organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-[2-(2,4,6-tri­chloro­phen­yl)hydrazin-1-yl­­idene]butane­dioate

aDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: dr@physics.uni-mysore.ac.in

(Received 28 October 2013; accepted 27 November 2013; online 4 December 2013)

In the title compound, C12H11Cl3N2O4, the dihedral angle between the aromatic ring and the hydrazine (NH—N=C) grouping is 52.2 (3)°. The butanedioate groups exhibit planar conformations. An intra­molecular N—H⋯O hydrogen bond links the N—H group of the hydrazine to one of the meth­oxy groups of the butane­dioate moiety. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and ππ inter­actions are also observed [centroid–centroid separation = 3.535 (1) Å].

Related literature

For the pharmacological activity of halo-substituted derivatives, see: Kees et al. (1996[Kees, K. L., Fitzgerald, J. J. Jr, Steiner, K. E., Mattes, J. F., Mihan, B., Tosi, T., Mondoro, D. & McCalebr, M. L. (1996). J. Med. Chem. 39, 3920-3928.]). For the use of the title compound in the synthesis of pyrazoles, see: Palacios et al. (1999[Palacios, F., de Retana, A. M. O. & Pagalday, J. (1999). Tetrahedron, 55, 14451-14458.]). For the biological activity of pyrazoles, see: Palacios et al. (1999[Palacios, F., de Retana, A. M. O. & Pagalday, J. (1999). Tetrahedron, 55, 14451-14458.]); Lee et al. (2003[Lee, K. Y., Kim, J. M. & Kim, J. N. (2003). Tetrahedron Lett. 44, 6737-6740.]); Nithinchandra et al. (2012[Nithinchandra, Kalluraya, B., Aamir, S. & Shabaraya, A. R. (2012). Eur. J. Med. Chem. 54, 597-604.]); Genin et al. (2000[Genin, W. G., Yagi, Y. & Romero, D. L. (2000). J. Med. Chem. 43, 1034-1040.]); Reddy et al. (2008[Reddy, M. V. R., Billa, V. K., Pallela, V. R., Mallireddigari, M. R., Boominathan, R., Gabriel, J. L. & Reddy, E. P. (2008). Bioorg. Med. Chem. 16, 3907-3916.]); Kees et al. (1996[Kees, K. L., Fitzgerald, J. J. Jr, Steiner, K. E., Mattes, J. F., Mihan, B., Tosi, T., Mondoro, D. & McCalebr, M. L. (1996). J. Med. Chem. 39, 3920-3928.]). For a related structure, see: Huang et al. (2011[Huang, Y.-L., Li, D.-F., Sun, J., Gao, J.-H. & Shan, S. (2011). Acta Cryst. E67, o528.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11Cl3N2O4

  • Mr = 353.58

  • Orthorhombic, P b c a

  • a = 7.0182 (5) Å

  • b = 16.0165 (12) Å

  • c = 26.7488 (15) Å

  • V = 3006.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.716, Tmax = 1.000

  • 7083 measured reflections

  • 2954 independent reflections

  • 1844 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.118

  • S = 1.03

  • 2954 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯O15 0.87 (3) 2.38 (3) 3.047 (3) 133 (3)
C5—H5⋯O19i 0.93 2.51 3.397 (4) 159
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It has been reported in the literature that halo substituted derivatives possess significant pharmacological activity (Kees et al., 1996). Also the title compound can be used as an intermediate for the synthesis of pyrazoles (Palacios et al., 1999). Aryl pyrazoles have antimicrobial (Palacios et al., 1999, Lee et al., 2003), anti-inflammatory (Nithinchandra et al., 2012) and non-nucleoside HIV-I reverse transcriptase inhibitor activity (Genin et al., 2000). Furthermore, pyrazoles with a wide array of substituted groups were reported to be selective inhibitors of cyclooxygenase (Reddy et al., 2008) and also exhibit antidiabetic properties (Kees et al., 1996).

In the title compound, C12H11C13N2O4, the trichlorophenyl ring is planar (r.m.s. deviation 0.018 Å); the largest deviation from the mean plane is 0.02 (3) Å for atom C1. The bond distances in the title compound are comparable to those observed in the closely related structure (E)-benzaldehyde (2,4,6-trichlorophenyl) hydrazone (Huang et al., 2011). The C1—N10—N11—C12 torsion angle of the atoms joining the trichlorophenyl ring and the butanedioate group is 175.9 (3). An intramolecular N10–H10···O15 hydrogen bond links the N–H group of the hydrazine to one of the methoxy groups of the butanedioate moiety. In the crystal, molecules are stacked along the a axis by C5—H5..O19 hydrogen bonds and ππ interactions between adjacent trichlorophenyl rings [centroid–centroid separation = 3.535 (1) Å, interplanar spacing = 3.494 Å, centroid shift = 0.53 Å, symmetry code: -1/2 + x,y,1/2 - z].

Related literature top

For the pharmacological activity of halo-substituted derivatives , see: Kees et al. (1996). For the use of the title compound in the synthesis of pyrazoles, see: Palacios et al. (1999). For the biological activity of pyrazoles, see: Palacios et al. (1999); Lee et al. (2003); Nithinchandra et al. (2012); Genin et al. (2000); Reddy et al. (2008); Kees et al. (1996). For a related structure, see: Huang et al. (2011).

Experimental top

The title compound was prepared by refluxing a mixture of trichlorophenyl hydrazine (0.01 mol) and dimethylacetylene dicarboxylate (0.01 mol) in a 10 ml toluene solution for 4 h. The completion of the reaction was monitored by thin layer chromatography. After completion the solvent was evaporated under reduced pressure and the white solid obtained was recrystallized from ethanol.

Refinement top

Atom H10 attached to N10 was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were refined as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Structure description top

It has been reported in the literature that halo substituted derivatives possess significant pharmacological activity (Kees et al., 1996). Also the title compound can be used as an intermediate for the synthesis of pyrazoles (Palacios et al., 1999). Aryl pyrazoles have antimicrobial (Palacios et al., 1999, Lee et al., 2003), anti-inflammatory (Nithinchandra et al., 2012) and non-nucleoside HIV-I reverse transcriptase inhibitor activity (Genin et al., 2000). Furthermore, pyrazoles with a wide array of substituted groups were reported to be selective inhibitors of cyclooxygenase (Reddy et al., 2008) and also exhibit antidiabetic properties (Kees et al., 1996).

In the title compound, C12H11C13N2O4, the trichlorophenyl ring is planar (r.m.s. deviation 0.018 Å); the largest deviation from the mean plane is 0.02 (3) Å for atom C1. The bond distances in the title compound are comparable to those observed in the closely related structure (E)-benzaldehyde (2,4,6-trichlorophenyl) hydrazone (Huang et al., 2011). The C1—N10—N11—C12 torsion angle of the atoms joining the trichlorophenyl ring and the butanedioate group is 175.9 (3). An intramolecular N10–H10···O15 hydrogen bond links the N–H group of the hydrazine to one of the methoxy groups of the butanedioate moiety. In the crystal, molecules are stacked along the a axis by C5—H5..O19 hydrogen bonds and ππ interactions between adjacent trichlorophenyl rings [centroid–centroid separation = 3.535 (1) Å, interplanar spacing = 3.494 Å, centroid shift = 0.53 Å, symmetry code: -1/2 + x,y,1/2 - z].

For the pharmacological activity of halo-substituted derivatives , see: Kees et al. (1996). For the use of the title compound in the synthesis of pyrazoles, see: Palacios et al. (1999). For the biological activity of pyrazoles, see: Palacios et al. (1999); Lee et al. (2003); Nithinchandra et al. (2012); Genin et al. (2000); Reddy et al. (2008); Kees et al. (1996). For a related structure, see: Huang et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis.
Dimethyl 2-[2-(2,4,6-trichlorophenyl)hydrazin-1-ylidene]butanedioate top
Crystal data top
C12H11Cl3N2O4F(000) = 1440
Mr = 353.58Dx = 1.562 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1944 reflections
a = 7.0182 (5) Åθ = 3.9–27.4°
b = 16.0165 (12) ŵ = 0.63 mm1
c = 26.7488 (15) ÅT = 293 K
V = 3006.8 (4) Å3Block, white
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2954 independent reflections
Radiation source: fine-focus sealed tube1844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.9°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1911
Tmin = 0.716, Tmax = 1.000l = 3230
7083 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0358P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.006
2954 reflectionsΔρmax = 0.26 e Å3
195 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (4)
Crystal data top
C12H11Cl3N2O4V = 3006.8 (4) Å3
Mr = 353.58Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.0182 (5) ŵ = 0.63 mm1
b = 16.0165 (12) ÅT = 293 K
c = 26.7488 (15) Å0.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2954 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1844 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 1.000Rint = 0.040
7083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
2954 reflectionsΔρmin = 0.24 e Å3
195 parameters
Special details top

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.13759 (16)0.09353 (6)0.31855 (3)0.0641 (3)
Cl90.09570 (15)0.23591 (5)0.27554 (3)0.0589 (3)
Cl80.16340 (14)0.01155 (7)0.12827 (3)0.0640 (3)
O210.4517 (4)0.22006 (15)0.47244 (7)0.0604 (7)
N110.2602 (4)0.14140 (16)0.36258 (8)0.0385 (6)
N100.1266 (4)0.08714 (18)0.34507 (9)0.0406 (7)
O190.5314 (3)0.24056 (15)0.39230 (8)0.0572 (7)
O150.2372 (4)0.01540 (15)0.43653 (8)0.0582 (7)
C30.1464 (4)0.0307 (2)0.22574 (11)0.0443 (8)
H30.15100.08590.21500.053*
C120.2654 (4)0.15507 (19)0.41006 (10)0.0385 (8)
C10.1339 (4)0.0696 (2)0.29355 (10)0.0344 (7)
O170.2154 (4)0.02745 (18)0.51588 (9)0.0796 (9)
C60.1257 (4)0.13302 (19)0.25794 (11)0.0385 (8)
C50.1340 (4)0.1159 (2)0.20686 (11)0.0429 (8)
H50.13150.15890.18350.051*
C130.1318 (5)0.1207 (2)0.44935 (11)0.0459 (9)
H13A0.00810.11110.43420.055*
H13B0.11580.16220.47540.055*
C40.1460 (4)0.0342 (2)0.19178 (12)0.0459 (9)
C20.1399 (4)0.0117 (2)0.27610 (11)0.0401 (8)
C180.4236 (5)0.2085 (2)0.42838 (12)0.0437 (8)
C140.1996 (5)0.0411 (2)0.47251 (12)0.0508 (9)
C160.3100 (6)0.0954 (2)0.45282 (14)0.0744 (12)
H16A0.33220.13030.42420.112*
H16B0.42750.08740.47060.112*
H16C0.21870.12170.47440.112*
C200.6937 (6)0.2892 (3)0.40768 (13)0.0762 (13)
H20A0.76020.30900.37870.114*
H20B0.65150.33580.42730.114*
H20C0.77750.25500.42730.114*
H100.096 (5)0.044 (2)0.3640 (11)0.050 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0891 (8)0.0417 (5)0.0615 (6)0.0035 (5)0.0025 (5)0.0015 (4)
Cl90.0786 (7)0.0401 (5)0.0580 (6)0.0024 (5)0.0102 (4)0.0033 (4)
Cl80.0631 (6)0.0898 (8)0.0393 (5)0.0039 (6)0.0063 (4)0.0186 (5)
O210.0808 (18)0.0676 (18)0.0327 (13)0.0156 (15)0.0090 (12)0.0032 (11)
N110.0441 (16)0.0355 (15)0.0359 (14)0.0012 (13)0.0024 (11)0.0004 (12)
N100.0456 (16)0.0408 (16)0.0353 (16)0.0085 (14)0.0012 (12)0.0040 (14)
O190.0691 (16)0.0619 (17)0.0406 (13)0.0275 (14)0.0008 (12)0.0060 (11)
O150.0717 (18)0.0510 (16)0.0519 (14)0.0054 (14)0.0097 (13)0.0132 (12)
C30.0340 (17)0.050 (2)0.049 (2)0.0022 (17)0.0002 (14)0.0149 (18)
C120.0480 (19)0.0361 (18)0.0314 (16)0.0027 (16)0.0009 (13)0.0017 (13)
C10.0289 (16)0.0398 (19)0.0344 (17)0.0020 (15)0.0001 (12)0.0065 (14)
O170.109 (2)0.090 (2)0.0399 (14)0.018 (2)0.0080 (14)0.0129 (15)
C60.0330 (16)0.0365 (19)0.0461 (19)0.0000 (15)0.0038 (14)0.0096 (15)
C50.0390 (18)0.055 (2)0.0346 (18)0.0054 (18)0.0061 (14)0.0010 (16)
C130.055 (2)0.050 (2)0.0328 (17)0.0003 (18)0.0049 (14)0.0002 (16)
C40.0306 (17)0.060 (2)0.0470 (19)0.0008 (18)0.0043 (14)0.0105 (19)
C20.0366 (17)0.0421 (19)0.0415 (19)0.0009 (16)0.0009 (14)0.0031 (15)
C180.058 (2)0.0343 (18)0.0390 (19)0.0038 (17)0.0011 (16)0.0001 (15)
C140.049 (2)0.062 (2)0.041 (2)0.014 (2)0.0062 (16)0.0017 (18)
C160.091 (3)0.045 (2)0.087 (3)0.000 (2)0.001 (2)0.016 (2)
C200.081 (3)0.081 (3)0.067 (3)0.043 (3)0.002 (2)0.008 (2)
Geometric parameters (Å, º) top
Cl7—C21.735 (3)C12—C131.512 (4)
Cl9—C61.727 (3)C1—C21.383 (4)
Cl8—C41.741 (3)C1—C61.394 (4)
O21—C181.209 (3)O17—C141.186 (3)
N11—C121.289 (3)C6—C51.395 (4)
N11—N101.362 (3)C5—C41.372 (5)
N10—C11.407 (4)C5—H50.9300
N10—H100.88 (3)C13—C141.495 (5)
O19—C181.329 (4)C13—H13A0.9700
O19—C201.440 (4)C13—H13B0.9700
O15—C141.348 (4)C16—H16A0.9600
O15—C161.447 (4)C16—H16B0.9600
C3—C21.382 (4)C16—H16C0.9600
C3—C41.380 (5)C20—H20A0.9600
C3—H30.9300C20—H20B0.9600
C12—C181.485 (4)C20—H20C0.9600
C12—N11—N10117.8 (3)H13A—C13—H13B107.7
N11—N10—C1116.1 (2)C5—C4—C3121.7 (3)
N11—N10—H10118 (2)C5—C4—Cl8119.3 (3)
C1—N10—H10115 (2)C3—C4—Cl8119.0 (3)
C18—O19—C20116.9 (3)C3—C2—C1122.5 (3)
C14—O15—C16116.7 (3)C3—C2—Cl7118.1 (3)
C2—C3—C4118.4 (3)C1—C2—Cl7119.3 (2)
C2—C3—H3120.8O21—C18—O19123.7 (3)
C4—C3—H3120.8O21—C18—C12122.2 (3)
N11—C12—C18116.4 (3)O19—C18—C12114.1 (3)
N11—C12—C13127.3 (3)O17—C14—O15123.8 (4)
C18—C12—C13116.3 (3)O17—C14—C13126.4 (4)
C2—C1—C6117.1 (3)O15—C14—C13109.8 (3)
C2—C1—N10121.3 (3)O15—C16—H16A109.5
C6—C1—N10121.5 (3)O15—C16—H16B109.5
C1—C6—C5121.6 (3)H16A—C16—H16B109.5
C1—C6—Cl9120.9 (2)O15—C16—H16C109.5
C5—C6—Cl9117.4 (3)H16A—C16—H16C109.5
C4—C5—C6118.5 (3)H16B—C16—H16C109.5
C4—C5—H5120.7O19—C20—H20A109.5
C6—C5—H5120.7O19—C20—H20B109.5
C14—C13—C12113.6 (3)H20A—C20—H20B109.5
C14—C13—H13A108.8O19—C20—H20C109.5
C12—C13—H13A108.8H20A—C20—H20C109.5
C14—C13—H13B108.8H20B—C20—H20C109.5
C12—C13—H13B108.8
C12—N11—N10—C1175.9 (3)C4—C3—C2—C10.3 (5)
N10—N11—C12—C18174.7 (3)C4—C3—C2—Cl7179.3 (2)
N10—N11—C12—C133.4 (5)C6—C1—C2—C32.9 (5)
N11—N10—C1—C2127.5 (3)N10—C1—C2—C3179.8 (3)
N11—N10—C1—C655.8 (4)C6—C1—C2—Cl7176.7 (2)
C2—C1—C6—C53.5 (4)N10—C1—C2—Cl70.2 (4)
N10—C1—C6—C5179.6 (3)C20—O19—C18—O212.2 (5)
C2—C1—C6—Cl9174.0 (2)C20—O19—C18—C12176.6 (3)
N10—C1—C6—Cl92.9 (4)N11—C12—C18—O21173.9 (3)
C1—C6—C5—C41.6 (4)C13—C12—C18—O214.3 (5)
Cl9—C6—C5—C4176.0 (2)N11—C12—C18—O194.9 (4)
N11—C12—C13—C1492.3 (4)C13—C12—C18—O19176.8 (3)
C18—C12—C13—C1485.7 (4)C16—O15—C14—O173.2 (5)
C6—C5—C4—C31.2 (5)C16—O15—C14—C13178.2 (3)
C6—C5—C4—Cl8178.2 (2)C12—C13—C14—O17127.7 (4)
C2—C3—C4—C51.8 (5)C12—C13—C14—O1553.8 (4)
C2—C3—C4—Cl8177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O150.87 (3)2.38 (3)3.047 (3)133 (3)
C5—H5···O19i0.932.513.397 (4)159
Symmetry code: (i) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O150.87 (3)2.38 (3)3.047 (3)133 (3)
C5—H5···O19i0.932.513.397 (4)159
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

MKU thanks the Department of Science & Technology (DST), New Delhi, for the award of an INSPIRE Fellowship. DR acknowledges the UGC for financial support under the Major Research Project scheme [No. F.41–882/2012 (SR)]. RK acknowledges the DST, New Delhi, for the single-crystal X-ray diffractometer sanctioned as a National Facility.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGenin, W. G., Yagi, Y. & Romero, D. L. (2000). J. Med. Chem. 43, 1034–1040.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, Y.-L., Li, D.-F., Sun, J., Gao, J.-H. & Shan, S. (2011). Acta Cryst. E67, o528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKees, K. L., Fitzgerald, J. J. Jr, Steiner, K. E., Mattes, J. F., Mihan, B., Tosi, T., Mondoro, D. & McCalebr, M. L. (1996). J. Med. Chem. 39, 3920–3928.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLee, K. Y., Kim, J. M. & Kim, J. N. (2003). Tetrahedron Lett. 44, 6737–6740.  Web of Science CrossRef CAS Google Scholar
First citationNithinchandra, Kalluraya, B., Aamir, S. & Shabaraya, A. R. (2012). Eur. J. Med. Chem. 54, 597–604.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPalacios, F., de Retana, A. M. O. & Pagalday, J. (1999). Tetrahedron, 55, 14451–14458.  Web of Science CrossRef CAS Google Scholar
First citationReddy, M. V. R., Billa, V. K., Pallela, V. R., Mallireddigari, M. R., Boominathan, R., Gabriel, J. L. & Reddy, E. P. (2008). Bioorg. Med. Chem. 16, 3907–3916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds