organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Adamantan-1-yl)-4-ethyl-1-{[4-(2-meth­­oxy­phen­yl)piperazin-1-yl]meth­yl}-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hfun.c@ksu.edu.sa

(Received 28 November 2013; accepted 3 December 2013; online 7 December 2013)

In the title compound, C26H37N5OS, the piperazine ring adopts a chair conformation. The triazole ring forms dihedral angles of 67.85 (9) and 59.41 (9)° with the piperazine and benzene rings, respectively, resulting in an approximate V-shaped conformation for the mol­ecule. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The crystal structure features C—H⋯π inter­actions, producing a two-dimensional supramolecular architecture.

Related literature

For the pharmacological activity of adamantane derivatives and adamantyl-1,2,4-triazoles, see: Togo et al. (1968[Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089-1094.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.], 2013[El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, A. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96-102.]); Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug Res. 56, 40-47.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2013[Al-Abdullah, E. S., Al-Tuwaijri, H. M., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2013). Acta Cryst. E69, o1813-o1814.]); Al-Tamimi, Alafeefy et al. (2013[Al-Tamimi, A.-M. S., Alafeefy, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o683.]); Al-Tamimi, Al-Abdullah et al. (2013[Al-Tamimi, A.-M. S., Al-Abdullah, E. S., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o685-o686.]); El-Emam et al. (2012[El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657-o658.]). For the synthesis of the starting material, see: El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug Res. 41, 1260-1264.]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H37N5OS

  • Mr = 467.67

  • Monoclinic, C 2/c

  • a = 19.8170 (3) Å

  • b = 11.9384 (3) Å

  • c = 21.7807 (4) Å

  • β = 107.886 (2)°

  • V = 4903.90 (17) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.39 mm−1

  • T = 296 K

  • 0.98 × 0.62 × 0.41 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.344, Tmax = 0.599

  • 15455 measured reflections

  • 4029 independent reflections

  • 3606 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.05

  • 4029 reflections

  • 308 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1 0.97 2.26 2.903 (2) 123
C18—H18ACgi 0.97 2.81 3.748 (2) 162
Symmetry code: (i) [x-1, -y-1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivative were reported to exhibit marked antibacterial and anti-inflammatory activities (Kadi et al., 2007, 2010; El-Emam et al., 2013). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of our on-going structural studies of adamantane derivatives (Al-Abdullah et al., 2013); Al-Tamimi, Alafeefy et al., 2013; Al-Tamimi, Al-Abdullah et al., 2013; El-Emam et al., 2012), we have synthesized the title compound (I) as a potential chemotherapeutic agent.

In the crystal structure of the title compound (Fig. 1), the piperazine (N1–N2/C8–C11) ring adopts a chair conformation with puckering parameters: Q = 0.5783 (18) Å, θ = 178.03 (17)°, and φ = 25 (5)° (Cremer & Pople, 1975). The dihedral angle between the piperazine ring and the triazole ring (N3–N5/C13/C14) is 67.85 (9)°. The triazole ring forms a dihedral angle of 59.41 (9)° with the benzene ring (C1—C6), resulting in an approximate V-shape conformation of the molecule. An intramolecular C–H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal structure features an intermolecular C–H···π interaction with a H18A···Cg distance of 2.81 Å, where Cg is the centroid of the benzene ring (C1—C6).

Related literature top

For the pharmacological activity of adamantane derivatives and adamantyl-1,2,4-triazoles, see: Togo et al. (1968); El-Emam et al. (2004, 2013); Al-Deeb et al. (2006); Kadi et al. (2007, 2010). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2013); Al-Tamimi, Alafeefy et al. (2013); Al-Tamimi, Al-Abdullah et al. (2013); El-Emam et al. (2012). For the synthesis of the starting material, see: El-Emam & Ibrahim (1991). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 527 mg (2 mmol) of 3-(1-adamantyl)-4-ethyl-4H-1,2,4- triazole-5-thiol (El-Emam & Ibrahim, 1991), 1-(2-methoxyphenyl)piperazine (383 mg, 2 mmol) and 37% formaldehyde solution (1 ml) in ethanol (8 ml) was heated under reflux for 15 min until a clear solution was obtained. Stirring was continued for 12 h at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was added slowly and the mixture was stirred for 20 min. The precipitated crude product were filtered, washed with water, dried, and crystallized from ethanol to yield 860 mg (92%) of the title compound (C26H37N5OS) as colourless needle crystals. M.p.: 477–479 K. Single plate-shaped crystals suitable for X-ray analysis were obtained by slow evaporation of a CHCl3:EtOH solution (1:1 v/v; 5 ml) at room temperature.

1H NMR (CDCl3, 500.13 MHz): δ 1.32 (t, 3H, CH2CH3, J = 7.0 Hz), 1.71–1.76 (m, 6H, Adamantane-H), 1.98–2.12 (m, 9H, Adamantane-H), 3.08 (s, 8H, Piperazine-H), 3.81 (s, 3H, OCH3), 4.15 (q, 2H, CH2CH3, J = 7.0 Hz), 5.15 (s, 2H, CH2), 6.79–7.01 (m, 4H, Ar—H). 13C NMR (CDCl3, 125.76 MHz): δ 13.76 (CH2CH3), 27.92, 35.32, 36.48, 39.83 (Adamantane-C), 43.83 (CH2CH3), 47.40, 50.18 (Piperazine-C), 55.48 (OCH3), 72.58 (CH2), 111.43, 118.38, 121.12, 123.55, 152.13, 152.26 (Ar—C), 156.57 (Triazole C-5), 167.34 (C=S).

Refinement top

The H atoms bound to atom C12 were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically [C—H = 0.93–1.01 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl groups.

Structure description top

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivative were reported to exhibit marked antibacterial and anti-inflammatory activities (Kadi et al., 2007, 2010; El-Emam et al., 2013). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, and as part of our on-going structural studies of adamantane derivatives (Al-Abdullah et al., 2013); Al-Tamimi, Alafeefy et al., 2013; Al-Tamimi, Al-Abdullah et al., 2013; El-Emam et al., 2012), we have synthesized the title compound (I) as a potential chemotherapeutic agent.

In the crystal structure of the title compound (Fig. 1), the piperazine (N1–N2/C8–C11) ring adopts a chair conformation with puckering parameters: Q = 0.5783 (18) Å, θ = 178.03 (17)°, and φ = 25 (5)° (Cremer & Pople, 1975). The dihedral angle between the piperazine ring and the triazole ring (N3–N5/C13/C14) is 67.85 (9)°. The triazole ring forms a dihedral angle of 59.41 (9)° with the benzene ring (C1—C6), resulting in an approximate V-shape conformation of the molecule. An intramolecular C–H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The crystal structure features an intermolecular C–H···π interaction with a H18A···Cg distance of 2.81 Å, where Cg is the centroid of the benzene ring (C1—C6).

For the pharmacological activity of adamantane derivatives and adamantyl-1,2,4-triazoles, see: Togo et al. (1968); El-Emam et al. (2004, 2013); Al-Deeb et al. (2006); Kadi et al. (2007, 2010). For related adamantyl-1,2,4-triazole structures, see: Al-Abdullah et al. (2013); Al-Tamimi, Alafeefy et al. (2013); Al-Tamimi, Al-Abdullah et al. (2013); El-Emam et al. (2012). For the synthesis of the starting material, see: El-Emam & Ibrahim (1991). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
3-(Adamantan-1-yl)-4-ethyl-1-{[4-(2-methoxyphenyl)piperazin-1-yl]methyl}-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C26H37N5OSF(000) = 2016
Mr = 467.67Dx = 1.267 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 4154 reflections
a = 19.8170 (3) Åθ = 4.3–69.2°
b = 11.9384 (3) ŵ = 1.39 mm1
c = 21.7807 (4) ÅT = 296 K
β = 107.886 (2)°Plate, colourless
V = 4903.90 (17) Å30.98 × 0.62 × 0.41 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4029 independent reflections
Radiation source: fine-focus sealed tube3606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 65.0°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2223
Tmin = 0.344, Tmax = 0.599k = 914
15455 measured reflectionsl = 2521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0627P)2 + 2.6908P]
where P = (Fo2 + 2Fc2)/3
4029 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C26H37N5OSV = 4903.90 (17) Å3
Mr = 467.67Z = 8
Monoclinic, C2/cCu Kα radiation
a = 19.8170 (3) ŵ = 1.39 mm1
b = 11.9384 (3) ÅT = 296 K
c = 21.7807 (4) Å0.98 × 0.62 × 0.41 mm
β = 107.886 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4029 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3606 reflections with I > 2σ(I)
Tmin = 0.344, Tmax = 0.599Rint = 0.033
15455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
4029 reflectionsΔρmin = 0.27 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04659 (3)0.66541 (4)0.36270 (3)0.06079 (18)
O10.25953 (6)1.15940 (11)0.28999 (6)0.0511 (3)
N10.12211 (7)1.09436 (12)0.31028 (6)0.0392 (3)
N20.03369 (7)0.95212 (11)0.40765 (7)0.0401 (3)
N30.04059 (7)0.74873 (11)0.42680 (7)0.0410 (3)
N40.09869 (7)0.71981 (11)0.44558 (7)0.0402 (3)
N50.06803 (7)0.58126 (11)0.39235 (6)0.0380 (3)
C10.21966 (9)1.22602 (15)0.26341 (8)0.0414 (4)
C20.24588 (10)1.32048 (17)0.22721 (9)0.0531 (5)
H2A0.29161.34480.22330.064*
C30.20535 (12)1.37922 (18)0.19688 (10)0.0612 (5)
H3A0.22391.44220.17230.073*
C40.13806 (12)1.34470 (18)0.20304 (10)0.0609 (5)
H4A0.11101.38260.18160.073*
C50.11006 (10)1.25299 (16)0.24133 (9)0.0502 (4)
H5A0.06361.23170.24600.060*
C60.14894 (9)1.19165 (14)0.27302 (8)0.0392 (4)
C70.33410 (10)1.17746 (19)0.27037 (11)0.0604 (5)
H7A0.35641.11950.28790.091*
H7B0.35231.17600.22410.091*
H7C0.34391.24900.28590.091*
C80.05394 (9)1.05442 (15)0.30672 (9)0.0442 (4)
H8A0.01751.10890.32660.053*
H8B0.05601.04660.26190.053*
C90.03495 (9)0.94278 (15)0.34052 (9)0.0447 (4)
H9A0.06950.88680.31870.054*
H9B0.01120.91900.33880.054*
C100.10279 (9)0.98856 (14)0.41065 (8)0.0407 (4)
H10A0.10180.99430.45530.049*
H10B0.13850.93390.38940.049*
C110.12140 (9)1.10112 (15)0.37793 (8)0.0420 (4)
H11A0.16771.12450.37960.050*
H11B0.08691.15650.40060.050*
C120.00463 (9)0.85666 (15)0.44685 (9)0.0449 (4)
C130.02030 (9)0.66608 (14)0.39407 (8)0.0419 (4)
C140.11453 (8)0.61806 (13)0.42412 (8)0.0361 (4)
C150.06398 (9)0.47423 (15)0.36034 (9)0.0460 (4)
H15A0.05320.48880.32050.055*
H15B0.10980.43740.34940.055*
C160.00816 (11)0.39690 (17)0.40219 (12)0.0619 (5)
H16A0.00790.32790.37960.093*
H16B0.01870.38180.44160.093*
H16C0.03750.43190.41200.093*
C170.17657 (8)0.55496 (13)0.43342 (8)0.0364 (4)
C180.23590 (9)0.54186 (17)0.36848 (9)0.0499 (5)
H18A0.25100.61510.35010.060*
H18B0.21810.50030.33840.060*
C190.29894 (10)0.4796 (2)0.37923 (10)0.0603 (5)
H19A0.33600.47020.33780.072*
C200.27523 (11)0.36486 (17)0.40858 (10)0.0565 (5)
H20A0.31550.32460.41420.068*
H20B0.25630.32160.37990.068*
C210.21867 (10)0.37929 (14)0.47347 (9)0.0475 (4)
H21A0.20400.30530.49240.057*
C220.15471 (9)0.43877 (14)0.46354 (8)0.0410 (4)
H22A0.13570.39440.43540.049*
H22B0.11800.44690.50470.049*
C230.20662 (11)0.62237 (15)0.47925 (10)0.0507 (5)
H23A0.22100.69600.46120.061*
H23B0.17020.63190.52040.061*
C240.27071 (11)0.56134 (16)0.48944 (11)0.0560 (5)
H24A0.28930.60530.51860.067*
C250.24790 (12)0.44675 (16)0.51877 (10)0.0559 (5)
H25A0.21180.45500.56030.067*
H25B0.28810.40810.52540.067*
C260.32823 (11)0.54824 (19)0.42461 (13)0.0687 (6)
H26A0.34310.62140.40600.082*
H26B0.36910.51070.43070.082*
H12B0.0444 (11)0.8413 (14)0.4491 (9)0.041 (5)*
H12A0.0064 (10)0.8708 (16)0.4920 (10)0.047 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0474 (3)0.0637 (3)0.0818 (4)0.0027 (2)0.0354 (3)0.0117 (3)
O10.0367 (6)0.0607 (8)0.0589 (7)0.0015 (5)0.0190 (6)0.0018 (6)
N10.0369 (7)0.0470 (8)0.0371 (7)0.0033 (6)0.0162 (6)0.0050 (6)
N20.0353 (7)0.0400 (7)0.0438 (7)0.0084 (6)0.0102 (6)0.0071 (6)
N30.0369 (7)0.0382 (7)0.0488 (8)0.0090 (6)0.0146 (6)0.0065 (6)
N40.0393 (7)0.0368 (7)0.0465 (8)0.0088 (6)0.0163 (6)0.0046 (6)
N50.0357 (7)0.0383 (7)0.0413 (7)0.0050 (5)0.0139 (6)0.0039 (6)
C10.0408 (8)0.0461 (9)0.0374 (8)0.0006 (7)0.0119 (7)0.0064 (7)
C20.0489 (10)0.0551 (11)0.0510 (10)0.0109 (8)0.0091 (8)0.0003 (9)
C30.0687 (13)0.0524 (11)0.0572 (11)0.0101 (10)0.0115 (10)0.0121 (10)
C40.0680 (13)0.0610 (12)0.0575 (12)0.0006 (10)0.0249 (10)0.0158 (10)
C50.0469 (10)0.0566 (11)0.0510 (10)0.0035 (8)0.0206 (8)0.0090 (9)
C60.0403 (8)0.0435 (9)0.0340 (8)0.0006 (7)0.0116 (6)0.0011 (7)
C70.0373 (10)0.0740 (13)0.0698 (13)0.0014 (9)0.0162 (9)0.0158 (11)
C80.0399 (9)0.0523 (10)0.0457 (9)0.0031 (7)0.0208 (7)0.0087 (8)
C90.0384 (9)0.0479 (9)0.0513 (10)0.0024 (7)0.0188 (7)0.0068 (8)
C100.0394 (8)0.0461 (9)0.0380 (8)0.0102 (7)0.0140 (7)0.0000 (7)
C110.0431 (9)0.0474 (9)0.0376 (8)0.0020 (7)0.0157 (7)0.0006 (7)
C120.0367 (9)0.0431 (9)0.0485 (10)0.0124 (7)0.0038 (7)0.0081 (8)
C130.0344 (8)0.0443 (9)0.0453 (9)0.0033 (7)0.0101 (7)0.0122 (8)
C140.0375 (8)0.0347 (8)0.0366 (8)0.0046 (6)0.0120 (6)0.0058 (7)
C150.0457 (9)0.0468 (9)0.0474 (9)0.0047 (8)0.0171 (8)0.0041 (8)
C160.0531 (11)0.0473 (10)0.0829 (15)0.0033 (8)0.0174 (10)0.0013 (10)
C170.0390 (8)0.0335 (8)0.0391 (8)0.0079 (6)0.0154 (7)0.0025 (7)
C180.0422 (9)0.0618 (11)0.0441 (9)0.0080 (8)0.0109 (7)0.0140 (9)
C190.0403 (10)0.0835 (14)0.0527 (11)0.0191 (10)0.0079 (8)0.0068 (11)
C200.0600 (12)0.0545 (11)0.0612 (12)0.0278 (9)0.0280 (9)0.0116 (10)
C210.0615 (11)0.0347 (8)0.0530 (10)0.0109 (8)0.0277 (9)0.0040 (8)
C220.0487 (9)0.0362 (8)0.0393 (8)0.0065 (7)0.0151 (7)0.0033 (7)
C230.0579 (11)0.0366 (9)0.0684 (12)0.0104 (8)0.0351 (9)0.0055 (9)
C240.0626 (12)0.0443 (10)0.0778 (14)0.0117 (9)0.0464 (11)0.0081 (9)
C250.0698 (12)0.0532 (11)0.0568 (11)0.0191 (9)0.0372 (10)0.0017 (9)
C260.0457 (11)0.0653 (13)0.1038 (18)0.0044 (9)0.0356 (11)0.0186 (13)
Geometric parameters (Å, º) top
S1—C131.6674 (18)C11—H11B0.9700
O1—C11.369 (2)C12—H12B0.98 (2)
O1—C71.423 (2)C12—H12A1.01 (2)
N1—C61.423 (2)C14—C171.508 (2)
N1—C81.457 (2)C15—C161.512 (3)
N1—C111.472 (2)C15—H15A0.9700
N2—C121.434 (2)C15—H15B0.9700
N2—C101.457 (2)C16—H16A0.9600
N2—C91.459 (2)C16—H16B0.9600
N3—C131.349 (2)C16—H16C0.9600
N3—N41.3790 (19)C17—C231.538 (2)
N3—C121.472 (2)C17—C221.539 (2)
N4—C141.305 (2)C17—C181.545 (2)
N5—C131.378 (2)C18—C191.532 (2)
N5—C141.383 (2)C18—H18A0.9700
N5—C151.470 (2)C18—H18B0.9700
C1—C21.383 (3)C19—C201.524 (3)
C1—C61.413 (2)C19—C261.529 (3)
C2—C31.378 (3)C19—H19A0.9800
C2—H2A0.9300C20—C211.520 (3)
C3—C41.362 (3)C20—H20A0.9700
C3—H3A0.9300C20—H20B0.9700
C4—C51.385 (3)C21—C251.519 (3)
C4—H4A0.9300C21—C221.525 (2)
C5—C61.390 (2)C21—H21A0.9800
C5—H5A0.9300C22—H22A0.9700
C7—H7A0.9600C22—H22B0.9700
C7—H7B0.9600C23—C241.538 (2)
C7—H7C0.9600C23—H23A0.9700
C8—C91.513 (2)C23—H23B0.9700
C8—H8A0.9700C24—C251.519 (3)
C8—H8B0.9700C24—C261.526 (3)
C9—H9A0.9700C24—H24A0.9800
C9—H9B0.9700C25—H25A0.9700
C10—C111.513 (2)C25—H25B0.9700
C10—H10A0.9700C26—H26A0.9700
C10—H10B0.9700C26—H26B0.9700
C11—H11A0.9700
C1—O1—C7117.79 (15)N5—C14—C17127.20 (14)
C6—N1—C8115.28 (13)N5—C15—C16112.40 (15)
C6—N1—C11114.41 (13)N5—C15—H15A109.1
C8—N1—C11110.33 (13)C16—C15—H15A109.1
C12—N2—C10114.93 (14)N5—C15—H15B109.1
C12—N2—C9114.58 (15)C16—C15—H15B109.1
C10—N2—C9109.92 (13)H15A—C15—H15B107.9
C13—N3—N4112.65 (13)C15—C16—H16A109.5
C13—N3—C12126.97 (15)C15—C16—H16B109.5
N4—N3—C12120.21 (15)H16A—C16—H16B109.5
C14—N4—N3104.94 (13)C15—C16—H16C109.5
C13—N5—C14108.06 (14)H16A—C16—H16C109.5
C13—N5—C15120.98 (14)H16B—C16—H16C109.5
C14—N5—C15130.96 (13)C14—C17—C23108.67 (13)
O1—C1—C2123.40 (16)C14—C17—C22111.92 (13)
O1—C1—C6116.34 (15)C23—C17—C22108.02 (14)
C2—C1—C6120.23 (17)C14—C17—C18110.51 (13)
C3—C2—C1121.06 (18)C23—C17—C18108.05 (15)
C3—C2—H2A119.5C22—C17—C18109.55 (13)
C1—C2—H2A119.5C19—C18—C17109.64 (14)
C4—C3—C2119.73 (19)C19—C18—H18A109.7
C4—C3—H3A120.1C17—C18—H18A109.7
C2—C3—H3A120.1C19—C18—H18B109.7
C3—C4—C5119.8 (2)C17—C18—H18B109.7
C3—C4—H4A120.1H18A—C18—H18B108.2
C5—C4—H4A120.1C20—C19—C26109.87 (17)
C4—C5—C6122.32 (18)C20—C19—C18109.84 (17)
C4—C5—H5A118.8C26—C19—C18109.18 (18)
C6—C5—H5A118.8C20—C19—H19A109.3
C5—C6—C1116.69 (16)C26—C19—H19A109.3
C5—C6—N1123.09 (15)C18—C19—H19A109.3
C1—C6—N1120.10 (15)C21—C20—C19109.41 (15)
O1—C7—H7A109.5C21—C20—H20A109.8
O1—C7—H7B109.5C19—C20—H20A109.8
H7A—C7—H7B109.5C21—C20—H20B109.8
O1—C7—H7C109.5C19—C20—H20B109.8
H7A—C7—H7C109.5H20A—C20—H20B108.2
H7B—C7—H7C109.5C25—C21—C20110.15 (17)
N1—C8—C9111.00 (14)C25—C21—C22110.15 (15)
N1—C8—H8A109.4C20—C21—C22109.18 (15)
C9—C8—H8A109.4C25—C21—H21A109.1
N1—C8—H8B109.4C20—C21—H21A109.1
C9—C8—H8B109.4C22—C21—H21A109.1
H8A—C8—H8B108.0C21—C22—C17110.05 (14)
N2—C9—C8110.21 (15)C21—C22—H22A109.7
N2—C9—H9A109.6C17—C22—H22A109.7
C8—C9—H9A109.6C21—C22—H22B109.7
N2—C9—H9B109.6C17—C22—H22B109.7
C8—C9—H9B109.6H22A—C22—H22B108.2
H9A—C9—H9B108.1C17—C23—C24110.33 (14)
N2—C10—C11109.91 (13)C17—C23—H23A109.6
N2—C10—H10A109.7C24—C23—H23A109.6
C11—C10—H10A109.7C17—C23—H23B109.6
N2—C10—H10B109.7C24—C23—H23B109.6
C11—C10—H10B109.7H23A—C23—H23B108.1
H10A—C10—H10B108.2C25—C24—C26109.76 (16)
N1—C11—C10110.43 (14)C25—C24—C23109.57 (17)
N1—C11—H11A109.6C26—C24—C23109.29 (17)
C10—C11—H11A109.6C25—C24—H24A109.4
N1—C11—H11B109.6C26—C24—H24A109.4
C10—C11—H11B109.6C23—C24—H24A109.4
H11A—C11—H11B108.1C21—C25—C24109.14 (15)
N2—C12—N3116.71 (13)C21—C25—H25A109.9
N2—C12—H12B113.0 (11)C24—C25—H25A109.9
N3—C12—H12B103.6 (10)C21—C25—H25B109.9
N2—C12—H12A108.6 (11)C24—C25—H25B109.9
N3—C12—H12A106.1 (11)H25A—C25—H25B108.3
H12B—C12—H12A108.5 (15)C24—C26—C19109.21 (16)
N3—C13—N5103.80 (14)C24—C26—H26A109.8
N3—C13—S1128.57 (13)C19—C26—H26A109.8
N5—C13—S1127.63 (14)C24—C26—H26B109.8
N4—C14—N5110.55 (13)C19—C26—H26B109.8
N4—C14—C17122.24 (15)H26A—C26—H26B108.3
C13—N3—N4—C140.07 (17)N3—N4—C14—N50.16 (17)
C12—N3—N4—C14175.71 (14)N3—N4—C14—C17178.86 (14)
C7—O1—C1—C210.9 (2)C13—N5—C14—N40.20 (18)
C7—O1—C1—C6167.17 (15)C15—N5—C14—N4179.95 (15)
O1—C1—C2—C3174.35 (18)C13—N5—C14—C17178.76 (15)
C6—C1—C2—C33.7 (3)C15—N5—C14—C171.1 (3)
C1—C2—C3—C40.7 (3)C13—N5—C15—C1680.4 (2)
C2—C3—C4—C52.0 (3)C14—N5—C15—C1699.8 (2)
C3—C4—C5—C61.7 (3)N4—C14—C17—C238.7 (2)
C4—C5—C6—C11.2 (3)N5—C14—C17—C23172.44 (16)
C4—C5—C6—N1177.19 (17)N4—C14—C17—C22127.92 (16)
O1—C1—C6—C5174.34 (15)N5—C14—C17—C2253.2 (2)
C2—C1—C6—C53.8 (2)N4—C14—C17—C18109.70 (18)
O1—C1—C6—N11.8 (2)N5—C14—C17—C1869.2 (2)
C2—C1—C6—N1179.97 (15)C14—C17—C18—C19178.89 (16)
C8—N1—C6—C57.3 (2)C23—C17—C18—C1960.1 (2)
C11—N1—C6—C5122.18 (18)C22—C17—C18—C1957.4 (2)
C8—N1—C6—C1168.57 (15)C17—C18—C19—C2058.9 (2)
C11—N1—C6—C161.93 (19)C17—C18—C19—C2661.6 (2)
C6—N1—C8—C9172.41 (14)C26—C19—C20—C2159.0 (2)
C11—N1—C8—C956.12 (19)C18—C19—C20—C2161.1 (2)
C12—N2—C9—C8169.87 (13)C19—C20—C21—C2559.6 (2)
C10—N2—C9—C858.92 (17)C19—C20—C21—C2261.5 (2)
N1—C8—C9—N257.44 (18)C25—C21—C22—C1760.62 (19)
C12—N2—C10—C11169.35 (14)C20—C21—C22—C1760.46 (19)
C9—N2—C10—C1159.63 (17)C14—C17—C22—C21178.67 (14)
C6—N1—C11—C10171.40 (13)C23—C17—C22—C2159.08 (18)
C8—N1—C11—C1056.68 (17)C18—C17—C22—C2158.40 (18)
N2—C10—C11—N158.53 (17)C14—C17—C23—C24179.37 (15)
C10—N2—C12—N369.0 (2)C22—C17—C23—C2459.0 (2)
C9—N2—C12—N359.8 (2)C18—C17—C23—C2459.4 (2)
C13—N3—C12—N2100.2 (2)C17—C23—C24—C2560.2 (2)
N4—N3—C12—N284.8 (2)C17—C23—C24—C2660.1 (2)
N4—N3—C13—N50.05 (17)C20—C21—C25—C2460.16 (19)
C12—N3—C13—N5175.23 (14)C22—C21—C25—C2460.3 (2)
N4—N3—C13—S1179.88 (12)C26—C24—C25—C2160.3 (2)
C12—N3—C13—S14.8 (2)C23—C24—C25—C2159.7 (2)
C14—N5—C13—N30.14 (17)C25—C24—C26—C1960.0 (2)
C15—N5—C13—N3179.98 (13)C23—C24—C26—C1960.2 (2)
C14—N5—C13—S1179.79 (12)C20—C19—C26—C2459.2 (2)
C15—N5—C13—S10.1 (2)C18—C19—C26—C2461.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O10.972.262.903 (2)123
C18—H18A···Cgi0.972.813.748 (2)162
Symmetry code: (i) x1, y1, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C11—H11A···O10.972.262.903 (2)123
C18—H18A···Cgi0.972.813.748 (2)162
Symmetry code: (i) x1, y1, z1/2.
 

Footnotes

Additonal correspondence author, e-mail: elemam5@hotmail.com.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAl-Abdullah, E. S., Al-Tuwaijri, H. M., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2013). Acta Cryst. E69, o1813–o1814.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug Res. 56, 40–47.  CAS Google Scholar
First citationAl-Tamimi, A.-M. S., Al-Abdullah, E. S., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o685–o686.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAl-Tamimi, A.-M. S., Alafeefy, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o683.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657–o658.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, A. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102.  Web of Science CAS PubMed Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug Res. 41, 1260–1264.  CAS Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds