organic compounds
4-[(E)-(4-Chlorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione
aDepartment of Chemistry, P.A. College of Engineering, Nadupadavu 574 153, D.K., Mangalore, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C10H9ClN4S, the dihedral angle between the mean planes of the phenyl and 1H-1,2,4-triazole-5(4H)-thione rings is 25.3 (9)°. The latter ring is essentially planar, with maximum deviations of 0.010 and −0.010 Å for the ring N atom in the 4-position and ring C atom bearing the methyl group, respectively. An intramolecular C—H⋯S contact occurs. In the crystal, pairs of weak N—H⋯S interactions link the molecules into inversion dimers in the ac plane, forming R22(8) graph-set motifs. In addition, weak π–π interactions [centroid–centroid distances = 3.3463 (14) and 3.6127 (13)Å] are observed.
CCDC reference: 976444
Related literature
For the chemistry of Schiff base compounds, see: Dubey & Vaid (1991); Yadav et al. (1994). For the use of containing different donor atoms in analytical applications and metal coordination, see: Galic et al. (2001); Wyrzykiewicz & Prukah (1998); Reddy & Lirgappa (1994). Many compounds containing S and N atoms are antihypertensive (Wei et al., 1981,1982), analgesic (Thieme et al., 1973a,b), antiinflammatory (Dornow et al., 1964), sedative (Barrera et al.,1985), or fungicidal (Malik et al., 2011). For the crystal structures of related see: Jeyaseelan et al. (2012); Devarajegowda et al. (2012); Vinduvahini et al. (2011); Almutairi et al. (2012); Kubicki et al. (2012); Praveen et al. (2012); Kant et al. (2012); Ding et al. (2009). For the crystal structures of reported by our group, see: Sarojini et al. (2007a,b). For standard bond lengths, see: Allen et al. (1987). For π–π stacking, see: Grimme (2008).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 976444
https://doi.org/10.1107/S1600536813033527/qm2102sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813033527/qm2102Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813033527/qm2102Isup3.cml
To a suspension of 4-chlorobenzaldehyde (1.405 g, 0.01 mol) in ethanol (15 ml), 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole- 3-thione (0.01 mol, 1.3 g) was added and heated to get a clear solution. To this a few drops of conc.H2SO4 was added as a catalyst and refluxed for 36 h on a water bath. The precipitate formed was filtered and recrystallized from methanol to get the titled compound. The single crystals were grown from methanol (M.P.:.463 - 465 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3) times Ueq of the parent atom.Idealised Me refined as rotating groups.
During the last few decades, there has been a considerable interest in the chemistry of Schiff base compounds (Dubey & Vaid, 1991; Yadav et al., 1994).
containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001; Wyrzykiewicz & Pruka, 1998; Reddy & Lirgappa, 1994). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei et al., 1981,1982), analgesic (Thieme et al., 1973a,b), antiinflammatory (Dornow et al., 1964), sedative (Barrera et al.,1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding could be of interest from the viewpoint of chemical reactivity and biological activity. The crystal structures of some of the related viz: 3-ethyl-4-[(E)-(4-fluorobenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Jeyaseelan et al., 2012); 4-[(E)-(4-fluorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione (Devarajegowda et al., 2012); 3-[2-(2,6-dichloro-anilino)benzyl]-4-[(4-methoxybenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Vinduvahini et al., 2011); 3-(adamantan-1-yl)-1-[(4-ethylpiperazin-1-yl)methyl]-4-[(E)-(4-hydroxy-benzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Almutairi et al., 2012); 4-{(2E)-2-[1-(4-Methoxyphenyl)ethylidene]hydrazinyl}-8-(trifluoromethyl)quinoline (Kubicki et al., 2012); (E)-N'-(4-Methoxybenzylidene)-2-m-tolylacetohydrazide (Praveen et al., 2012); (1Z)-1-[(2E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-ylidene]-2-(2,4-dinitrophenyl)hydrazine (Kant et al., 2012); (E)-3-(2-ethoxyphenyl)-4-(2-fluorobenzylideneamino)-1H-1,2,4-triazole-5(4H)-thione (Ding et al.,2009) have been reported. Crystal structures of some of the were also reported from our group (Sarojini et al., 2007a,b). In continuation of our work on the synthesis of acetamides derivatives, we report herein the of the title compound, C10H9ClN4S, (I).In the title compound, (I), C10H9ClN4S, the dihedral angle between the mean planes of the phenyl ring and the1H-1,2,4-triazole-5(4H)-thione ring is 25.3 (9)° (Fig.1). The 1,2,4-triazole-5(4H)-thione ring is essentially planar with a maximum deviation of 0.010Å and -0.010Å for the N2 nitrogen and C9 carbon atom, respectively. Bond lengths and bond angles are in normal ranges (Allen et al., 1987).In the crystal, weak N4—H4···S1 intermolecular interactions forming R22(8) graph set motifs link the molecules into dimers diagonally in the ac plane (Fig. 2). In addition, weak Cg–Cg π–π intermolecular interactions are observed which may contribute to crystal packing (Cg1–Cg1 = 3.3463 (14)Å; -x, 1-y, -z; Cg2–Cg2 = 3.6127 (13)Å; 1-x, 2-y, 1-z; Cg1 = N2/C81/N4/N3/C9; Cg2 = C2–C7) (Grimme, 1987). No classical hydrogen bonds were observed.
For the chemistry of Schiff base compounds, see: Dubey & Vaid (1991); Yadav et al. (1994). For the use of π–π stacking, see: Grimme (2008). AUTHOR: please remember to sub-dvide this section in future
containing different donor atoms in analytical applications and metal coordination, see: Galic et al. (2001); Wyrzykiewicz & Prukah (1998); Reddy & Lirgappa (1994). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei et al., 1981,1982), analgesic (Thieme et al., 1973a,b), antiinflammatory (Dornow et al., 1964), sedative (Barrera et al.,1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding could be of interest from the viewpoint of chemical reactivity and biological activity. For the crystal structures of related see: Jeyaseelan et al. (2012); Devarajegowda et al. (2012); Vinduvahini et al. (2011); Almutairi et al. (2012); Kubicki et al. (2012); Praveen et al. (2012); Kant et al. (2012); Ding et al. (2009). For the crystal structures of reported by our group, see: Sarojini et al. (2007a,b). For standard bond lengths, see: Allen et al. (1987). ForData collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C10H9ClN4S | Z = 2 |
Mr = 252.72 | F(000) = 260 |
Triclinic, P1 | Dx = 1.471 Mg m−3 |
a = 7.0718 (8) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 7.2901 (8) Å | Cell parameters from 1400 reflections |
c = 11.8434 (7) Å | θ = 3.8–72.2° |
α = 92.778 (7)° | µ = 4.49 mm−1 |
β = 94.986 (7)° | T = 173 K |
γ = 109.752 (10)° | Irregular, colourless |
V = 570.50 (10) Å3 | 0.42 × 0.08 × 0.06 mm |
Agilent Gemini EOS diffractometer | 2195 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1860 reflections with I > 2σ(I) |
Detector resolution: 16.0416 pixels mm-1 | Rint = 0.030 |
ω scans | θmax = 72.3°, θmin = 3.8° |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | h = −8→8 |
Tmin = 0.544, Tmax = 1.000 | k = −8→8 |
3413 measured reflections | l = −10→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0694P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2195 reflections | Δρmax = 0.34 e Å−3 |
146 parameters | Δρmin = −0.39 e Å−3 |
0 restraints |
C10H9ClN4S | γ = 109.752 (10)° |
Mr = 252.72 | V = 570.50 (10) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0718 (8) Å | Cu Kα radiation |
b = 7.2901 (8) Å | µ = 4.49 mm−1 |
c = 11.8434 (7) Å | T = 173 K |
α = 92.778 (7)° | 0.42 × 0.08 × 0.06 mm |
β = 94.986 (7)° |
Agilent Gemini EOS diffractometer | 2195 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 1860 reflections with I > 2σ(I) |
Tmin = 0.544, Tmax = 1.000 | Rint = 0.030 |
3413 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.34 e Å−3 |
2195 reflections | Δρmin = −0.39 e Å−3 |
146 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.50541 (9) | 0.96033 (9) | 0.77738 (5) | 0.03752 (19) | |
S1 | −0.33106 (9) | 0.64930 (9) | 0.16551 (5) | 0.03564 (19) | |
N1 | 0.0401 (3) | 0.4905 (3) | 0.27296 (16) | 0.0295 (4) | |
N2 | −0.0729 (3) | 0.4344 (3) | 0.16664 (15) | 0.0287 (4) | |
N3 | −0.1813 (3) | 0.2442 (3) | 0.00660 (17) | 0.0353 (4) | |
N4 | −0.2891 (3) | 0.3680 (3) | 0.02140 (16) | 0.0317 (4) | |
H4 | −0.3862 | 0.3696 | −0.0271 | 0.038* | |
C1 | 0.0775 (3) | 0.6667 (3) | 0.31206 (19) | 0.0311 (5) | |
H1 | 0.0364 | 0.7520 | 0.2684 | 0.037* | |
C2 | 0.1852 (3) | 0.7342 (3) | 0.42579 (19) | 0.0289 (5) | |
C3 | 0.2005 (3) | 0.9179 (3) | 0.4726 (2) | 0.0320 (5) | |
H3 | 0.1460 | 0.9957 | 0.4301 | 0.038* | |
C4 | 0.2955 (3) | 0.9876 (3) | 0.5816 (2) | 0.0318 (5) | |
H4A | 0.3026 | 1.1095 | 0.6131 | 0.038* | |
C5 | 0.3788 (3) | 0.8714 (3) | 0.64183 (19) | 0.0307 (5) | |
C6 | 0.3682 (3) | 0.6889 (3) | 0.5977 (2) | 0.0329 (5) | |
H6 | 0.4265 | 0.6136 | 0.6400 | 0.039* | |
C7 | 0.2703 (3) | 0.6195 (3) | 0.4903 (2) | 0.0333 (5) | |
H7 | 0.2606 | 0.4959 | 0.4605 | 0.040* | |
C8 | −0.2301 (3) | 0.4851 (3) | 0.11732 (19) | 0.0291 (5) | |
C9 | −0.0524 (3) | 0.2861 (3) | 0.0975 (2) | 0.0322 (5) | |
C10 | 0.1023 (4) | 0.1949 (4) | 0.1262 (2) | 0.0431 (6) | |
H10A | 0.0590 | 0.1060 | 0.1837 | 0.065* | |
H10B | 0.2284 | 0.2949 | 0.1541 | 0.065* | |
H10C | 0.1195 | 0.1248 | 0.0594 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0398 (3) | 0.0455 (3) | 0.0282 (3) | 0.0191 (3) | −0.0056 (2) | −0.0031 (2) |
S1 | 0.0364 (3) | 0.0421 (3) | 0.0329 (3) | 0.0242 (3) | −0.0099 (2) | −0.0080 (2) |
N1 | 0.0255 (9) | 0.0372 (10) | 0.0263 (10) | 0.0134 (7) | −0.0047 (7) | 0.0010 (7) |
N2 | 0.0270 (9) | 0.0321 (9) | 0.0274 (10) | 0.0132 (7) | −0.0046 (7) | −0.0007 (7) |
N3 | 0.0369 (10) | 0.0397 (10) | 0.0325 (11) | 0.0212 (8) | −0.0063 (8) | −0.0057 (8) |
N4 | 0.0318 (10) | 0.0394 (10) | 0.0272 (10) | 0.0198 (8) | −0.0066 (8) | −0.0030 (8) |
C1 | 0.0260 (10) | 0.0337 (11) | 0.0334 (12) | 0.0113 (8) | −0.0029 (9) | 0.0044 (9) |
C2 | 0.0208 (10) | 0.0344 (11) | 0.0296 (12) | 0.0087 (8) | −0.0020 (8) | 0.0007 (9) |
C3 | 0.0264 (10) | 0.0364 (12) | 0.0355 (12) | 0.0153 (9) | −0.0017 (9) | 0.0010 (9) |
C4 | 0.0282 (10) | 0.0353 (11) | 0.0339 (12) | 0.0152 (9) | −0.0004 (9) | −0.0041 (9) |
C5 | 0.0248 (10) | 0.0406 (12) | 0.0260 (11) | 0.0112 (9) | 0.0007 (8) | −0.0001 (9) |
C6 | 0.0331 (11) | 0.0350 (11) | 0.0328 (12) | 0.0155 (9) | −0.0015 (9) | 0.0064 (9) |
C7 | 0.0346 (11) | 0.0307 (11) | 0.0342 (12) | 0.0122 (9) | −0.0009 (10) | −0.0001 (9) |
C8 | 0.0284 (10) | 0.0330 (11) | 0.0269 (11) | 0.0138 (8) | −0.0036 (8) | 0.0003 (9) |
C9 | 0.0314 (11) | 0.0350 (11) | 0.0311 (12) | 0.0148 (9) | −0.0021 (9) | −0.0024 (9) |
C10 | 0.0420 (14) | 0.0460 (14) | 0.0481 (16) | 0.0288 (12) | −0.0086 (12) | −0.0060 (12) |
Cl1—C5 | 1.748 (2) | C2—C7 | 1.402 (3) |
S1—C8 | 1.689 (2) | C3—H3 | 0.9300 |
N1—N2 | 1.395 (2) | C3—C4 | 1.390 (3) |
N1—C1 | 1.275 (3) | C4—H4A | 0.9300 |
N2—C8 | 1.378 (3) | C4—C5 | 1.377 (3) |
N2—C9 | 1.379 (3) | C5—C6 | 1.381 (3) |
N3—N4 | 1.378 (2) | C6—H6 | 0.9300 |
N3—C9 | 1.301 (3) | C6—C7 | 1.379 (3) |
N4—H4 | 0.8600 | C7—H7 | 0.9300 |
N4—C8 | 1.333 (3) | C9—C10 | 1.484 (3) |
C1—H1 | 0.9300 | C10—H10A | 0.9600 |
C1—C2 | 1.463 (3) | C10—H10B | 0.9600 |
C2—C3 | 1.390 (3) | C10—H10C | 0.9600 |
C1—N1—N2 | 116.28 (19) | C4—C5—C6 | 122.1 (2) |
C8—N2—N1 | 131.27 (18) | C6—C5—Cl1 | 119.20 (18) |
C8—N2—C9 | 108.25 (18) | C5—C6—H6 | 120.4 |
C9—N2—N1 | 119.99 (18) | C7—C6—C5 | 119.2 (2) |
C9—N3—N4 | 103.61 (18) | C7—C6—H6 | 120.4 |
N3—N4—H4 | 122.9 | C2—C7—H7 | 119.8 |
C8—N4—N3 | 114.29 (18) | C6—C7—C2 | 120.4 (2) |
C8—N4—H4 | 122.9 | C6—C7—H7 | 119.8 |
N1—C1—H1 | 120.1 | N2—C8—S1 | 129.63 (17) |
N1—C1—C2 | 119.8 (2) | N4—C8—S1 | 127.48 (17) |
C2—C1—H1 | 120.1 | N4—C8—N2 | 102.87 (18) |
C3—C2—C1 | 118.6 (2) | N2—C9—C10 | 122.4 (2) |
C3—C2—C7 | 118.7 (2) | N3—C9—N2 | 110.94 (19) |
C7—C2—C1 | 122.6 (2) | N3—C9—C10 | 126.6 (2) |
C2—C3—H3 | 119.3 | C9—C10—H10A | 109.5 |
C4—C3—C2 | 121.3 (2) | C9—C10—H10B | 109.5 |
C4—C3—H3 | 119.3 | C9—C10—H10C | 109.5 |
C3—C4—H4A | 120.9 | H10A—C10—H10B | 109.5 |
C5—C4—C3 | 118.2 (2) | H10A—C10—H10C | 109.5 |
C5—C4—H4A | 120.9 | H10B—C10—H10C | 109.5 |
C4—C5—Cl1 | 118.70 (18) | ||
Cl1—C5—C6—C7 | −179.28 (17) | C1—C2—C3—C4 | 178.0 (2) |
N1—N2—C8—S1 | 5.3 (4) | C1—C2—C7—C6 | −179.2 (2) |
N1—N2—C8—N4 | −173.2 (2) | C2—C3—C4—C5 | 1.4 (3) |
N1—N2—C9—N3 | 174.80 (19) | C3—C2—C7—C6 | −0.4 (3) |
N1—N2—C9—C10 | −6.5 (3) | C3—C4—C5—Cl1 | 178.09 (17) |
N1—C1—C2—C3 | −171.5 (2) | C3—C4—C5—C6 | −0.8 (3) |
N1—C1—C2—C7 | 7.2 (3) | C4—C5—C6—C7 | −0.4 (4) |
N2—N1—C1—C2 | 176.53 (18) | C5—C6—C7—C2 | 1.0 (3) |
N3—N4—C8—S1 | −177.92 (17) | C7—C2—C3—C4 | −0.8 (3) |
N3—N4—C8—N2 | 0.6 (3) | C8—N2—C9—N3 | 2.0 (3) |
N4—N3—C9—N2 | −1.5 (3) | C8—N2—C9—C10 | −179.3 (2) |
N4—N3—C9—C10 | 179.8 (2) | C9—N2—C8—S1 | 177.00 (18) |
C1—N1—N2—C8 | −35.9 (3) | C9—N2—C8—N4 | −1.5 (2) |
C1—N1—N2—C9 | 153.2 (2) | C9—N3—N4—C8 | 0.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···S1i | 0.86 | 2.43 | 3.2926 (19) | 176 |
C1—H1···S1 | 0.93 | 2.62 | 3.199 (2) | 121 |
Symmetry code: (i) −x−1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···S1i | 0.86 | 2.43 | 3.2926 (19) | 176.2 |
C1—H1···S1 | 0.93 | 2.62 | 3.199 (2) | 121.2 |
Symmetry code: (i) −x−1, −y+1, −z. |
Acknowledgements
BKS and PSM gratefully acknowledge the Department of Chemistry, P. A. College of Engineering, for providing research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656. CSD CrossRef IUCr Journals Google Scholar
Barrera, H., Vinas, J. M., Font-Altaba, M. & Solans, X. (1985). Polyhedron, 4, 2027–2030. CSD CrossRef CAS Web of Science Google Scholar
Devarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607. CSD CrossRef IUCr Journals Google Scholar
Ding, Q.-C., Huang, Y.-L., Jin, J.-Y., Zhang, L.-X., Zhou, C.-F. & Hu, M.-L. (2009). Z. Kristallogr. New Cryst. Struct. 224, 105–106. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178. CrossRef CAS Web of Science Google Scholar
Dubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met.Org. Chem. 21, 1299–1311. CrossRef CAS Web of Science Google Scholar
Galic, N., Peric, B., Prodic, K. B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187–194. CAS Google Scholar
Grimme, S. (2008). Angew. Chem. Int. Ed. 47, 3430–3434. Web of Science CrossRef CAS Google Scholar
Jeyaseelan, S., Devarajegowda, H. C., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1407. CSD CrossRef IUCr Journals Google Scholar
Kant, R., Gupta, V. K., Kapoor, K., Sapnakumari, M., Sarojini, B. K. & Narayana, B. (2012). Acta Cryst. E68, o2193. CSD CrossRef IUCr Journals Google Scholar
Kubicki, M., Dutkiewicz, G., Praveen, A. S., Mayekar, A. N., Narayana, B. & Yathirajan, H. S. (2012). J. Chem. Crystallogr. 42, 432–437. Web of Science CSD CrossRef CAS Google Scholar
Malik, S., Ghosh, S. & Mitu, L. (2011). J. Serb. Chem. Soc. 76, 1387–1394. Web of Science CrossRef CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Praveen, A. S., Jasinski, J. P., Keeley, A. C., Yathirajan, H. S. & Narayana, B. (2012). Acta Cryst. E68, o3435. CSD CrossRef IUCr Journals Google Scholar
Reddy, H. & Lirgappa, Y. (1994). Indian J. Heterocycl. Chem. 33, 919–923. Google Scholar
Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sarojini, B. K., Yathirajan, H. S., Narayana, B., Sunil, K. & Bolte, M. (2007a). Acta Cryst. E63, o3521. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thieme, P., Konig, H. & Amann, A. (1973a). BASF, Ger. Patent 2228259. Google Scholar
Thieme, P., Konig, H. & Amann, A. (1973b). Chem. Abstr. 80, 83034q. Google Scholar
Vinduvahini, M., Roopashree, K. R., Bhattacharya, S., Krishna, K. M. & Devaru, V. B. (2011). Acta Cryst. E67, o2535–o2536. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wei, P. H. L. & Bell, C. S. (1981). Chem. Abstr. 96, 104227. Google Scholar
Wei, P. H. L. & Bell, C. S. (1982). American Home Products Corporation, US Patent No. 4302585. Google Scholar
Wyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381–387. CrossRef CAS Google Scholar
Yadav, S., Srivastava, S. & Pandey, O. P. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 925–939. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During the last few decades, there has been a considerable interest in the chemistry of Schiff base compounds (Dubey & Vaid, 1991; Yadav et al., 1994). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001; Wyrzykiewicz & Pruka, 1998; Reddy & Lirgappa, 1994). Since many compounds containing sulfur and nitrogen atoms are antihypertensive (Wei et al., 1981,1982), analgesic (Thieme et al., 1973a,b), antiinflammatory (Dornow et al., 1964), sedative (Barrera et al.,1985), or fungicidal (Malik et al., 2011), synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity. The crystal structures of some of the related Schiff bases viz: 3-ethyl-4-[(E)-(4-fluorobenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Jeyaseelan et al., 2012); 4-[(E)-(4-fluorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione (Devarajegowda et al., 2012); 3-[2-(2,6-dichloro-anilino)benzyl]-4-[(4-methoxybenzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Vinduvahini et al., 2011); 3-(adamantan-1-yl)-1-[(4-ethylpiperazin-1-yl)methyl]-4-[(E)-(4-hydroxy-benzylidene)amino]-1H-1,2,4-triazole-5(4H)-thione (Almutairi et al., 2012); 4-{(2E)-2-[1-(4-Methoxyphenyl)ethylidene]hydrazinyl}-8-(trifluoromethyl)quinoline (Kubicki et al., 2012); (E)-N'-(4-Methoxybenzylidene)-2-m-tolylacetohydrazide (Praveen et al., 2012); (1Z)-1-[(2E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-ylidene]-2-(2,4-dinitrophenyl)hydrazine (Kant et al., 2012); (E)-3-(2-ethoxyphenyl)-4-(2-fluorobenzylideneamino)-1H-1,2,4-triazole-5(4H)-thione (Ding et al.,2009) have been reported. Crystal structures of some of the Schiff bases were also reported from our group (Sarojini et al., 2007a,b). In continuation of our work on the synthesis of acetamides derivatives, we report herein the crystal structure of the title compound, C10H9ClN4S, (I).
In the title compound, (I), C10H9ClN4S, the dihedral angle between the mean planes of the phenyl ring and the1H-1,2,4-triazole-5(4H)-thione ring is 25.3 (9)° (Fig.1). The 1,2,4-triazole-5(4H)-thione ring is essentially planar with a maximum deviation of 0.010Å and -0.010Å for the N2 nitrogen and C9 carbon atom, respectively. Bond lengths and bond angles are in normal ranges (Allen et al., 1987).In the crystal, weak N4—H4···S1 intermolecular interactions forming R22(8) graph set motifs link the molecules into dimers diagonally in the ac plane (Fig. 2). In addition, weak Cg–Cg π–π intermolecular interactions are observed which may contribute to crystal packing (Cg1–Cg1 = 3.3463 (14)Å; -x, 1-y, -z; Cg2–Cg2 = 3.6127 (13)Å; 1-x, 2-y, 1-z; Cg1 = N2/C81/N4/N3/C9; Cg2 = C2–C7) (Grimme, 1987). No classical hydrogen bonds were observed.