer to work as polydentate XB acceptors also when some H atoms in the cation could work as particularly effective hydrogen bond (HB) donor sites. In the present structure (Fig. 1), the bromide anion forms only one XB despite the composition of the system could allow for the bromide to function as a bidentate XB acceptor. Surprisingly, one iodine atom of TFDIE is not involved in any short contact. The positive phosphorus atom and the tetrafluorophenyl residue promote the acidity of the benzylic H atoms and they are both involved in short, probably strong, HBs with bromide anions, the coordination sphere of which is completed by two long, probably weak, HB interactions with H atoms of the non fluorinated phenyl rings (see Table A). A CSD search (CSD version 5.33; Allen (2002)) of C—I···Br- interactions shows that the I···Br- distances observed here (I···Br- 3.1798 (7) Å) is below the lower quartile of the corresponding dataset (48 hits; mean I···Br- distance: 3.399 Å; minimum I···Br- distance: 3.093 Å), thus suggesting it is quite strong. The structural packing (Fig. 2) presents some interesting features. The tetrafluoro-1,2-diiodoethane molecules segregate in channels surrounded by cation molecules and do not show any rotational disorder. All the F atoms are engaged in F···F short contacts and produce an infinite ribbon (Fig. 3) which is anchored to the surrounding cations by H···F and C···F short contacts. Table B reports all the short contacts involving diiodoperfluoroethane molecules.

For a general discussion on halogen bonds (XBs) involving anionic halogen-bonding acceptors, see: for oxyanions, Abate et al. (2011); for chloride and bromide, Abate et al. (2009); for iodide, Metrangolo et al. (2008). For examples of reliable XB donors in an ionic context, see: Cavallo et al. (2010); Metrangolo et al. (2009); Logothetis et al. (2004). For different supramolecular structures of halogen-bonded (poly)anions, see: discrete adducts, Gattuso et al. (2007); infinite chains, Gattuso et al. (2006); comb-like arrays, Biella et al. (2009); 'ring and stick' one-dimensional chains, Gattuso et al. (2009); two-dimensional layers showing Borromean interpenetration, Liantonio et al. (2006). For very short XBs in presence of HBs, see: Cametti et al. (2012); Gattuso et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002). For van der Waals radii, see Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2012 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the asymmetric unit of the title compound showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Mercury ball and stick plot of the complex viewed along a axis, showing the channels were the TFDIE molecules are segregated. Colour code: carbon, grey; hydrogen, light blue, fluorine, yellow; bromine, light brown and iodine, purple.
[Figure 3] Fig. 3. Mercury ball and stick plot of the complex, showing a part of the infinite chain of diiodotetrafluoro ethane molecules. Black dotted lines represent short intermolecular interactions. Colour code as Figure 2.
Triphenyl(2,3,5,6-tetrafluorobenzyl)phosphonium bromide–1,1,2,2-tetrafluoro-1,2-diiodoethane (1/1) top
Crystal data top
C25H18F4P+·Br·C2F4I2Z = 2
Mr = 859.09F(000) = 816
Triclinic, P1Dx = 2.072 Mg m3
a = 9.6451 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9491 (12) ÅCell parameters from 11010 reflections
c = 13.8425 (15) Åθ = 2.3–34.3°
α = 78.07 (2)°µ = 3.87 mm1
β = 79.08 (2)°T = 90 K
γ = 76.76 (2)°Prism, colourless
V = 1376.7 (3) Å30.26 × 0.14 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
9550 reflections with I > 2σ(I)
ω and φ scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
θmax = 34.8°, θmin = 1.9°
Tmin = 0.795, Tmax = 1.000h = 1515
21807 measured reflectionsk = 1717
10912 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.1396P]
where P = (Fo2 + 2Fc2)/3
10912 reflections(Δ/σ)max = 0.002
424 parametersΔρmax = 1.33 e Å3
153 restraintsΔρmin = 0.82 e Å3
Crystal data top
C25H18F4P+·Br·C2F4I2γ = 76.76 (2)°
Mr = 859.09V = 1376.7 (3) Å3
Triclinic, P1Z = 2
a = 9.6451 (10) ÅMo Kα radiation
b = 10.9491 (12) ŵ = 3.87 mm1
c = 13.8425 (15) ÅT = 90 K
α = 78.07 (2)°0.26 × 0.14 × 0.10 mm
β = 79.08 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
10912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9550 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 1.000Rint = 0.021
21807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030153 restraints
wR(F2) = 0.077All H-atom parameters refined
S = 1.04Δρmax = 1.33 e Å3
10912 reflectionsΔρmin = 0.82 e Å3
424 parameters
Special details top

Experimental. OXFORD low temperature device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. H atoms were refined by imposing soft restraint (all C—H distances nearly equal, see _iucr_refine_instructions_details)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.22061 (5)0.62628 (4)0.20374 (3)0.01039 (8)
C10.23578 (19)0.57972 (17)0.33387 (13)0.0118 (3)
C20.1283 (2)0.63023 (18)0.40614 (14)0.0158 (3)
H20.054 (2)0.6956 (19)0.3883 (19)0.024 (7)*
C30.1375 (2)0.5875 (2)0.50599 (15)0.0193 (4)
H30.065 (2)0.623 (2)0.5528 (16)0.020 (7)*
C40.2531 (2)0.4930 (2)0.53479 (16)0.0208 (4)
H40.264 (3)0.464 (3)0.5999 (12)0.036 (8)*
C50.3586 (2)0.4403 (2)0.46351 (16)0.0199 (4)
H50.435 (2)0.3789 (19)0.4843 (19)0.021 (7)*
C60.3510 (2)0.48281 (18)0.36277 (15)0.0158 (3)
H60.420 (2)0.446 (2)0.3162 (14)0.010 (5)*
C70.1505 (2)0.50892 (17)0.16526 (14)0.0134 (3)
C80.2253 (2)0.43955 (19)0.09166 (16)0.0194 (4)
H80.3168 (17)0.451 (2)0.0619 (18)0.019 (6)*
C90.1600 (3)0.3527 (2)0.06445 (18)0.0245 (4)
H90.208 (3)0.308 (2)0.0141 (16)0.029 (7)*
C100.0227 (3)0.3377 (2)0.10923 (17)0.0227 (4)
H100.029 (3)0.287 (2)0.090 (2)0.029 (7)*
C110.0530 (2)0.4085 (2)0.18308 (17)0.0225 (4)
H110.1430 (19)0.393 (3)0.215 (2)0.035 (8)*
C120.0113 (2)0.4928 (2)0.21135 (16)0.0188 (4)
H120.043 (3)0.542 (2)0.2572 (16)0.025 (7)*
C130.09467 (19)0.77405 (16)0.18385 (13)0.0116 (3)
C140.0966 (2)0.87510 (18)0.23130 (15)0.0157 (3)
H140.156 (2)0.867 (2)0.2793 (15)0.015 (6)*
C150.0025 (2)0.99060 (18)0.20884 (16)0.0170 (4)
H150.001 (3)1.0570 (19)0.2419 (18)0.023 (7)*
C160.0912 (2)1.00599 (18)0.14058 (16)0.0176 (4)
H160.161 (2)1.0804 (18)0.130 (2)0.027 (7)*
C170.0919 (2)0.90590 (19)0.09336 (15)0.0167 (4)
H170.151 (3)0.917 (3)0.0462 (18)0.038 (8)*
C180.0017 (2)0.79030 (18)0.11510 (14)0.0140 (3)
H180.001 (3)0.726 (2)0.081 (2)0.033 (8)*
C190.39365 (19)0.64217 (17)0.12875 (14)0.0124 (3)
H19A0.452 (2)0.5643 (16)0.1463 (18)0.019 (6)*
H19B0.374 (3)0.657 (2)0.0643 (12)0.021 (7)*
C200.44941 (18)0.75023 (17)0.14995 (13)0.0117 (3)
C210.40228 (19)0.87529 (18)0.10587 (14)0.0138 (3)
F10.31174 (12)0.90025 (11)0.03855 (9)0.0172 (2)
C220.4469 (2)0.97554 (18)0.12931 (15)0.0170 (4)
F20.39219 (14)1.09432 (11)0.08625 (10)0.0231 (3)
C230.5442 (2)0.9558 (2)0.19465 (16)0.0195 (4)
H230.577 (2)1.0179 (18)0.2150 (18)0.015 (6)*
C240.5952 (2)0.8316 (2)0.23629 (15)0.0188 (4)
F30.69239 (14)0.80545 (14)0.29958 (10)0.0262 (3)
C250.5492 (2)0.73121 (18)0.21507 (14)0.0151 (3)
F40.60278 (13)0.61239 (11)0.25752 (10)0.0202 (2)
I10.68637 (2)0.17750 (2)0.35932 (2)0.01447 (3)
C260.7339 (2)0.07462 (18)0.50522 (15)0.0153 (3)
F50.85788 (14)0.09688 (12)0.52343 (10)0.0218 (3)
F60.62843 (14)0.11632 (12)0.57682 (9)0.0215 (3)
C270.7486 (2)0.06934 (19)0.51369 (15)0.0163 (3)
F70.86111 (13)0.11245 (12)0.44721 (9)0.0208 (2)
F80.63051 (13)0.09436 (12)0.49073 (10)0.0203 (2)
I20.78089 (2)0.17193 (2)0.66122 (2)0.02326 (4)
Br10.61475 (2)0.31789 (2)0.14415 (2)0.01496 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01231 (18)0.00947 (19)0.00968 (19)0.00121 (14)0.00371 (15)0.00144 (15)
C10.0150 (7)0.0117 (7)0.0099 (7)0.0031 (6)0.0044 (6)0.0022 (6)
C20.0180 (8)0.0153 (8)0.0128 (8)0.0005 (6)0.0035 (6)0.0017 (6)
C30.0225 (9)0.0212 (9)0.0122 (8)0.0002 (7)0.0022 (7)0.0031 (7)
C40.0246 (9)0.0262 (10)0.0105 (8)0.0030 (8)0.0049 (7)0.0007 (7)
C50.0198 (9)0.0208 (9)0.0164 (9)0.0015 (7)0.0064 (7)0.0002 (7)
C60.0160 (8)0.0152 (8)0.0154 (8)0.0004 (6)0.0047 (6)0.0015 (7)
C70.0172 (8)0.0111 (7)0.0131 (8)0.0030 (6)0.0061 (6)0.0009 (6)
C80.0193 (9)0.0180 (9)0.0234 (10)0.0006 (7)0.0064 (7)0.0095 (8)
C90.0304 (11)0.0173 (9)0.0296 (12)0.0007 (8)0.0110 (9)0.0116 (8)
C100.0351 (11)0.0161 (9)0.0223 (10)0.0113 (8)0.0147 (9)0.0006 (7)
C110.0286 (10)0.0239 (10)0.0193 (10)0.0164 (8)0.0057 (8)0.0014 (8)
C120.0229 (9)0.0200 (9)0.0160 (9)0.0098 (7)0.0017 (7)0.0033 (7)
C130.0127 (7)0.0096 (7)0.0117 (8)0.0003 (6)0.0023 (6)0.0011 (6)
C140.0161 (8)0.0136 (8)0.0167 (9)0.0006 (6)0.0033 (7)0.0029 (7)
C150.0184 (8)0.0115 (8)0.0192 (9)0.0016 (6)0.0012 (7)0.0036 (7)
C160.0140 (8)0.0129 (8)0.0210 (9)0.0013 (6)0.0005 (7)0.0009 (7)
C170.0142 (8)0.0174 (9)0.0165 (9)0.0002 (6)0.0054 (7)0.0009 (7)
C180.0142 (7)0.0133 (8)0.0134 (8)0.0003 (6)0.0040 (6)0.0011 (6)
C190.0149 (7)0.0116 (7)0.0104 (7)0.0011 (6)0.0039 (6)0.0015 (6)
C200.0113 (7)0.0138 (8)0.0099 (7)0.0019 (6)0.0015 (6)0.0022 (6)
C210.0121 (7)0.0165 (8)0.0117 (8)0.0024 (6)0.0011 (6)0.0008 (6)
F10.0170 (5)0.0158 (5)0.0172 (6)0.0012 (4)0.0066 (4)0.0020 (4)
C220.0186 (8)0.0122 (8)0.0184 (9)0.0043 (6)0.0027 (7)0.0024 (7)
F20.0276 (6)0.0126 (5)0.0264 (7)0.0040 (5)0.0006 (5)0.0012 (5)
C230.0198 (9)0.0219 (10)0.0192 (9)0.0099 (7)0.0036 (7)0.0082 (8)
C240.0171 (8)0.0295 (11)0.0132 (8)0.0098 (7)0.0034 (7)0.0047 (7)
F30.0260 (7)0.0381 (8)0.0212 (7)0.0136 (6)0.0116 (5)0.0045 (6)
C250.0146 (8)0.0176 (8)0.0125 (8)0.0028 (6)0.0031 (6)0.0002 (6)
F40.0214 (6)0.0188 (6)0.0208 (6)0.0026 (4)0.0123 (5)0.0029 (5)
I10.01472 (6)0.01475 (6)0.01311 (6)0.00167 (4)0.00179 (4)0.00214 (4)
C260.0162 (8)0.0151 (8)0.0141 (8)0.0015 (6)0.0035 (6)0.0020 (6)
F50.0232 (6)0.0217 (6)0.0248 (7)0.0083 (5)0.0109 (5)0.0026 (5)
F60.0267 (6)0.0208 (6)0.0135 (6)0.0010 (5)0.0009 (5)0.0046 (5)
C270.0141 (8)0.0183 (9)0.0162 (9)0.0023 (6)0.0024 (6)0.0030 (7)
F70.0197 (6)0.0216 (6)0.0192 (6)0.0011 (5)0.0004 (5)0.0071 (5)
F80.0206 (6)0.0190 (6)0.0241 (6)0.0073 (4)0.0088 (5)0.0010 (5)
I20.03227 (8)0.01838 (7)0.01800 (7)0.00200 (5)0.00925 (5)0.00110 (5)
Br10.01754 (8)0.01333 (8)0.01289 (8)0.00093 (6)0.00445 (6)0.00218 (6)
Geometric parameters (Å, º) top
P1—C71.7917 (19)C14—H140.935 (14)
P1—C131.7920 (18)C15—C161.388 (3)
P1—C11.7922 (19)C15—H150.926 (14)
P1—C191.8153 (19)C16—C171.389 (3)
C1—C21.398 (3)C16—H160.936 (14)
C1—C61.405 (2)C17—C181.389 (3)
C2—C31.377 (3)C17—H170.920 (14)
C2—H20.920 (14)C18—H180.930 (14)
C3—C41.394 (3)C19—C201.507 (3)
C3—H30.932 (14)C19—H19A0.921 (13)
C4—C51.389 (3)C19—H19B0.920 (14)
C4—H40.909 (14)C20—C211.389 (2)
C5—C61.386 (3)C20—C251.394 (3)
C5—H50.924 (14)C21—F11.341 (2)
C6—H60.919 (13)C21—C221.383 (3)
C7—C81.388 (3)C22—F21.345 (2)
C7—C121.406 (3)C22—C231.376 (3)
C8—C91.399 (3)C23—C241.378 (3)
C8—H80.925 (14)C23—H230.922 (13)
C9—C101.382 (3)C24—F31.346 (2)
C9—H90.924 (14)C24—C251.378 (3)
C10—C111.402 (3)C25—F41.340 (2)
C10—H100.934 (14)I1—C262.175 (2)
C11—C121.375 (3)C26—F61.349 (2)
C11—H110.931 (14)C26—F51.351 (2)
C12—H120.921 (14)C26—C271.532 (3)
C13—C181.386 (3)C27—F81.338 (2)
C13—C141.404 (3)C27—F71.347 (2)
C14—C151.393 (3)C27—I22.159 (2)
C7—P1—C13107.23 (9)C16—C15—C14120.78 (19)
C7—P1—C1108.81 (9)C16—C15—H15119.1 (17)
C13—P1—C1109.90 (9)C14—C15—H15120.0 (17)
C7—P1—C19109.70 (9)C15—C16—C17120.20 (17)
C13—P1—C19109.68 (9)C15—C16—H16120.9 (17)
C1—P1—C19111.42 (9)C17—C16—H16118.6 (17)
C2—C1—C6120.18 (17)C16—C17—C18119.52 (18)
C2—C1—P1120.78 (14)C16—C17—H17120.2 (18)
C6—C1—P1118.78 (14)C18—C17—H17120.3 (18)
C3—C2—C1119.93 (17)C13—C18—C17120.53 (18)
C3—C2—H2118.9 (17)C13—C18—H18121.8 (18)
C1—C2—H2121.0 (17)C17—C18—H18117.7 (18)
C2—C3—C4119.94 (18)C20—C19—P1111.81 (12)
C2—C3—H3118.5 (16)C20—C19—H19A112.2 (16)
C4—C3—H3121.6 (16)P1—C19—H19A103.6 (16)
C5—C4—C3120.50 (19)C20—C19—H19B111.5 (16)
C5—C4—H4117 (2)P1—C19—H19B103.4 (17)
C3—C4—H4122 (2)H19A—C19—H19B114 (2)
C6—C5—C4120.15 (18)C21—C20—C25116.27 (17)
C6—C5—H5120.9 (16)C21—C20—C19121.35 (16)
C4—C5—H5119.0 (16)C25—C20—C19122.37 (16)
C5—C6—C1119.28 (18)F1—C21—C22118.80 (17)
C5—C6—H6119.5 (15)F1—C21—C20119.61 (17)
C1—C6—H6121.2 (15)C22—C21—C20121.59 (18)
C8—C7—C12120.72 (18)F2—C22—C23120.42 (18)
C8—C7—P1122.82 (15)F2—C22—C21118.00 (19)
C12—C7—P1116.43 (14)C23—C22—C21121.58 (18)
C7—C8—C9118.7 (2)C22—C23—C24117.24 (19)
C7—C8—H8120.0 (15)C22—C23—H23126.3 (15)
C9—C8—H8121.3 (15)C24—C23—H23116.5 (15)
C10—C9—C8120.5 (2)F3—C24—C25118.05 (19)
C10—C9—H9120.5 (18)F3—C24—C23120.27 (19)
C8—C9—H9119.0 (18)C25—C24—C23121.68 (19)
C9—C10—C11120.7 (2)F4—C25—C24119.11 (17)
C9—C10—H10123.8 (17)F4—C25—C20119.30 (17)
C11—C10—H10115.3 (17)C24—C25—C20121.58 (18)
C12—C11—C10119.2 (2)F6—C26—F5107.16 (16)
C12—C11—H11122.0 (17)F6—C26—C27109.03 (16)
C10—C11—H11118.6 (17)F5—C26—C27108.36 (15)
C11—C12—C7120.16 (19)F6—C26—I1109.67 (12)
C11—C12—H12117.5 (17)F5—C26—I1110.37 (13)
C7—C12—H12122.2 (17)C27—C26—I1112.11 (14)
C18—C13—C14120.25 (16)F8—C27—F7107.53 (16)
C18—C13—P1118.75 (14)F8—C27—C26109.93 (16)
C14—C13—P1120.84 (14)F7—C27—C26108.98 (16)
C15—C14—C13118.72 (18)F8—C27—I2108.64 (13)
C15—C14—H14118.8 (15)F7—C27—I2108.96 (12)
C13—C14—H14122.4 (15)C26—C27—I2112.67 (14)
C7—P1—C1—C297.32 (17)C15—C16—C17—C180.1 (3)
C13—P1—C1—C219.81 (18)C14—C13—C18—C170.9 (3)
C19—P1—C1—C2141.60 (16)P1—C13—C18—C17176.34 (15)
C7—P1—C1—C676.88 (17)C16—C17—C18—C130.4 (3)
C13—P1—C1—C6165.98 (15)C7—P1—C19—C20173.43 (12)
C19—P1—C1—C644.20 (18)C13—P1—C19—C2055.90 (15)
C6—C1—C2—C31.9 (3)C1—P1—C19—C2066.02 (14)
P1—C1—C2—C3175.99 (16)P1—C19—C20—C2181.71 (19)
C1—C2—C3—C40.7 (3)P1—C19—C20—C2597.62 (18)
C2—C3—C4—C50.7 (3)C25—C20—C21—F1176.67 (16)
C3—C4—C5—C61.0 (3)C19—C20—C21—F14.0 (3)
C4—C5—C6—C10.2 (3)C25—C20—C21—C223.0 (3)
C2—C1—C6—C51.6 (3)C19—C20—C21—C22176.32 (17)
P1—C1—C6—C5175.86 (16)F1—C21—C22—F22.8 (3)
C13—P1—C7—C8121.66 (17)C20—C21—C22—F2177.53 (16)
C1—P1—C7—C8119.51 (17)F1—C21—C22—C23177.31 (17)
C19—P1—C7—C82.62 (19)C20—C21—C22—C232.4 (3)
C13—P1—C7—C1256.18 (17)F2—C22—C23—C24179.70 (17)
C1—P1—C7—C1262.64 (17)C21—C22—C23—C240.2 (3)
C19—P1—C7—C12175.23 (14)C22—C23—C24—F3178.92 (18)
C12—C7—C8—C90.3 (3)C22—C23—C24—C251.1 (3)
P1—C7—C8—C9178.07 (16)F3—C24—C25—F40.2 (3)
C7—C8—C9—C100.9 (3)C23—C24—C25—F4179.83 (18)
C8—C9—C10—C110.5 (3)F3—C24—C25—C20179.67 (17)
C9—C10—C11—C120.5 (3)C23—C24—C25—C200.4 (3)
C10—C11—C12—C71.1 (3)C21—C20—C25—F4177.76 (16)
C8—C7—C12—C110.7 (3)C19—C20—C25—F42.9 (3)
P1—C7—C12—C11177.23 (16)C21—C20—C25—C241.7 (3)
C7—P1—C13—C1822.55 (18)C19—C20—C25—C24177.67 (17)
C1—P1—C13—C18140.67 (15)F6—C26—C27—F867.0 (2)
C19—P1—C13—C1896.51 (16)F5—C26—C27—F8176.66 (14)
C7—P1—C13—C14162.02 (15)I1—C26—C27—F854.61 (18)
C1—P1—C13—C1443.91 (18)F6—C26—C27—F7175.36 (14)
C19—P1—C13—C1478.91 (17)F5—C26—C27—F759.0 (2)
C18—C13—C14—C150.8 (3)I1—C26—C27—F763.01 (18)
P1—C13—C14—C15176.16 (15)F6—C26—C27—I254.30 (18)
C13—C14—C15—C160.3 (3)F5—C26—C27—I262.02 (17)
C14—C15—C16—C170.2 (3)I1—C26—C27—I2175.94 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Br10.92 (2)2.80 (2)3.6866 (19)163 (2)
C19—H19B···Br1i0.92 (2)2.83 (2)3.7263 (19)166 (2)
C16—H16···Br1ii0.94 (1)2.99 (2)3.910 (2)168 (2)
C11—H11···Br1iii0.93 (1)3.03 (2)3.725 (2)133 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···Br10.921 (19)2.796 (18)3.6866 (19)162.8 (19)
C19—H19B···Br1i0.921 (18)2.825 (16)3.7263 (19)166 (2)
C16—H16···Br1ii0.936 (14)2.991 (15)3.910 (2)168 (2)
C11—H11···Br1iii0.931 (14)3.025 (15)3.725 (2)133 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y+1, z; (iii) x1, y, z.
Table A. Short H···Br contacts. top
H···BrC—H···Br
C19—H19A···Br12.797 (15)163 (2)
C19—H19B···Br1i2.826 (15)167 (2)
C16—H16···Br1ii2.991 (15)168 (2)
C11—H11···Br1iii3.025 (15)133 (2)
Symmetry codes: (i) 1-x, 1-y, -z; (ii) 1+x, -1+y, z; (iii) 1+x, y, z.
Table B. Contacts below the sum of van der Waals radiia involving TFDIE. top
F···ZC—F···Z
C26—F5···F7i2.863 (2)172.27 (12)
C26—F6···F8ii2.901 (2)102.90 (11)
C27—F7···F5i2.863 (2)117.40 (11)
C27—F8···F8ii2.875 (3)117.65 (12)
C27—F8···F8ii2.875 (3)117.65 (12)
C26—F6···C24iii3.099 (3)170.23 (12)
C27—F7···H2iv2.62 (2)148.9 (6)
Note: (a) van der Waals radii from Bondi (1964). Symmetry codes: (i) 2-x, -y, 1-z; (ii) 1-x, -y, 1-z; (iii) 1-x, 1-y, 1-z; (iv) 1+x, -1+y, z.

Acknowledgements

GC, PM, GR and GT acknowledge the Fondazione Cariplo (projects 2009–2550 and 2010–1351) and the "5x1000–2011 project" for financial support.

References

First citationAbate, A., Biella, S., Cavallo, G., Meyer, F., Neukirch, H., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2009). J. Fluorine Chem. 130, 1171–1177.  Web of Science CSD CrossRef CAS Google Scholar
First citationAbate, A., Martì-Rujas, J., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2011). Cryst. Growth Des. 11, 4220–4226.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBiella, S., Gattuso, G., Notti, A., Metrangolo, P., Pappalardo, S., Parisi, M. F., Pilati, T., Resnati, G. & Terraneo, G. (2009). Supramol. Chem. 21, 149–156.  Web of Science CSD CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCametti, M., Raatikainen, K., Metrangolo, P., Pilati, T., Terraneo, G. & Resnati, G. (2012). Org. Biomol. Chem. 10, 1329–1333.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCavallo, G., Biella, S., Lü, J., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2010). J. Fluorine Chem. 131, 1165–1172.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGattuso, G., Liantonio, R., Metrangolo, P., Meyer, F., Pappalardo, A., Parisi, M., Pilati, T., Pisagatti, I. & Resnati, G. (2006). Supramol. Chem. 18, 235–243.  Web of Science CSD CrossRef CAS Google Scholar
First citationGattuso, G., Notti, A., Pappalardo, S., Parisi, M. F., Pilati, T., Resnati, G. & Terraneo, G. (2009). CrystEngComm, 11, 1204–1206.  Web of Science CSD CrossRef CAS Google Scholar
First citationGattuso, G., Pappalardo, A., Parisi, M., Pisigatti, I., Crea, F., Liantonio, R., Metrangolo, P., Navarrini, W., Resnati, G., Pilati, T. & Pappalardo, S. (2007). Tetrahedron, 63, 4951–4958.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiantonio, R., Metrangolo, P., Meyer, F., Pilati, T., Navarrini, W. & Resnati, G. (2006). Chem. Commun. pp. 1819–1821.  Web of Science CSD CrossRef Google Scholar
First citationLogothetis, T. M., Meyer, F., Metrangolo, P., Pilati, T. & Resnati, G. (2004). New J. Chem. 28, 760–763.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Chem. Commun. pp. 1635–1637.  Web of Science CSD CrossRef Google Scholar
First citationMetrangolo, P., Pilati, T., Terraneo, G., Biella, S. & Resnati, G. (2009). CrystEngComm, 11, 1187–1196.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds