organic compounds
4-(4-Aminophenylsulfonyl)anilinium toluene-4-sulfonate
aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the title p-toluenesulfonate salt of the drug dapsone, C12H13N2O2S+·C7H7O3S−, the dihedral angle between the two aromatic rings of the dapsone monocation is 70.19 (17)° and those between these rings and that of the p-toluenesulfonate anion are 72.34 (17) and 46.43 (17)°. All amine and aminium H atoms are involved in intermolecular N—H⋯O hydrogen-bonding associations with sulfonyl O-atom acceptors as well as one of the sulfone O atoms, giving a three-dimensional structure.
CCDC reference: 975481
Related literature
For drug applications of dapsone, see: Wilson et al. (1991). For the structures of dapsone solvates, see: Kus'mina et al. (1981); Lemmer et al. (2012). For the structures of adducts and a salt of dapsone, see: Smith & Wermuth (2012a,b, 2013).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2013); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
CCDC reference: 975481
https://doi.org/10.1107/S1600536813033023/sj5377sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813033023/sj5377Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813033023/sj5377Isup3.cml
The title compound was prepared by the reaction of 4-(4-aminophenylsulfonyl)aniline (dapsone) with p-toluenesulfonic acid by heating together for 15 min under reflux, 1 mmol quantities of the two reagents in 50 ml of 50% ethanol–water. Partial room-temperature evaporation of the solvent provided poorly-formed colourless crystal aggregates of the title salt from which a specimen was cleaved for the X-ray analysis.
All H atoms potentially involved in hydrogen-bonding associations were located in a difference-Fourier analysis but were subsequently constrained, with Uiso(H) = 1.2Ueq(N). Other H-atoms were included at calculated positions [C—H = 0.95 Å (aromatic) or 0.98 Å (methyl)] and also treated as riding, with Uiso(H) = 1.2 or 1.5Ueq(C).
Dapsone [4-(4-aminophenylsulfonyl)aniline] is a very weak
which finds use as an anti-leprotic, anti-malarial and leprostatic drug (Wilson et al., 1991). The structure of four dapsone solvates are known: the 0.33hydrate (Kus'mina et al., 1981) and the (2:1) dichloromethane, (1:1) 1,4-dioxane and (1:1) tetrahydrofuran solvates (Lemmer et al., 2012) but adducts or salts of this compound are not common. We have reported the structures of a (1:2) co-crystalline adduct with 1,3,5-trinitrobenzene (Smith & Wermuth, 2012a) and (1:1) adducts with 3,5-dinitrobenzoic acid (Smith & Wermuth, 2012b) and 5-nitroisophthalic acid (Smith & Wermuth, 2013) but only one proton-transfer salt structure is known, with 3,5-dinitrosalicylic acid (a monohydrate) (Smith & Wermuth, 2013). Reported herein is the structure of a second salt of dapsone, with p-toluenesulfonic acid, C12H13N2O2S+ C7H7O3S-.In the structure of the title salt (Fig. 1), the conformation of the dapsone monocation as indicated by the inter-ring dihedral angle [70.19 (17)°], compares with 78.27 (9)° in the 3,5-dinitrosalicylic acid salt (Smith & Wermuth, 2013) and 75.4 (2)° in the 3,5-dinitobenzoic acid adduct (Smith & Wermuth, 2012b). The conformation of the title compound is influenced by short intramolecular ring C—H···Osulfone interactions [C6—H···O12, 2.918 (4) Å and C21—H···O12, 2.925 (4) Å]. The angles between the p-toluenesulfonate ring and the aniline and anilinium rings respectively, are 46.43 (17) and 72.34 (17)°.
In the crystal, all amine and aminium H-atoms are involved in intermolecular N—H···O hydrogen-bonding associations with sulfonyl O-atom acceptors as well as with one of the sulfone O-atoms (O11) (Table 1). The resulting structure is a three-dimensional framework (Fig. 2). No π–π interactions are found between the cation and anion ring systems [minimum ring centroid separation = 4.534 (2) Å].
For drug applications of dapsone, see: Wilson et al. (1991). For the structures of dapsone solvates, see: Kus'mina et al. (1981); Lemmer et al. (2012). For the structures of adducts and a salt of dapsone, see: Smith & Wermuth (2012a,b, 2013).
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular conformation and atom-numbering scheme for the dapsone monocation and p-toluenesulfonate anion in the title salt. Non-H atoms are shown as 40% probability displacement ellipsoids and the inter-species hydrogen bond is shown as a dashed line. | |
Fig. 2. The hydrogen-bonding in the title salt, viewed down the a axial direction of the unit cell. Hydrogen bonds are shown as dashed lines. For symmetry codes see Table 1. |
C12H13N2O2S+·C7H7O3S− | F(000) = 880 |
Mr = 420.49 | Dx = 1.504 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1570 reflections |
a = 5.9516 (9) Å | θ = 3.6–27.2° |
b = 25.147 (3) Å | µ = 0.32 mm−1 |
c = 12.4506 (15) Å | T = 200 K |
β = 94.908 (11)° | Prism, colourless |
V = 1856.6 (4) Å3 | 0.25 × 0.12 × 0.12 mm |
Z = 4 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 3650 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2653 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 16.077 pixels mm-1 | θmax = 26.0°, θmin = 3.2° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −31→19 |
Tmin = 0.935, Tmax = 0.980 | l = −7→15 |
6908 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.161 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0672P)2 + 0.6392P] where P = (Fo2 + 2Fc2)/3 |
3650 reflections | (Δ/σ)max < 0.001 |
253 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C12H13N2O2S+·C7H7O3S− | V = 1856.6 (4) Å3 |
Mr = 420.49 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.9516 (9) Å | µ = 0.32 mm−1 |
b = 25.147 (3) Å | T = 200 K |
c = 12.4506 (15) Å | 0.25 × 0.12 × 0.12 mm |
β = 94.908 (11)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 3650 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | 2653 reflections with I > 2σ(I) |
Tmin = 0.935, Tmax = 0.980 | Rint = 0.046 |
6908 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.161 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.33 e Å−3 |
3650 reflections | Δρmin = −0.39 e Å−3 |
253 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.31318 (17) | 0.24657 (3) | 0.40362 (7) | 0.0267 (3) | |
O11 | 0.5538 (5) | 0.25511 (10) | 0.4069 (2) | 0.0372 (9) | |
O12 | 0.1671 (5) | 0.29205 (9) | 0.3968 (2) | 0.0377 (9) | |
N4 | 0.1704 (5) | 0.13828 (12) | 0.8172 (2) | 0.0243 (9) | |
N41 | 0.0383 (6) | 0.10417 (12) | 0.0404 (3) | 0.0344 (10) | |
C1 | 0.2645 (6) | 0.21160 (12) | 0.5225 (3) | 0.0205 (10) | |
C2 | 0.4324 (6) | 0.17907 (14) | 0.5693 (3) | 0.0245 (11) | |
C3 | 0.4005 (6) | 0.15377 (14) | 0.6663 (3) | 0.0247 (11) | |
C4 | 0.2020 (6) | 0.16202 (12) | 0.7128 (3) | 0.0189 (10) | |
C5 | 0.0323 (6) | 0.19321 (13) | 0.6645 (3) | 0.0214 (10) | |
C6 | 0.0637 (6) | 0.21865 (13) | 0.5689 (3) | 0.0230 (11) | |
C11 | 0.2346 (6) | 0.20430 (13) | 0.2959 (3) | 0.0205 (10) | |
C21 | 0.0160 (6) | 0.20665 (14) | 0.2470 (3) | 0.0250 (11) | |
C31 | −0.0465 (6) | 0.17356 (13) | 0.1623 (3) | 0.0241 (11) | |
C41 | 0.1045 (7) | 0.13691 (13) | 0.1250 (3) | 0.0254 (11) | |
C51 | 0.3230 (6) | 0.13441 (14) | 0.1764 (3) | 0.0275 (11) | |
C61 | 0.3863 (6) | 0.16748 (14) | 0.2607 (3) | 0.0261 (12) | |
S1A | 0.33152 (15) | −0.04463 (3) | 0.14993 (8) | 0.0244 (3) | |
O11A | 0.1942 (4) | −0.07383 (10) | 0.2210 (2) | 0.0339 (9) | |
O12A | 0.2028 (4) | −0.00796 (10) | 0.0801 (2) | 0.0331 (9) | |
O13A | 0.4701 (4) | −0.08006 (10) | 0.0909 (2) | 0.0314 (8) | |
C1A | 0.5187 (6) | −0.00617 (13) | 0.2370 (3) | 0.0238 (11) | |
C2A | 0.4538 (6) | 0.00940 (15) | 0.3363 (3) | 0.0306 (12) | |
C3A | 0.5965 (7) | 0.04085 (15) | 0.4021 (3) | 0.0329 (12) | |
C4A | 0.8047 (7) | 0.05602 (15) | 0.3713 (3) | 0.0340 (12) | |
C5A | 0.8647 (6) | 0.04020 (15) | 0.2715 (3) | 0.0315 (12) | |
C6A | 0.7228 (6) | 0.00919 (14) | 0.2039 (3) | 0.0275 (11) | |
C41A | 0.9617 (8) | 0.08898 (19) | 0.4466 (4) | 0.0532 (17) | |
H2 | 0.56820 | 0.17400 | 0.53570 | 0.0290* | |
H3 | 0.51380 | 0.13120 | 0.69970 | 0.0290* | |
H5 | −0.10570 | 0.19720 | 0.69680 | 0.0260* | |
H6 | −0.05120 | 0.24080 | 0.53540 | 0.0280* | |
H21 | −0.08940 | 0.23110 | 0.27220 | 0.0300* | |
H31 | −0.19530 | 0.17560 | 0.12830 | 0.0290* | |
H41 | 0.29640 | 0.12250 | 0.83680 | 0.0290* | |
H42 | 0.14260 | 0.16160 | 0.86140 | 0.0290* | |
H43 | 0.06360 | 0.11530 | 0.82050 | 0.0290* | |
H51 | 0.42800 | 0.10950 | 0.15240 | 0.0330* | |
H61 | 0.53450 | 0.16530 | 0.29540 | 0.0320* | |
H411 | 0.11190 | 0.07320 | 0.03200 | 0.0410* | |
H412 | −0.11720 | 0.10820 | 0.01020 | 0.0410* | |
H2A | 0.31240 | −0.00140 | 0.35880 | 0.0370* | |
H3A | 0.55110 | 0.05230 | 0.46970 | 0.0400* | |
H5A | 1.00640 | 0.05080 | 0.24890 | 0.0380* | |
H6A | 0.76610 | −0.00130 | 0.13530 | 0.0330* | |
H41A | 1.09020 | 0.10080 | 0.40850 | 0.0800* | |
H42A | 1.01600 | 0.06740 | 0.50910 | 0.0800* | |
H43A | 0.88040 | 0.12000 | 0.47090 | 0.0800* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0384 (6) | 0.0232 (5) | 0.0178 (5) | −0.0097 (4) | −0.0024 (4) | 0.0024 (4) |
O11 | 0.0397 (17) | 0.0460 (17) | 0.0256 (15) | −0.0258 (14) | 0.0008 (13) | 0.0054 (13) |
O12 | 0.067 (2) | 0.0179 (13) | 0.0270 (15) | 0.0014 (13) | −0.0020 (14) | 0.0015 (12) |
N4 | 0.0212 (16) | 0.0297 (16) | 0.0225 (16) | −0.0006 (13) | 0.0051 (13) | −0.0015 (14) |
N41 | 0.053 (2) | 0.0245 (16) | 0.0255 (17) | 0.0009 (15) | 0.0028 (16) | −0.0072 (14) |
C1 | 0.033 (2) | 0.0158 (16) | 0.0127 (17) | −0.0093 (15) | 0.0012 (15) | −0.0047 (14) |
C2 | 0.0224 (19) | 0.032 (2) | 0.0196 (18) | −0.0037 (16) | 0.0056 (16) | 0.0030 (16) |
C3 | 0.0213 (19) | 0.0253 (18) | 0.027 (2) | 0.0029 (15) | −0.0001 (16) | −0.0011 (16) |
C4 | 0.0245 (19) | 0.0162 (16) | 0.0162 (17) | −0.0054 (15) | 0.0027 (15) | 0.0006 (14) |
C5 | 0.0185 (18) | 0.0260 (18) | 0.0195 (18) | −0.0032 (15) | 0.0010 (15) | −0.0039 (16) |
C6 | 0.025 (2) | 0.0253 (18) | 0.0181 (18) | 0.0033 (16) | −0.0014 (16) | −0.0012 (16) |
C11 | 0.0280 (19) | 0.0205 (17) | 0.0128 (16) | −0.0046 (15) | 0.0015 (15) | 0.0005 (15) |
C21 | 0.030 (2) | 0.0215 (17) | 0.0234 (19) | 0.0017 (16) | 0.0011 (16) | 0.0011 (16) |
C31 | 0.026 (2) | 0.0237 (18) | 0.0213 (18) | −0.0031 (16) | −0.0048 (16) | 0.0011 (16) |
C41 | 0.039 (2) | 0.0172 (17) | 0.0200 (18) | −0.0057 (16) | 0.0033 (17) | 0.0031 (15) |
C51 | 0.029 (2) | 0.0234 (18) | 0.031 (2) | 0.0055 (16) | 0.0073 (18) | −0.0014 (17) |
C61 | 0.024 (2) | 0.029 (2) | 0.025 (2) | −0.0019 (16) | 0.0003 (16) | 0.0029 (17) |
S1A | 0.0234 (5) | 0.0236 (5) | 0.0251 (5) | −0.0014 (4) | −0.0042 (4) | 0.0005 (4) |
O11A | 0.0294 (15) | 0.0369 (15) | 0.0349 (16) | −0.0134 (12) | −0.0001 (12) | 0.0049 (13) |
O12A | 0.0332 (16) | 0.0354 (15) | 0.0290 (15) | 0.0083 (12) | −0.0075 (12) | 0.0059 (13) |
O13A | 0.0323 (15) | 0.0293 (13) | 0.0316 (15) | 0.0037 (12) | −0.0027 (12) | −0.0059 (12) |
C1A | 0.0204 (19) | 0.0224 (18) | 0.028 (2) | −0.0016 (15) | −0.0006 (16) | 0.0029 (16) |
C2A | 0.024 (2) | 0.039 (2) | 0.029 (2) | −0.0027 (18) | 0.0030 (17) | 0.0007 (19) |
C3A | 0.038 (2) | 0.039 (2) | 0.022 (2) | −0.0068 (19) | 0.0050 (18) | −0.0029 (18) |
C4A | 0.036 (2) | 0.026 (2) | 0.038 (2) | −0.0029 (18) | −0.0075 (19) | −0.0020 (19) |
C5A | 0.025 (2) | 0.033 (2) | 0.037 (2) | −0.0086 (17) | 0.0053 (18) | −0.0017 (19) |
C6A | 0.030 (2) | 0.0265 (19) | 0.026 (2) | −0.0020 (17) | 0.0023 (17) | −0.0014 (17) |
C41A | 0.053 (3) | 0.052 (3) | 0.053 (3) | −0.018 (2) | −0.005 (3) | −0.020 (3) |
S1—O11 | 1.445 (3) | C41—C51 | 1.401 (5) |
S1—O12 | 1.435 (3) | C51—C61 | 1.367 (5) |
S1—C1 | 1.767 (4) | C2—H2 | 0.9500 |
S1—C11 | 1.744 (4) | C3—H3 | 0.9500 |
S1A—C1A | 1.773 (4) | C5—H5 | 0.9500 |
S1A—O13A | 1.455 (3) | C6—H6 | 0.9500 |
S1A—O11A | 1.454 (3) | C21—H21 | 0.9500 |
S1A—O12A | 1.442 (3) | C31—H31 | 0.9500 |
N4—C4 | 1.457 (4) | C51—H51 | 0.9500 |
N41—C41 | 1.368 (5) | C61—H61 | 0.9500 |
N4—H42 | 0.8300 | C1A—C2A | 1.383 (5) |
N4—H43 | 0.8600 | C1A—C6A | 1.371 (5) |
N4—H41 | 0.8600 | C2A—C3A | 1.378 (5) |
N41—H411 | 0.9000 | C3A—C4A | 1.382 (6) |
N41—H412 | 0.9700 | C4A—C5A | 1.381 (5) |
C1—C6 | 1.383 (5) | C4A—C41A | 1.513 (6) |
C1—C2 | 1.381 (5) | C5A—C6A | 1.381 (5) |
C2—C3 | 1.392 (5) | C2A—H2A | 0.9500 |
C3—C4 | 1.375 (5) | C3A—H3A | 0.9500 |
C4—C5 | 1.376 (5) | C5A—H5A | 0.9500 |
C5—C6 | 1.378 (5) | C6A—H6A | 0.9500 |
C11—C61 | 1.390 (5) | C41A—H41A | 0.9800 |
C11—C21 | 1.390 (5) | C41A—H42A | 0.9800 |
C21—C31 | 1.370 (5) | C41A—H43A | 0.9800 |
C31—C41 | 1.394 (5) | ||
O11—S1—O12 | 118.50 (16) | C1—C2—H2 | 120.00 |
O11—S1—C1 | 106.46 (16) | C3—C2—H2 | 120.00 |
O11—S1—C11 | 108.20 (16) | C2—C3—H3 | 121.00 |
O12—S1—C1 | 107.72 (16) | C4—C3—H3 | 121.00 |
O12—S1—C11 | 108.61 (16) | C6—C5—H5 | 120.00 |
C1—S1—C11 | 106.77 (16) | C4—C5—H5 | 120.00 |
O11A—S1A—O13A | 111.75 (15) | C1—C6—H6 | 120.00 |
O11A—S1A—C1A | 105.06 (16) | C5—C6—H6 | 120.00 |
O12A—S1A—O13A | 112.45 (15) | C11—C21—H21 | 120.00 |
O12A—S1A—C1A | 107.06 (15) | C31—C21—H21 | 120.00 |
O13A—S1A—C1A | 106.80 (16) | C41—C31—H31 | 119.00 |
O11A—S1A—O12A | 113.12 (15) | C21—C31—H31 | 119.00 |
C4—N4—H41 | 105.00 | C41—C51—H51 | 120.00 |
C4—N4—H42 | 110.00 | C61—C51—H51 | 120.00 |
H41—N4—H42 | 111.00 | C51—C61—H61 | 120.00 |
H41—N4—H43 | 108.00 | C11—C61—H61 | 120.00 |
H42—N4—H43 | 105.00 | S1A—C1A—C2A | 119.5 (3) |
C4—N4—H43 | 118.00 | S1A—C1A—C6A | 119.8 (3) |
C41—N41—H412 | 116.00 | C2A—C1A—C6A | 120.8 (3) |
H411—N41—H412 | 120.00 | C1A—C2A—C3A | 119.3 (3) |
C41—N41—H411 | 120.00 | C2A—C3A—C4A | 121.0 (3) |
S1—C1—C2 | 118.9 (3) | C3A—C4A—C5A | 118.5 (4) |
S1—C1—C6 | 119.7 (3) | C3A—C4A—C41A | 120.0 (4) |
C2—C1—C6 | 121.3 (3) | C5A—C4A—C41A | 121.5 (4) |
C1—C2—C3 | 119.3 (3) | C4A—C5A—C6A | 121.3 (3) |
C2—C3—C4 | 118.8 (3) | C1A—C6A—C5A | 119.2 (3) |
N4—C4—C3 | 119.7 (3) | C1A—C2A—H2A | 120.00 |
N4—C4—C5 | 118.5 (3) | C3A—C2A—H2A | 120.00 |
C3—C4—C5 | 121.8 (3) | C2A—C3A—H3A | 120.00 |
C4—C5—C6 | 119.6 (3) | C4A—C3A—H3A | 119.00 |
C1—C6—C5 | 119.2 (3) | C4A—C5A—H5A | 119.00 |
S1—C11—C21 | 119.4 (3) | C6A—C5A—H5A | 119.00 |
S1—C11—C61 | 120.7 (3) | C1A—C6A—H6A | 120.00 |
C21—C11—C61 | 120.0 (3) | C5A—C6A—H6A | 120.00 |
C11—C21—C31 | 119.6 (3) | C4A—C41A—H41A | 109.00 |
C21—C31—C41 | 121.2 (3) | C4A—C41A—H42A | 109.00 |
N41—C41—C51 | 121.3 (3) | C4A—C41A—H43A | 109.00 |
N41—C41—C31 | 120.2 (4) | H41A—C41A—H42A | 110.00 |
C31—C41—C51 | 118.5 (3) | H41A—C41A—H43A | 110.00 |
C41—C51—C61 | 120.5 (3) | H42A—C41A—H43A | 109.00 |
C11—C61—C51 | 120.2 (3) | ||
O11—S1—C1—C2 | −28.1 (3) | C2—C3—C4—N4 | −176.6 (3) |
O11—S1—C1—C6 | 149.6 (3) | N4—C4—C5—C6 | 176.2 (3) |
O12—S1—C1—C2 | −156.2 (3) | C3—C4—C5—C6 | −2.5 (5) |
O12—S1—C1—C6 | 21.5 (3) | C4—C5—C6—C1 | 1.0 (5) |
C11—S1—C1—C2 | 87.3 (3) | S1—C11—C61—C51 | 179.8 (3) |
C11—S1—C1—C6 | −95.0 (3) | C61—C11—C21—C31 | −1.8 (5) |
O11—S1—C11—C21 | −153.5 (3) | S1—C11—C21—C31 | 180.0 (3) |
O11—S1—C11—C61 | 28.2 (3) | C21—C11—C61—C51 | 1.6 (5) |
O12—S1—C11—C21 | −23.7 (3) | C11—C21—C31—C41 | 0.9 (5) |
O12—S1—C11—C61 | 158.1 (3) | C21—C31—C41—N41 | 179.9 (3) |
C1—S1—C11—C21 | 92.2 (3) | C21—C31—C41—C51 | 0.2 (5) |
C1—S1—C11—C61 | −86.0 (3) | C31—C41—C51—C61 | −0.4 (5) |
O12A—S1A—C1A—C2A | 92.7 (3) | N41—C41—C51—C61 | 179.9 (3) |
O12A—S1A—C1A—C6A | −85.3 (3) | C41—C51—C61—C11 | −0.5 (5) |
O13A—S1A—C1A—C2A | −146.7 (3) | S1A—C1A—C2A—C3A | −177.7 (3) |
O13A—S1A—C1A—C6A | 35.4 (3) | C6A—C1A—C2A—C3A | 0.2 (5) |
O11A—S1A—C1A—C2A | −27.8 (3) | S1A—C1A—C6A—C5A | 178.5 (3) |
O11A—S1A—C1A—C6A | 154.2 (3) | C2A—C1A—C6A—C5A | 0.5 (5) |
S1—C1—C2—C3 | 176.3 (3) | C1A—C2A—C3A—C4A | −1.4 (6) |
C2—C1—C6—C5 | 0.9 (5) | C2A—C3A—C4A—C5A | 1.8 (6) |
C6—C1—C2—C3 | −1.4 (5) | C2A—C3A—C4A—C41A | −177.9 (4) |
S1—C1—C6—C5 | −176.8 (3) | C3A—C4A—C5A—C6A | −1.0 (6) |
C1—C2—C3—C4 | −0.1 (5) | C41A—C4A—C5A—C6A | 178.7 (4) |
C2—C3—C4—C5 | 2.0 (5) | C4A—C5A—C6A—C1A | −0.1 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···O13Ai | 0.86 | 1.91 | 2.759 (4) | 165 |
N4—H42···O11ii | 0.83 | 2.24 | 3.008 (4) | 153 |
N4—H43···O11Aiii | 0.86 | 1.89 | 2.718 (4) | 160 |
N41—H411···O12A | 0.90 | 2.18 | 3.012 (4) | 152 |
N41—H412···O13Aiv | 0.97 | 2.46 | 3.369 (4) | 155 |
C2—H2···O11 | 0.95 | 2.59 | 2.918 (4) | 101 |
C2A—H2A···O11A | 0.95 | 2.56 | 2.907 (4) | 102 |
C6—H6···O12 | 0.95 | 2.59 | 2.933 (4) | 102 |
C21—H21···O12 | 0.95 | 2.58 | 2.935 (4) | 102 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x, −y, −z+1; (iv) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···O13Ai | 0.86 | 1.91 | 2.759 (4) | 165 |
N4—H42···O11ii | 0.83 | 2.24 | 3.008 (4) | 153 |
N4—H43···O11Aiii | 0.86 | 1.89 | 2.718 (4) | 160 |
N41—H411···O12A | 0.90 | 2.18 | 3.012 (4) | 152 |
N41—H412···O13Aiv | 0.97 | 2.46 | 3.369 (4) | 155 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x, −y, −z+1; (iv) −x, −y, −z. |
Acknowledgements
The authors acknowledge financial support from the Australian Research Committee and the University Library and the Science and Engineering Faculty, Queensland University of Technology.
References
Agilent (2013). CrysAlis PRO. Agilent Tehnologies Ltd, Yarnton, Oxfordshire, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Kus'mina, L. G., Struchkov, Yu. T., Novozhilova, N. V. & Tudorovskaya, G. L. (1981). Kristallografiya, 26, 690–694. Google Scholar
Lemmer, H., Stieger, N., Liebenberg, W. & Caira, M. R. (2012). Cryst. Growth Des. 12, 1683–1692. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2012a). Acta Cryst. E68, o494. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2012b). Acta Cryst. E68, o669. CSD CrossRef IUCr Journals Google Scholar
Smith, G. & Wermuth, U. D. (2013). J. Chem. Crystallogr. 43, 664–670. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilson, J. D., Braunwald, E., Isselbacher, K. J., Petersdorf, R. G., Martin, J. B., Fauci, A. S. & Root, R. K. (1991). Harrison's Principles of Internal Medicine 12th ed., pp. 320, 647–648, 787. New York: McGraw–Hill. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dapsone [4-(4-aminophenylsulfonyl)aniline] is a very weak Lewis base which finds use as an anti-leprotic, anti-malarial and leprostatic drug (Wilson et al., 1991). The structure of four dapsone solvates are known: the 0.33hydrate (Kus'mina et al., 1981) and the (2:1) dichloromethane, (1:1) 1,4-dioxane and (1:1) tetrahydrofuran solvates (Lemmer et al., 2012) but adducts or salts of this compound are not common. We have reported the structures of a (1:2) co-crystalline adduct with 1,3,5-trinitrobenzene (Smith & Wermuth, 2012a) and (1:1) adducts with 3,5-dinitrobenzoic acid (Smith & Wermuth, 2012b) and 5-nitroisophthalic acid (Smith & Wermuth, 2013) but only one proton-transfer salt structure is known, with 3,5-dinitrosalicylic acid (a monohydrate) (Smith & Wermuth, 2013). Reported herein is the structure of a second salt of dapsone, with p-toluenesulfonic acid, C12H13N2O2S+ C7H7O3S-.
In the structure of the title salt (Fig. 1), the conformation of the dapsone monocation as indicated by the inter-ring dihedral angle [70.19 (17)°], compares with 78.27 (9)° in the 3,5-dinitrosalicylic acid salt (Smith & Wermuth, 2013) and 75.4 (2)° in the 3,5-dinitobenzoic acid adduct (Smith & Wermuth, 2012b). The conformation of the title compound is influenced by short intramolecular ring C—H···Osulfone interactions [C6—H···O12, 2.918 (4) Å and C21—H···O12, 2.925 (4) Å]. The angles between the p-toluenesulfonate ring and the aniline and anilinium rings respectively, are 46.43 (17) and 72.34 (17)°.
In the crystal, all amine and aminium H-atoms are involved in intermolecular N—H···O hydrogen-bonding associations with sulfonyl O-atom acceptors as well as with one of the sulfone O-atoms (O11) (Table 1). The resulting structure is a three-dimensional framework (Fig. 2). No π–π interactions are found between the cation and anion ring systems [minimum ring centroid separation = 4.534 (2) Å].