organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-[eth­yl(2-hy­dr­oxy­eth­yl)carbamo­thio­yl]benzamide

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: Aishah80@ukm.my

(Received 1 November 2013; accepted 4 December 2013; online 11 December 2013)

In the title compound, C12H14Cl2N2O2S, the mol­ecule adopts a cis conformation with respect to the di­chloro­benzoyl group against the thiono group about the C—N bond. However, the di­chloro­benzene group and the thio­urea moiety are twisted by 75.41 (8)°. An intra­molecular N—H⋯O hydrogen bond occurs between the amido H atom and hydroxyl O atom. In the crystal, O—H⋯S and O—H⋯O hydrogen bonds link the molecules, forming chains along the b-axis direction.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures of thio­urea derivatives, see: Hassan et al. (2010[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o2796.]); Nasir et al. (2011[Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1987.]); Al-abbasi et al. (2012[Al-abbasi, A. A., Mohamed Tahir, M. I. & Kassim, M. B. (2012). Acta Cryst. E68, o201.]); Yamin et al. (2013[Yamin, B. M., Yusof, D. & Hasbullah, S. A. (2013). Acta Cryst. E69, o1567.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14Cl2N2O2S

  • Mr = 321.21

  • Monoclinic, P 21 /n

  • a = 6.9712 (4) Å

  • b = 10.6989 (6) Å

  • c = 19.3288 (10) Å

  • β = 96.441 (2)°

  • V = 1432.52 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 300 K

  • 0.50 × 0.40 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.754, Tmax = 0.900

  • 30240 measured reflections

  • 2967 independent reflections

  • 2619 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.126

  • S = 1.16

  • 2967 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 1.99 2.796 (3) 155
O2—H2A⋯S1i 0.81 (3) 2.75 (3) 3.438 (2) 143 (3)
O2—H2A⋯O1i 0.81 (3) 2.25 (3) 2.920 (3) 140 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker,2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Most of the aroyl or carbonoyl thiourea compounds reported so far are based on primary amines. The two amino hydrogen atoms play an important role on the geometry of the thiourea moiety such as that in 3-chloro-N-[N-(furan-2-carbonyl)hydrazinocarbothioyl]benzamide (Yamin et al., 2013) where it adopts trans geometry. However, in the secondary amine based thiourea, only the amido hydrogen atom is present (Nasir et al., 2011; Al-abbasi et al., 2012). Therefore, it can be expected that in the secondary amine carbonoyl thiourea, cis configuration is more likely to occur due to the absence of intrahydrogen bond involving the carbonyl oxygen atom and thioamide hydrogen atom. The title compound consists of dichloro substituted benzoyl and ethylethanol groups attached to the terminal nitrogen atoms respectively (Fig.1). The dichlorobenzoyl group is cis against thiono group across the C7—N1 bond. They are not coplanar but twisted by the dihedral angle between thiourea fragment S1/N1/N2/C8 and the dichlorobenzene ring, Cl1/Cl2/C1-C6, of 75.41 (8)°. Each fragment is planar with the maximum deviation of 0.025 (1)Å for atom Cl1 from the least-squares plane. The bond lengths and angles are in normal ranges (Allen et al.,1987). There is an intramolecular hydrogen bond N1–H1A···O2 between the amido hydrogen and hydroxyl oxygen atom. In the crystal structure, the molecules are linked by O2–H2A···S1 and O2–H2A···O1 intermolecular hydrogen bonds (see Table 1 for symmetry codes) to form one-dimensional chains along the b-axis (Fig.2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures of thiourea derivatives, see: Hassan et al. (2010); Nasir et al. (2011); Al-abbasi et al. (2012); Yamin et al. (2013)

Experimental top

An acetone (30 ml) solution of (ethylamino)ethanol (0.18 g, 2 mmol) was added to a round-bottomed flask containing 2,4-dichlorobenzoyl isothiocyanate (0.58 g,2 mmol). The mixture was refluxed for 3h. After cooling the solution was filtered off and the filtrate was left to evaporate at room temperature. The solid formed was washed with water and cold ethanol. Crystals suitable for X-ray study were obtained by recrystallization from DMSO.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H= 0.93-0.97Å and N–H = 0.86Å with Uiso(H)= 1.2Ueq[C (methylene and aromatic),N] and 1.5 Ueq [C (methyl)]. The hydroxyl hydrogen atom was located from Fourier map and refined isotropically with O-H restraint to 0.82Å with an esd of 0.01.

Structure description top

Most of the aroyl or carbonoyl thiourea compounds reported so far are based on primary amines. The two amino hydrogen atoms play an important role on the geometry of the thiourea moiety such as that in 3-chloro-N-[N-(furan-2-carbonyl)hydrazinocarbothioyl]benzamide (Yamin et al., 2013) where it adopts trans geometry. However, in the secondary amine based thiourea, only the amido hydrogen atom is present (Nasir et al., 2011; Al-abbasi et al., 2012). Therefore, it can be expected that in the secondary amine carbonoyl thiourea, cis configuration is more likely to occur due to the absence of intrahydrogen bond involving the carbonyl oxygen atom and thioamide hydrogen atom. The title compound consists of dichloro substituted benzoyl and ethylethanol groups attached to the terminal nitrogen atoms respectively (Fig.1). The dichlorobenzoyl group is cis against thiono group across the C7—N1 bond. They are not coplanar but twisted by the dihedral angle between thiourea fragment S1/N1/N2/C8 and the dichlorobenzene ring, Cl1/Cl2/C1-C6, of 75.41 (8)°. Each fragment is planar with the maximum deviation of 0.025 (1)Å for atom Cl1 from the least-squares plane. The bond lengths and angles are in normal ranges (Allen et al.,1987). There is an intramolecular hydrogen bond N1–H1A···O2 between the amido hydrogen and hydroxyl oxygen atom. In the crystal structure, the molecules are linked by O2–H2A···S1 and O2–H2A···O1 intermolecular hydrogen bonds (see Table 1 for symmetry codes) to form one-dimensional chains along the b-axis (Fig.2).

For bond-length data, see: Allen et al. (1987). For related structures of thiourea derivatives, see: Hassan et al. (2010); Nasir et al. (2011); Al-abbasi et al. (2012); Yamin et al. (2013)

Computing details top

Data collection: SMART (Bruker,2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. Molecular packing of (I) viewed down the a-axis. The dashed lines indicate intermolecular hydrogen bonds.
2,4-Dichloro-N-[ethyl(2-hydroxyethyl)carbamothioyl]benzamide top
Crystal data top
C12H14Cl2N2O2SF(000) = 664
Mr = 321.21Dx = 1.489 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 18947 reflections
a = 6.9712 (4) Åθ = 2.8–26.5°
b = 10.6989 (6) ŵ = 0.60 mm1
c = 19.3288 (10) ÅT = 300 K
β = 96.441 (2)°Block, colourless
V = 1432.52 (14) Å30.50 × 0.40 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2967 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 83.66 pixels mm-1θmax = 26.5°, θmin = 2.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.754, Tmax = 0.900l = 2424
30240 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.6739P]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max = 0.002
176 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C12H14Cl2N2O2SV = 1432.52 (14) Å3
Mr = 321.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9712 (4) ŵ = 0.60 mm1
b = 10.6989 (6) ÅT = 300 K
c = 19.3288 (10) Å0.50 × 0.40 × 0.18 mm
β = 96.441 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2967 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2619 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.900Rint = 0.036
30240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.44 e Å3
2967 reflectionsΔρmin = 0.36 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89241 (10)0.71322 (6)0.93151 (4)0.0554 (2)
Cl20.70111 (8)1.08652 (6)1.09352 (3)0.04474 (18)
S10.75350 (9)0.90835 (6)0.64182 (3)0.04555 (19)
O10.7295 (4)0.8000 (2)0.78711 (10)0.0845 (9)
O21.0855 (3)1.20198 (15)0.81005 (9)0.0448 (4)
N10.9083 (3)0.97467 (17)0.77030 (9)0.0367 (4)
H1A0.97421.03160.79370.044*
N21.0766 (3)1.03352 (17)0.68075 (9)0.0336 (4)
C10.8163 (3)0.8659 (2)0.93868 (12)0.0347 (5)
C20.7904 (3)0.9090 (2)1.00426 (11)0.0341 (5)
H2B0.80900.85641.04270.041*
C30.7364 (3)1.0320 (2)1.01142 (11)0.0331 (4)
C40.7097 (3)1.1128 (2)0.95552 (12)0.0383 (5)
H4A0.67441.19560.96160.046*
C50.7369 (3)1.0677 (2)0.89040 (12)0.0389 (5)
H5A0.71981.12110.85230.047*
C60.7895 (3)0.9437 (2)0.88045 (11)0.0348 (5)
C70.8036 (4)0.8964 (2)0.80809 (12)0.0446 (6)
C80.9215 (3)0.97372 (19)0.69876 (11)0.0322 (4)
C91.0983 (4)1.0593 (2)0.60741 (11)0.0422 (5)
H9A1.16511.13820.60430.051*
H9B0.97121.06770.58170.051*
C101.2073 (4)0.9592 (3)0.57421 (14)0.0611 (8)
H10A1.21710.98080.52650.092*
H10B1.14040.88110.57610.092*
H10C1.33440.95160.59870.092*
C111.2412 (3)1.0729 (2)0.73058 (12)0.0409 (5)
H11A1.35761.07000.70740.049*
H11B1.25661.01340.76870.049*
C121.2214 (4)1.2026 (2)0.76032 (14)0.0524 (6)
H12A1.34591.23060.78240.063*
H12B1.17921.26040.72300.063*
H2A1.000 (4)1.253 (3)0.8004 (19)0.081 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0691 (4)0.0333 (3)0.0679 (4)0.0079 (3)0.0262 (3)0.0030 (3)
Cl20.0400 (3)0.0580 (4)0.0379 (3)0.0032 (2)0.0114 (2)0.0079 (2)
S10.0486 (4)0.0481 (4)0.0379 (3)0.0119 (3)0.0042 (3)0.0043 (2)
O10.134 (2)0.0746 (15)0.0452 (11)0.0699 (15)0.0110 (12)0.0104 (10)
O20.0520 (10)0.0357 (9)0.0459 (9)0.0000 (7)0.0017 (8)0.0053 (7)
N10.0424 (10)0.0378 (10)0.0308 (9)0.0154 (8)0.0083 (7)0.0074 (7)
N20.0371 (9)0.0357 (9)0.0283 (9)0.0033 (7)0.0053 (7)0.0009 (7)
C10.0263 (9)0.0346 (11)0.0446 (12)0.0094 (8)0.0101 (8)0.0020 (9)
C20.0248 (9)0.0414 (12)0.0366 (11)0.0071 (8)0.0059 (8)0.0043 (9)
C30.0216 (9)0.0454 (12)0.0329 (10)0.0039 (8)0.0061 (7)0.0021 (9)
C40.0310 (10)0.0399 (12)0.0451 (12)0.0016 (9)0.0090 (9)0.0016 (9)
C50.0321 (11)0.0462 (13)0.0390 (12)0.0038 (9)0.0065 (9)0.0078 (9)
C60.0275 (9)0.0429 (12)0.0349 (11)0.0120 (8)0.0072 (8)0.0015 (9)
C70.0516 (13)0.0450 (13)0.0378 (12)0.0214 (11)0.0077 (10)0.0044 (10)
C80.0383 (11)0.0268 (10)0.0316 (10)0.0000 (8)0.0047 (8)0.0035 (8)
C90.0478 (13)0.0489 (13)0.0306 (11)0.0012 (10)0.0070 (9)0.0062 (9)
C100.0576 (16)0.087 (2)0.0398 (13)0.0117 (15)0.0123 (12)0.0085 (14)
C110.0362 (11)0.0508 (13)0.0362 (11)0.0079 (10)0.0064 (9)0.0002 (10)
C120.0644 (16)0.0461 (14)0.0464 (14)0.0239 (12)0.0055 (12)0.0024 (11)
Geometric parameters (Å, º) top
Cl1—C11.728 (2)C4—C51.381 (3)
Cl2—C31.734 (2)C4—H4A0.9300
S1—C81.668 (2)C5—C61.395 (3)
O1—C71.203 (3)C5—H5A0.9300
O2—C121.423 (3)C6—C71.501 (3)
O2—H2A0.815 (10)C9—C101.498 (4)
N1—C71.374 (3)C9—H9A0.9700
N1—C81.396 (3)C9—H9B0.9700
N1—H1A0.8600C10—H10A0.9600
N2—C81.336 (3)C10—H10B0.9600
N2—C91.468 (3)C10—H10C0.9600
N2—C111.474 (3)C11—C121.514 (4)
C1—C21.380 (3)C11—H11A0.9700
C1—C61.395 (3)C11—H11B0.9700
C2—C31.380 (3)C12—H12A0.9700
C2—H2B0.9300C12—H12B0.9700
C3—C41.380 (3)
C12—O2—H2A112 (3)N2—C8—N1113.57 (17)
C7—N1—C8128.33 (18)N2—C8—S1123.90 (16)
C7—N1—H1A115.8N1—C8—S1122.48 (16)
C8—N1—H1A115.8N2—C9—C10113.0 (2)
C8—N2—C9121.02 (18)N2—C9—H9A109.0
C8—N2—C11124.05 (17)C10—C9—H9A109.0
C9—N2—C11114.86 (17)N2—C9—H9B109.0
C2—C1—C6121.5 (2)C10—C9—H9B109.0
C2—C1—Cl1117.57 (17)H9A—C9—H9B107.8
C6—C1—Cl1120.91 (17)C9—C10—H10A109.5
C1—C2—C3118.5 (2)C9—C10—H10B109.5
C1—C2—H2B120.8H10A—C10—H10B109.5
C3—C2—H2B120.8C9—C10—H10C109.5
C2—C3—C4122.2 (2)H10A—C10—H10C109.5
C2—C3—Cl2118.74 (16)H10B—C10—H10C109.5
C4—C3—Cl2119.03 (17)N2—C11—C12114.4 (2)
C3—C4—C5118.3 (2)N2—C11—H11A108.7
C3—C4—H4A120.8C12—C11—H11A108.7
C5—C4—H4A120.8N2—C11—H11B108.7
C4—C5—C6121.6 (2)C12—C11—H11B108.7
C4—C5—H5A119.2H11A—C11—H11B107.6
C6—C5—H5A119.2O2—C12—C11110.37 (19)
C1—C6—C5118.0 (2)O2—C12—H12A109.6
C1—C6—C7122.3 (2)C11—C12—H12A109.6
C5—C6—C7119.6 (2)O2—C12—H12B109.6
O1—C7—N1125.2 (2)C11—C12—H12B109.6
O1—C7—C6122.2 (2)H12A—C12—H12B108.1
N1—C7—C6112.59 (18)
C6—C1—C2—C30.2 (3)C1—C6—C7—O144.6 (4)
Cl1—C1—C2—C3177.72 (15)C5—C6—C7—O1131.6 (3)
C1—C2—C3—C40.7 (3)C1—C6—C7—N1135.5 (2)
C1—C2—C3—Cl2179.34 (15)C5—C6—C7—N148.4 (3)
C2—C3—C4—C50.6 (3)C9—N2—C8—N1170.21 (19)
Cl2—C3—C4—C5179.50 (16)C11—N2—C8—N112.9 (3)
C3—C4—C5—C60.2 (3)C9—N2—C8—S17.5 (3)
C2—C1—C6—C50.5 (3)C11—N2—C8—S1169.33 (17)
Cl1—C1—C6—C5176.96 (15)C7—N1—C8—N2160.2 (2)
C2—C1—C6—C7175.70 (19)C7—N1—C8—S122.0 (3)
Cl1—C1—C6—C76.8 (3)C8—N2—C9—C1092.3 (3)
C4—C5—C6—C10.7 (3)C11—N2—C9—C1084.8 (3)
C4—C5—C6—C7175.6 (2)C8—N2—C11—C1289.9 (3)
C8—N1—C7—O113.0 (5)C9—N2—C11—C1293.1 (2)
C8—N1—C7—C6167.0 (2)N2—C11—C12—O274.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.992.796 (3)155
C9—H9B···S10.972.643.031 (3)105
O2—H2A···S1i0.81 (3)2.75 (3)3.438 (2)143 (3)
O2—H2A···O1i0.81 (3)2.25 (3)2.920 (3)140 (3)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.992.796 (3)155
C9—H9B···S10.972.643.031 (3)105
O2—H2A···S1i0.81 (3)2.75 (3)3.438 (2)143 (3)
O2—H2A···O1i0.81 (3)2.25 (3)2.920 (3)140 (3)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The authors would like to thank Universiti Kebangsaan Malaysia and the Ministry of Science and Technology, Malaysia, for research grants FRGS/1/2013/ST01/UKM/03/4 and DIP-2012–11 and the Centre of Research and Instrumentation (CRIM) for the research facilities.

References

First citationAl-abbasi, A. A., Mohamed Tahir, M. I. & Kassim, M. B. (2012). Acta Cryst. E68, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o2796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M., Yusof, D. & Hasbullah, S. A. (2013). Acta Cryst. E69, o1567.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds