organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexane-1,6-di­ammonium hexa­fluoro­silicate

aDépartement de Physique-Chimie, Laboratoire de Chimie, Centre Régional des Métiers de l'Education et de la Formation, Souissi Rabat, Morocco, bEquipe de Physico-Chimie des Matériaux Inorganiques, Université Ibn Tofail, Faculté des Sciences, BP 133, 14000 Kénitra, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: a_ouasri@yahoo.fr

(Received 13 December 2013; accepted 18 December 2013; online 24 December 2013)

The asymmetric unit of the title organic–inorganic molecular salt, C6H18N22+·SiF62−, consists of one anion and one cation together with half of each of two cations and two anions located on inversion centres. The SiF62− octa­hedral anions are arranged to form sheets parallel to (011), which are linked into a three-dimensional network by the organic cations through N—H⋯F hydrogen bonds.

Related literature

For background to potential physical properties of alkyl­diammonium halogenometallate salts, see: Ouasri et al. (2003[Ouasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Taibi, M. (2003). Phase Transit. 76, 701-709.]); Elyoubi et al. (2004[Elyoubi, M., Ouasri, A., Jeghnou, H., Rhandour, A., Dhamelincourt, M.-C., Dhamelincourt, P. & Mazzah, A. (2004). J. Raman Spectrosc. 35, 1056-1062.]). For the structures of related compounds, see: Jeghnou et al. (2005[Jeghnou, H., Ouasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Roussel, P. (2005). J. Raman Spectrosc. 36, 1023-1028.]); Ouasri et al. (2012[Ouasri, A., Jeghnou, H., Rhandour, A., Mazzah, A. & Rousseau, P. (2012). J. Mol. Struct. 1028, 79-87.], 2013a[Ouasri, A., Jeghnou, H., Rhandour, A. & Roussel, P. (2013a). J. Solid State Chem. 200, 22-29.],b[Ouasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2013b). Acta Cryst. E69, m437.]); Rhandour et al. (2011[Rhandour, A., Ouasri, A., Mazzah, A. & Rousseau, P. (2011). J. Mol. Struct. 990, 95-101.]); Elaoud et al. (1995[Elaoud, Z., Chaabouni, S., Daoud, A. & Kamoun, S. C. R. (1995). C. R. Acad. Sci. 320, 551-555.]).

[Scheme 1]

Experimental

Crystal data
  • C6H18N22+·SiF62−

  • Mr = 260.31

  • Triclinic, [P \overline 1]

  • a = 5.8965 (2) Å

  • b = 13.6946 (5) Å

  • c = 14.4945 (5) Å

  • α = 91.379 (2)°

  • β = 92.797 (2)°

  • γ = 90.906 (2)°

  • V = 1168.53 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.37 × 0.33 × 0.28 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.686, Tmax = 0.747

  • 29127 measured reflections

  • 4760 independent reflections

  • 3618 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.06

  • 4760 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2NC⋯F5 0.89 2.31 3.062 (3) 142
N2—H2NC⋯F6 0.89 2.27 3.063 (3) 148
N2—H2NB⋯F7 0.89 2.52 3.095 (3) 123
N2—H2NB⋯F8 0.89 2.03 2.917 (3) 175
N3—H3NA⋯F1 0.89 2.06 2.934 (3) 169
N4—H4NA⋯F8 0.89 2.34 3.095 (3) 143
N4—H4NA⋯F9 0.89 2.14 2.923 (3) 146
N4—H4NC⋯F6 0.89 2.00 2.885 (3) 172
N1—H1NB⋯F11i 0.89 2.07 2.895 (3) 155
N1—H1NA⋯F10iii 0.89 2.01 2.869 (3) 163
N1—H1NC⋯F2ii 0.89 2.02 2.857 (2) 155
N2—H2NA⋯F7iv 0.89 2.02 2.906 (3) 170
N3—H3NB⋯F10v 0.89 2.48 3.239 (3) 144
N3—H3NB⋯F12 0.89 2.13 2.907 (2) 145
N3—H3NC⋯F3vi 0.89 2.02 2.904 (3) 170
N3—H3NC⋯F4vi 0.89 2.44 3.034 (3) 124
N4—H4NB⋯F4vi 0.89 2.01 2.832 (3) 154
N4—H4NB⋯F5vi 0.89 2.51 3.086 (3) 123
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y, z+1; (iii) -x+1, -y+2, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x, -y+2, -z; (vi) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound belongs to the alkyldiammonium halogenometallate salts family of general formula (NH3(CH2)nNH3)MX6 where M is Sn, Si, Te and X is Cl, Br, I and F. These compounds have recently attracted the interest of many investigators due to their potential physical properties (Ouasri et al., 2003; Elyoubi et al., 2004). X-ray, thermal and vibrational studies of phase transitions have been performed for others compounds which belong to the alkyldiammonium halogenobismuthate salts family such as the pentachlorobismuthate derivative (NH3(CH2)nNH3)BiCl5 (Jeghnou et al., 2005; Ouasri et al., 2012; Rhandour et al., 2011; Ouasri et al., 2013a; Ouasri et al., 2013b). It was found that hexahalogenometallates (NH3(CH2)nNH3)MX6 (where M: Sn, Te; X: Cl, Br, I) have been more studied and evoked that their hexafluorosilicate homologous, whose (NH3(CH2)6NH3)SiF6 (Elaoud et al., 1995) is the only compound known to date. The aim of the present paper was to study the structure of the recently synthesized hexyldiammonium hexafluorosilicate (NH3(CH2)6NH3)SiF6 crystals by X-ray diffraction at room temperature.

The structure of the title compound is built up from inorganic anions linked to organic cations through hydrogen bonds as shown in Fig. 1. In this structure, all atoms are in general positions, except two silicon atoms [Si2 (0, 1/2, 1/2); Si3 (0, 0, 0)] located at inversion centres of the P1 space group. Moreover, the unit cell contains one organic cation and two halves of cations located about an inversion centre. Each silicon atom is surrounded by six fluorine anions in a slightly distorted SiF62- octahedral geometry. The SiF62- octahedra form two-dimensional layers parallel to the (0 1 1) plane. The hexanediammonium cations fill the space between the inorganic sheets, forming a three-dimensional network by N–H···F hydrogen bonds (Fig. 2; Table 1).

Related literature top

For background to potential physical properties of alkyldiammonium halogenometallate salts, see: Ouasri et al. (2003); Elyoubi et al. (2004). For the structures of related compounds, see: Jeghnou et al. (2005); Ouasri et al. (2012, 2013a,b); Rhandour et al. (2011); Elaoud et al. (1995).

Experimental top

Single crystals of the title compound were obtained by slow evaporation at room temperature of an aqueous solution containing stoichiometric amounts of 1,6-hexanediamine NH2(CH2)6NH2 and hexafluorosilicic acid H2SiF6.

Refinement top

H atoms were located in a difference Fourier map and treated as riding, with C—H = 0.97 Å, N—H = 0.89 Å, and with Uiso(H) = 1.2 Ueq (C, N). Four outlier (0 1 0, 0 0 1, 0 1 1, 1 -1 1) were omitted in the last refinement cycles.

Structure description top

The title compound belongs to the alkyldiammonium halogenometallate salts family of general formula (NH3(CH2)nNH3)MX6 where M is Sn, Si, Te and X is Cl, Br, I and F. These compounds have recently attracted the interest of many investigators due to their potential physical properties (Ouasri et al., 2003; Elyoubi et al., 2004). X-ray, thermal and vibrational studies of phase transitions have been performed for others compounds which belong to the alkyldiammonium halogenobismuthate salts family such as the pentachlorobismuthate derivative (NH3(CH2)nNH3)BiCl5 (Jeghnou et al., 2005; Ouasri et al., 2012; Rhandour et al., 2011; Ouasri et al., 2013a; Ouasri et al., 2013b). It was found that hexahalogenometallates (NH3(CH2)nNH3)MX6 (where M: Sn, Te; X: Cl, Br, I) have been more studied and evoked that their hexafluorosilicate homologous, whose (NH3(CH2)6NH3)SiF6 (Elaoud et al., 1995) is the only compound known to date. The aim of the present paper was to study the structure of the recently synthesized hexyldiammonium hexafluorosilicate (NH3(CH2)6NH3)SiF6 crystals by X-ray diffraction at room temperature.

The structure of the title compound is built up from inorganic anions linked to organic cations through hydrogen bonds as shown in Fig. 1. In this structure, all atoms are in general positions, except two silicon atoms [Si2 (0, 1/2, 1/2); Si3 (0, 0, 0)] located at inversion centres of the P1 space group. Moreover, the unit cell contains one organic cation and two halves of cations located about an inversion centre. Each silicon atom is surrounded by six fluorine anions in a slightly distorted SiF62- octahedral geometry. The SiF62- octahedra form two-dimensional layers parallel to the (0 1 1) plane. The hexanediammonium cations fill the space between the inorganic sheets, forming a three-dimensional network by N–H···F hydrogen bonds (Fig. 2; Table 1).

For background to potential physical properties of alkyldiammonium halogenometallate salts, see: Ouasri et al. (2003); Elyoubi et al. (2004). For the structures of related compounds, see: Jeghnou et al. (2005); Ouasri et al. (2012, 2013a,b); Rhandour et al. (2011); Elaoud et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles. Symmetry codes: (i) -x, 1.-y, -z; (ii) -x, 2.-y, -z; (iii) -x, 1.-y, 1.-z; (iv) -x, 2.-y, 1.-z.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing inorganic layers linked through N–H···F hydrogen bonds (dashed lines).
Hexane-1,6-diammonium hexafluorosilicate top
Crystal data top
C6H18N22+·SiF62Z = 4
Mr = 260.31F(000) = 544
Triclinic, P1Dx = 1.480 Mg m3
a = 5.8965 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.6946 (5) ÅCell parameters from 4760 reflections
c = 14.4945 (5) Åθ = 2.0–26.4°
α = 91.379 (2)°µ = 0.25 mm1
β = 92.797 (2)°T = 296 K
γ = 90.906 (2)°Block, colourless
V = 1168.53 (7) Å30.37 × 0.33 × 0.28 mm
Data collection top
Bruker X8 APEX
diffractometer
4760 independent reflections
Radiation source: fine-focus sealed tube3618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.686, Tmax = 0.747k = 1717
29127 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0734P)2 + 1.0436P]
where P = (Fo2 + 2Fc2)/3
4760 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H18N22+·SiF62γ = 90.906 (2)°
Mr = 260.31V = 1168.53 (7) Å3
Triclinic, P1Z = 4
a = 5.8965 (2) ÅMo Kα radiation
b = 13.6946 (5) ŵ = 0.25 mm1
c = 14.4945 (5) ÅT = 296 K
α = 91.379 (2)°0.37 × 0.33 × 0.28 mm
β = 92.797 (2)°
Data collection top
Bruker X8 APEX
diffractometer
4760 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3618 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.747Rint = 0.023
29127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.06Δρmax = 0.46 e Å3
4760 reflectionsΔρmin = 0.26 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4600 (7)0.7541 (2)0.9702 (2)0.0601 (9)
H1A0.29970.73670.96820.072*
H1B0.54250.70181.00000.072*
C20.5353 (7)0.7632 (3)0.8734 (2)0.0632 (9)
H2A0.45610.81680.84430.076*
H2B0.69650.77880.87550.076*
C30.4917 (8)0.6720 (3)0.8158 (2)0.0773 (12)
H3A0.32950.65850.81170.093*
H3B0.56380.61800.84710.093*
C40.5760 (8)0.6754 (3)0.7179 (2)0.0828 (12)
H4A0.73660.69250.72210.099*
H4B0.56080.61030.69020.099*
C50.4604 (8)0.7437 (3)0.6558 (2)0.0739 (11)
H5A0.47180.80830.68480.089*
H5B0.30060.72540.65070.089*
C60.5433 (7)0.7508 (2)0.5600 (2)0.0624 (9)
H6A0.46610.80390.52920.075*
H6B0.70430.76690.56420.075*
C70.0516 (6)1.0370 (2)0.2857 (2)0.0523 (7)
H7A0.01511.08340.24320.063*
H7B0.21331.05130.29250.063*
C80.0506 (6)1.0498 (2)0.3775 (2)0.0552 (8)
H8A0.21101.03300.37030.066*
H8B0.03831.11840.39590.066*
C90.0530 (6)0.9906 (2)0.45450 (19)0.0552 (8)
H9A0.03580.92170.43790.066*
H9B0.21431.00580.46140.066*
C100.0545 (6)0.5465 (2)0.21254 (19)0.0497 (7)
H10A0.21830.53770.20750.060*
H10B0.01040.48600.23390.060*
C110.0292 (6)0.5675 (2)0.11971 (19)0.0524 (7)
H11A0.19360.57240.12430.063*
H11B0.02790.63020.10030.063*
C120.0417 (7)0.4908 (3)0.0471 (2)0.0617 (9)
H12A0.01390.42810.06720.074*
H12B0.20620.48640.04260.074*
N10.4970 (3)0.84453 (16)1.02554 (13)0.0367 (5)
H1NB0.44420.89480.99370.044*
H1NA0.64490.85351.03880.044*
H1NC0.42430.84021.07770.044*
N20.5073 (3)0.66128 (16)0.50333 (14)0.0357 (5)
H2NA0.58240.61260.52980.043*
H2NC0.55800.67060.44730.043*
H2NB0.35970.64630.49850.043*
N30.0159 (3)0.93712 (15)0.24637 (13)0.0341 (5)
H3NA0.08770.89480.28260.041*
H3NB0.07030.93380.19020.041*
H3NC0.13200.92260.24260.041*
N40.0039 (3)0.62479 (15)0.28063 (13)0.0326 (4)
H4NA0.05390.61040.33430.039*
H4NB0.05320.68080.26090.039*
H4NC0.15420.63080.28800.039*
F10.3057 (2)0.80063 (13)0.34886 (10)0.0471 (4)
F20.3060 (2)0.77137 (12)0.18810 (10)0.0437 (4)
F30.5306 (3)0.90186 (12)0.25488 (13)0.0553 (5)
F40.7096 (2)0.76175 (13)0.19650 (11)0.0476 (4)
F50.7122 (3)0.79006 (15)0.35786 (11)0.0560 (5)
F60.4882 (3)0.66026 (12)0.29172 (12)0.0496 (4)
F70.2030 (2)0.49066 (13)0.42253 (11)0.0483 (4)
F80.0188 (3)0.62264 (11)0.49428 (12)0.0516 (4)
F90.2025 (3)0.49935 (13)0.41489 (11)0.0514 (4)
F100.0226 (3)1.11843 (13)0.02764 (13)0.0575 (5)
F110.1963 (2)1.02734 (14)0.07661 (10)0.0519 (5)
F120.2087 (2)1.01509 (14)0.08206 (10)0.0505 (4)
Si10.50922 (10)0.78157 (5)0.27367 (5)0.0328 (2)
Si20.00000.50000.50000.0339 (2)
Si30.00001.00000.00000.0370 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (2)0.0542 (19)0.0415 (16)0.0097 (17)0.0083 (15)0.0045 (14)
C20.081 (2)0.064 (2)0.0448 (17)0.0093 (18)0.0126 (16)0.0058 (15)
C30.128 (4)0.057 (2)0.0463 (19)0.002 (2)0.007 (2)0.0031 (16)
C40.118 (3)0.081 (3)0.050 (2)0.025 (2)0.005 (2)0.0012 (19)
C50.105 (3)0.067 (2)0.0488 (19)0.016 (2)0.0007 (19)0.0104 (17)
C60.092 (3)0.0506 (19)0.0448 (17)0.0089 (17)0.0047 (16)0.0023 (14)
C70.073 (2)0.0411 (16)0.0428 (16)0.0057 (14)0.0037 (14)0.0020 (12)
C80.076 (2)0.0458 (17)0.0431 (16)0.0089 (15)0.0005 (14)0.0075 (13)
C90.074 (2)0.0551 (19)0.0367 (15)0.0095 (16)0.0021 (14)0.0084 (13)
C100.0667 (19)0.0424 (16)0.0400 (15)0.0072 (14)0.0086 (13)0.0043 (12)
C110.068 (2)0.0513 (18)0.0378 (15)0.0085 (15)0.0098 (13)0.0074 (13)
C120.085 (2)0.060 (2)0.0407 (17)0.0171 (18)0.0137 (16)0.0115 (14)
N10.0343 (11)0.0477 (13)0.0284 (10)0.0005 (9)0.0031 (8)0.0055 (9)
N20.0327 (11)0.0439 (12)0.0312 (10)0.0027 (9)0.0046 (8)0.0050 (9)
N30.0349 (11)0.0409 (12)0.0267 (10)0.0020 (9)0.0030 (8)0.0023 (8)
N40.0320 (10)0.0375 (11)0.0289 (10)0.0021 (8)0.0038 (8)0.0032 (8)
F10.0376 (8)0.0681 (11)0.0373 (8)0.0117 (7)0.0124 (6)0.0080 (7)
F20.0325 (8)0.0626 (10)0.0359 (8)0.0011 (7)0.0024 (6)0.0082 (7)
F30.0435 (9)0.0435 (9)0.0799 (12)0.0011 (7)0.0045 (8)0.0161 (8)
F40.0340 (8)0.0681 (11)0.0431 (9)0.0119 (7)0.0149 (6)0.0189 (8)
F50.0363 (8)0.0857 (13)0.0454 (9)0.0008 (8)0.0084 (7)0.0099 (9)
F60.0425 (9)0.0421 (9)0.0662 (11)0.0062 (7)0.0118 (7)0.0212 (8)
F70.0371 (8)0.0635 (11)0.0468 (9)0.0107 (7)0.0178 (7)0.0171 (8)
F80.0465 (9)0.0389 (9)0.0708 (11)0.0031 (7)0.0104 (8)0.0149 (8)
F90.0358 (8)0.0743 (12)0.0443 (9)0.0001 (8)0.0040 (7)0.0178 (8)
F100.0428 (9)0.0582 (11)0.0726 (12)0.0008 (8)0.0034 (8)0.0268 (9)
F110.0351 (8)0.0858 (13)0.0366 (8)0.0119 (8)0.0090 (6)0.0158 (8)
F120.0311 (8)0.0823 (13)0.0380 (8)0.0017 (8)0.0052 (6)0.0121 (8)
Si10.0246 (3)0.0431 (4)0.0318 (4)0.0035 (3)0.0040 (3)0.0126 (3)
Si20.0250 (5)0.0411 (6)0.0368 (5)0.0039 (4)0.0067 (4)0.0142 (4)
Si30.0244 (5)0.0575 (7)0.0298 (5)0.0011 (4)0.0022 (4)0.0166 (4)
Geometric parameters (Å, º) top
C1—N11.466 (4)C11—H11B0.9700
C1—C21.500 (4)C12—C12ii1.499 (6)
C1—H1A0.9700C12—H12A0.9700
C1—H1B0.9700C12—H12B0.9700
C2—C31.498 (5)N1—H1NB0.8900
C2—H2A0.9700N1—H1NA0.8900
C2—H2B0.9700N1—H1NC0.8900
C3—C41.527 (5)N2—H2NA0.8900
C3—H3A0.9700N2—H2NC0.8900
C3—H3B0.9700N2—H2NB0.8900
C4—C51.467 (5)N3—H3NA0.8900
C4—H4A0.9700N3—H3NB0.8900
C4—H4B0.9700N3—H3NC0.8900
C5—C61.499 (5)N4—H4NA0.8900
C5—H5A0.9700N4—H4NB0.8900
C5—H5B0.9700N4—H4NC0.8900
C6—N21.466 (4)F1—Si11.6794 (15)
C6—H6A0.9700F2—Si11.6837 (15)
C6—H6B0.9700F3—Si11.6798 (17)
C7—N31.478 (3)F4—Si11.6868 (15)
C7—C81.495 (4)F5—Si11.6677 (16)
C7—H7A0.9700F6—Si11.6915 (16)
C7—H7B0.9700F7—Si21.6848 (14)
C8—C91.507 (4)F8—Si21.6858 (16)
C8—H8A0.9700F9—Si21.6741 (15)
C8—H8B0.9700F10—Si31.6848 (17)
C9—C9i1.506 (5)F11—Si31.6830 (14)
C9—H9A0.9700F12—Si31.6759 (14)
C9—H9B0.9700Si2—F9iii1.6741 (15)
C10—N41.465 (3)Si2—F7iii1.6849 (14)
C10—C111.489 (4)Si2—F8iii1.6858 (16)
C10—H10A0.9700Si3—F12iv1.6760 (14)
C10—H10B0.9700Si3—F11iv1.6830 (14)
C11—C121.508 (4)Si3—F10iv1.6848 (17)
C11—H11A0.9700
N1—C1—C2112.6 (3)H12A—C12—H12B107.6
N1—C1—H1A109.1C1—N1—H1NB109.5
C2—C1—H1A109.1C1—N1—H1NA109.5
N1—C1—H1B109.1H1NB—N1—H1NA109.5
C2—C1—H1B109.1C1—N1—H1NC109.5
H1A—C1—H1B107.8H1NB—N1—H1NC109.5
C3—C2—C1112.9 (3)H1NA—N1—H1NC109.5
C3—C2—H2A109.0C6—N2—H2NA109.5
C1—C2—H2A109.0C6—N2—H2NC109.5
C3—C2—H2B109.0H2NA—N2—H2NC109.5
C1—C2—H2B109.0C6—N2—H2NB109.5
H2A—C2—H2B107.8H2NA—N2—H2NB109.5
C2—C3—C4115.1 (3)H2NC—N2—H2NB109.5
C2—C3—H3A108.5C7—N3—H3NA109.5
C4—C3—H3A108.5C7—N3—H3NB109.5
C2—C3—H3B108.5H3NA—N3—H3NB109.5
C4—C3—H3B108.5C7—N3—H3NC109.5
H3A—C3—H3B107.5H3NA—N3—H3NC109.5
C5—C4—C3116.0 (3)H3NB—N3—H3NC109.5
C5—C4—H4A108.3C10—N4—H4NA109.5
C3—C4—H4A108.3C10—N4—H4NB109.5
C5—C4—H4B108.3H4NA—N4—H4NB109.5
C3—C4—H4B108.3C10—N4—H4NC109.5
H4A—C4—H4B107.4H4NA—N4—H4NC109.5
C4—C5—C6117.4 (3)H4NB—N4—H4NC109.5
C4—C5—H5A108.0F5—Si1—F191.67 (8)
C6—C5—H5A108.0F5—Si1—F391.24 (10)
C4—C5—H5B108.0F1—Si1—F391.04 (9)
C6—C5—H5B108.0F5—Si1—F2179.11 (10)
H5A—C5—H5B107.2F1—Si1—F288.89 (8)
N2—C6—C5114.0 (3)F3—Si1—F289.43 (9)
N2—C6—H6A108.8F5—Si1—F489.45 (8)
C5—C6—H6A108.8F1—Si1—F4178.85 (9)
N2—C6—H6B108.8F3—Si1—F489.17 (9)
C5—C6—H6B108.8F2—Si1—F489.98 (8)
H6A—C6—H6B107.6F5—Si1—F688.99 (9)
N3—C7—C8112.4 (2)F1—Si1—F689.33 (8)
N3—C7—H7A109.1F3—Si1—F6179.56 (10)
C8—C7—H7A109.1F2—Si1—F690.33 (9)
N3—C7—H7B109.1F4—Si1—F690.46 (8)
C8—C7—H7B109.1F9iii—Si2—F9180.0
H7A—C7—H7B107.9F9iii—Si2—F789.15 (8)
C7—C8—C9115.8 (3)F9—Si2—F790.85 (8)
C7—C8—H8A108.3F9iii—Si2—F7iii90.85 (8)
C9—C8—H8A108.3F9—Si2—F7iii89.15 (8)
C7—C8—H8B108.3F7—Si2—F7iii180.0
C9—C8—H8B108.3F9iii—Si2—F890.78 (9)
H8A—C8—H8B107.4F9—Si2—F889.22 (9)
C9i—C9—C8112.9 (3)F7—Si2—F889.29 (8)
C9i—C9—H9A109.0F7iii—Si2—F890.71 (8)
C8—C9—H9A109.0F9iii—Si2—F8iii89.22 (9)
C9i—C9—H9B109.0F9—Si2—F8iii90.78 (9)
C8—C9—H9B109.0F7—Si2—F8iii90.71 (8)
H9A—C9—H9B107.8F7iii—Si2—F8iii89.29 (8)
N4—C10—C11112.4 (2)F8—Si2—F8iii180.0
N4—C10—H10A109.1F12—Si3—F12iv180.0
C11—C10—H10A109.1F12—Si3—F11iv89.08 (8)
N4—C10—H10B109.1F12iv—Si3—F11iv90.92 (8)
C11—C10—H10B109.1F12—Si3—F1190.92 (8)
H10A—C10—H10B107.8F12iv—Si3—F1189.08 (8)
C10—C11—C12113.3 (3)F11iv—Si3—F11180.000 (1)
C10—C11—H11A108.9F12—Si3—F10iv89.24 (9)
C12—C11—H11A108.9F12iv—Si3—F10iv90.76 (9)
C10—C11—H11B108.9F11iv—Si3—F10iv90.66 (9)
C12—C11—H11B108.9F11—Si3—F10iv89.34 (9)
H11A—C11—H11B107.7F12—Si3—F1090.76 (9)
C12ii—C12—C11114.8 (3)F12iv—Si3—F1089.24 (9)
C12ii—C12—H12A108.6F11iv—Si3—F1089.34 (9)
C11—C12—H12A108.6F11—Si3—F1090.66 (9)
C12ii—C12—H12B108.6F10iv—Si3—F10180.00 (12)
C11—C12—H12B108.6
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NC···F50.892.313.062 (3)142
N2—H2NC···F60.892.273.063 (3)148
N2—H2NB···F70.892.523.095 (3)123
N2—H2NB···F80.892.032.917 (3)175
N3—H3NA···F10.892.062.934 (3)169
N4—H4NA···F80.892.343.095 (3)143
N4—H4NA···F90.892.142.923 (3)146
N4—H4NC···F60.892.002.885 (3)172
N1—H1NB···F11i0.892.072.895 (3)155
N1—H1NA···F10v0.892.012.869 (3)163
N1—H1NC···F2vi0.892.022.857 (2)155
N2—H2NA···F7vii0.892.022.906 (3)170
N3—H3NB···F10iv0.892.483.239 (3)144
N3—H3NB···F120.892.132.907 (2)145
N3—H3NC···F3viii0.892.022.904 (3)170
N3—H3NC···F4viii0.892.443.034 (3)124
N4—H4NB···F4viii0.892.012.832 (3)154
N4—H4NB···F5viii0.892.513.086 (3)123
Symmetry codes: (i) x, y+2, z+1; (iv) x, y+2, z; (v) x+1, y+2, z+1; (vi) x, y, z+1; (vii) x+1, y+1, z+1; (viii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2NC···F50.892.313.062 (3)141.6
N2—H2NC···F60.892.273.063 (3)147.8
N2—H2NB···F70.892.523.095 (3)123.3
N2—H2NB···F80.892.032.917 (3)175.0
N3—H3NA···F10.892.062.934 (3)168.6
N4—H4NA···F80.892.343.095 (3)142.8
N4—H4NA···F90.892.142.923 (3)146.1
N4—H4NC···F60.892.002.885 (3)171.6
N1—H1NB···F11i0.892.072.895 (3)154.6
N1—H1NA···F10ii0.892.012.869 (3)162.6
N1—H1NC···F2iii0.892.022.857 (2)155.3
N2—H2NA···F7iv0.892.022.906 (3)170.4
N3—H3NB···F10v0.892.483.239 (3)143.6
N3—H3NB···F120.892.132.907 (2)145.3
N3—H3NC···F3vi0.892.022.904 (3)170.3
N3—H3NC···F4vi0.892.443.034 (3)124.1
N4—H4NB···F4vi0.892.012.832 (3)153.7
N4—H4NB···F5vi0.892.513.086 (3)123.2
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+2, z; (vi) x1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElaoud, Z., Chaabouni, S., Daoud, A. & Kamoun, S. C. R. (1995). C. R. Acad. Sci. 320, 551–555.  CAS Google Scholar
First citationElyoubi, M., Ouasri, A., Jeghnou, H., Rhandour, A., Dhamelincourt, M.-C., Dhamelincourt, P. & Mazzah, A. (2004). J. Raman Spectrosc. 35, 1056–1062.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJeghnou, H., Ouasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Roussel, P. (2005). J. Raman Spectrosc. 36, 1023–1028.  Web of Science CrossRef CAS Google Scholar
First citationOuasri, A., Jeghnou, H., Rhandour, A., Mazzah, A. & Rousseau, P. (2012). J. Mol. Struct. 1028, 79–87.  Web of Science CrossRef CAS Google Scholar
First citationOuasri, A., Jeghnou, H., Rhandour, A. & Roussel, P. (2013a). J. Solid State Chem. 200, 22–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Taibi, M. (2003). Phase Transit. 76, 701–709.  Web of Science CrossRef CAS Google Scholar
First citationOuasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2013b). Acta Cryst. E69, m437.  CSD CrossRef IUCr Journals Google Scholar
First citationRhandour, A., Ouasri, A., Mazzah, A. & Rousseau, P. (2011). J. Mol. Struct. 990, 95–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds