organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Amino­phenyl­sulfon­yl)anilinium toluene-4-sulfonate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 5 December 2013; accepted 5 December 2013; online 14 December 2013)

In the title p-toluene­sulfonate salt of the drug dapsone, C12H13N2O2S+·C7H7O3S, the dihedral angle between the two aromatic rings of the dapsone monocation is 70.19 (17)° and those between these rings and that of the p-toluene­sulfonate anion are 72.34 (17) and 46.43 (17)°. All amine and aminium H atoms are involved in inter­molecular N—H⋯O hydrogen-bonding associations with sulfonyl O-atom acceptors as well as one of the sulfone O atoms, giving a three-dimensional structure.

Related literature

For drug applications of dapsone, see: Wilson et al. (1991[Wilson, J. D., Braunwald, E., Isselbacher, K. J., Petersdorf, R. G., Martin, J. B., Fauci, A. S. & Root, R. K. (1991). Harrison's Principles of Internal Medicine 12th ed., pp. 320, 647-648, 787. New York: McGraw-Hill.]). For the structures of dapsone solvates, see: Kus'mina et al. (1981[Kus'mina, L. G., Struchkov, Yu. T., Novozhilova, N. V. & Tudorovskaya, G. L. (1981). Kristallografiya, 26, 690-694.]); Lemmer et al. (2012[Lemmer, H., Stieger, N., Liebenberg, W. & Caira, M. R. (2012). Cryst. Growth Des. 12, 1683-1692.]). For the structures of adducts and a salt of dapsone, see: Smith & Wermuth (2012a[Smith, G. & Wermuth, U. D. (2012a). Acta Cryst. E68, o494.],b[Smith, G. & Wermuth, U. D. (2012b). Acta Cryst. E68, o669.], 2013[Smith, G. & Wermuth, U. D. (2013). J. Chem. Crystallogr. 43, 664-670.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N2O2S+·C7H7O3S

  • Mr = 420.49

  • Monoclinic, P 21 /n

  • a = 5.9516 (9) Å

  • b = 25.147 (3) Å

  • c = 12.4506 (15) Å

  • β = 94.908 (11)°

  • V = 1856.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 200 K

  • 0.25 × 0.12 × 0.12 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Tehnologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.935, Tmax = 0.980

  • 6908 measured reflections

  • 3650 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.161

  • S = 1.02

  • 3650 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯O13Ai 0.86 1.91 2.759 (4) 165
N4—H42⋯O11ii 0.83 2.24 3.008 (4) 153
N4—H43⋯O11Aiii 0.86 1.89 2.718 (4) 160
N41—H411⋯O12A 0.90 2.18 3.012 (4) 152
N41—H412⋯O13Aiv 0.97 2.46 3.369 (4) 155
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) -x, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Tehnologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Dapsone [4-(4-aminophenylsulfonyl)aniline] is a very weak Lewis base which finds use as an anti-leprotic, anti-malarial and leprostatic drug (Wilson et al., 1991). The structure of four dapsone solvates are known: the 0.33hydrate (Kus'mina et al., 1981) and the (2:1) dichloromethane, (1:1) 1,4-dioxane and (1:1) tetrahydrofuran solvates (Lemmer et al., 2012) but adducts or salts of this compound are not common. We have reported the structures of a (1:2) co-crystalline adduct with 1,3,5-trinitrobenzene (Smith & Wermuth, 2012a) and (1:1) adducts with 3,5-dinitrobenzoic acid (Smith & Wermuth, 2012b) and 5-nitroisophthalic acid (Smith & Wermuth, 2013) but only one proton-transfer salt structure is known, with 3,5-dinitrosalicylic acid (a monohydrate) (Smith & Wermuth, 2013). Reported herein is the structure of a second salt of dapsone, with p-toluenesulfonic acid, C12H13N2O2S+ C7H7O3S-.

In the structure of the title salt (Fig. 1), the conformation of the dapsone monocation as indicated by the inter-ring dihedral angle [70.19 (17)°], compares with 78.27 (9)° in the 3,5-dinitrosalicylic acid salt (Smith & Wermuth, 2013) and 75.4 (2)° in the 3,5-dinitobenzoic acid adduct (Smith & Wermuth, 2012b). The conformation of the title compound is influenced by short intramolecular ring CH···Osulfone interactions [C6—H···O12, 2.918 (4) Å and C21—H···O12, 2.925 (4) Å]. The angles between the p-toluenesulfonate ring and the aniline and anilinium rings respectively, are 46.43 (17) and 72.34 (17)°.

In the crystal, all amine and aminium H-atoms are involved in intermolecular N—H···O hydrogen-bonding associations with sulfonyl O-atom acceptors as well as with one of the sulfone O-atoms (O11) (Table 1). The resulting structure is a three-dimensional framework (Fig. 2). No ππ interactions are found between the cation and anion ring systems [minimum ring centroid separation = 4.534 (2) Å].

Related literature top

For drug applications of dapsone, see: Wilson et al. (1991). For the structures of dapsone solvates, see: Kus'mina et al. (1981); Lemmer et al. (2012). For the structures of adducts and a salt of dapsone, see: Smith & Wermuth (2012a,b, 2013).

Experimental top

The title compound was prepared by the reaction of 4-(4-aminophenylsulfonyl)aniline (dapsone) with p-toluenesulfonic acid by heating together for 15 min under reflux, 1 mmol quantities of the two reagents in 50 ml of 50% ethanol–water. Partial room-temperature evaporation of the solvent provided poorly-formed colourless crystal aggregates of the title salt from which a specimen was cleaved for the X-ray analysis.

Refinement top

All H atoms potentially involved in hydrogen-bonding associations were located in a difference-Fourier analysis but were subsequently constrained, with Uiso(H) = 1.2Ueq(N). Other H-atoms were included at calculated positions [C—H = 0.95 Å (aromatic) or 0.98 Å (methyl)] and also treated as riding, with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Dapsone [4-(4-aminophenylsulfonyl)aniline] is a very weak Lewis base which finds use as an anti-leprotic, anti-malarial and leprostatic drug (Wilson et al., 1991). The structure of four dapsone solvates are known: the 0.33hydrate (Kus'mina et al., 1981) and the (2:1) dichloromethane, (1:1) 1,4-dioxane and (1:1) tetrahydrofuran solvates (Lemmer et al., 2012) but adducts or salts of this compound are not common. We have reported the structures of a (1:2) co-crystalline adduct with 1,3,5-trinitrobenzene (Smith & Wermuth, 2012a) and (1:1) adducts with 3,5-dinitrobenzoic acid (Smith & Wermuth, 2012b) and 5-nitroisophthalic acid (Smith & Wermuth, 2013) but only one proton-transfer salt structure is known, with 3,5-dinitrosalicylic acid (a monohydrate) (Smith & Wermuth, 2013). Reported herein is the structure of a second salt of dapsone, with p-toluenesulfonic acid, C12H13N2O2S+ C7H7O3S-.

In the structure of the title salt (Fig. 1), the conformation of the dapsone monocation as indicated by the inter-ring dihedral angle [70.19 (17)°], compares with 78.27 (9)° in the 3,5-dinitrosalicylic acid salt (Smith & Wermuth, 2013) and 75.4 (2)° in the 3,5-dinitobenzoic acid adduct (Smith & Wermuth, 2012b). The conformation of the title compound is influenced by short intramolecular ring CH···Osulfone interactions [C6—H···O12, 2.918 (4) Å and C21—H···O12, 2.925 (4) Å]. The angles between the p-toluenesulfonate ring and the aniline and anilinium rings respectively, are 46.43 (17) and 72.34 (17)°.

In the crystal, all amine and aminium H-atoms are involved in intermolecular N—H···O hydrogen-bonding associations with sulfonyl O-atom acceptors as well as with one of the sulfone O-atoms (O11) (Table 1). The resulting structure is a three-dimensional framework (Fig. 2). No ππ interactions are found between the cation and anion ring systems [minimum ring centroid separation = 4.534 (2) Å].

For drug applications of dapsone, see: Wilson et al. (1991). For the structures of dapsone solvates, see: Kus'mina et al. (1981); Lemmer et al. (2012). For the structures of adducts and a salt of dapsone, see: Smith & Wermuth (2012a,b, 2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the dapsone monocation and p-toluenesulfonate anion in the title salt. Non-H atoms are shown as 40% probability displacement ellipsoids and the inter-species hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The hydrogen-bonding in the title salt, viewed down the a axial direction of the unit cell. Hydrogen bonds are shown as dashed lines. For symmetry codes see Table 1.
4-(4-Aminophenylsulfonyl)anilinium toluene-4-sulfonate top
Crystal data top
C12H13N2O2S+·C7H7O3SF(000) = 880
Mr = 420.49Dx = 1.504 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1570 reflections
a = 5.9516 (9) Åθ = 3.6–27.2°
b = 25.147 (3) ŵ = 0.32 mm1
c = 12.4506 (15) ÅT = 200 K
β = 94.908 (11)°Prism, colourless
V = 1856.6 (4) Å30.25 × 0.12 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3650 independent reflections
Radiation source: Enhance (Mo) X-ray source2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 3119
Tmin = 0.935, Tmax = 0.980l = 715
6908 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.6392P]
where P = (Fo2 + 2Fc2)/3
3650 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C12H13N2O2S+·C7H7O3SV = 1856.6 (4) Å3
Mr = 420.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9516 (9) ŵ = 0.32 mm1
b = 25.147 (3) ÅT = 200 K
c = 12.4506 (15) Å0.25 × 0.12 × 0.12 mm
β = 94.908 (11)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3650 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2653 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.980Rint = 0.046
6908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
3650 reflectionsΔρmin = 0.39 e Å3
253 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31318 (17)0.24657 (3)0.40362 (7)0.0267 (3)
O110.5538 (5)0.25511 (10)0.4069 (2)0.0372 (9)
O120.1671 (5)0.29205 (9)0.3968 (2)0.0377 (9)
N40.1704 (5)0.13828 (12)0.8172 (2)0.0243 (9)
N410.0383 (6)0.10417 (12)0.0404 (3)0.0344 (10)
C10.2645 (6)0.21160 (12)0.5225 (3)0.0205 (10)
C20.4324 (6)0.17907 (14)0.5693 (3)0.0245 (11)
C30.4005 (6)0.15377 (14)0.6663 (3)0.0247 (11)
C40.2020 (6)0.16202 (12)0.7128 (3)0.0189 (10)
C50.0323 (6)0.19321 (13)0.6645 (3)0.0214 (10)
C60.0637 (6)0.21865 (13)0.5689 (3)0.0230 (11)
C110.2346 (6)0.20430 (13)0.2959 (3)0.0205 (10)
C210.0160 (6)0.20665 (14)0.2470 (3)0.0250 (11)
C310.0465 (6)0.17356 (13)0.1623 (3)0.0241 (11)
C410.1045 (7)0.13691 (13)0.1250 (3)0.0254 (11)
C510.3230 (6)0.13441 (14)0.1764 (3)0.0275 (11)
C610.3863 (6)0.16748 (14)0.2607 (3)0.0261 (12)
S1A0.33152 (15)0.04463 (3)0.14993 (8)0.0244 (3)
O11A0.1942 (4)0.07383 (10)0.2210 (2)0.0339 (9)
O12A0.2028 (4)0.00796 (10)0.0801 (2)0.0331 (9)
O13A0.4701 (4)0.08006 (10)0.0909 (2)0.0314 (8)
C1A0.5187 (6)0.00617 (13)0.2370 (3)0.0238 (11)
C2A0.4538 (6)0.00940 (15)0.3363 (3)0.0306 (12)
C3A0.5965 (7)0.04085 (15)0.4021 (3)0.0329 (12)
C4A0.8047 (7)0.05602 (15)0.3713 (3)0.0340 (12)
C5A0.8647 (6)0.04020 (15)0.2715 (3)0.0315 (12)
C6A0.7228 (6)0.00919 (14)0.2039 (3)0.0275 (11)
C41A0.9617 (8)0.08898 (19)0.4466 (4)0.0532 (17)
H20.568200.174000.535700.0290*
H30.513800.131200.699700.0290*
H50.105700.197200.696800.0260*
H60.051200.240800.535400.0280*
H210.089400.231100.272200.0300*
H310.195300.175600.128300.0290*
H410.296400.122500.836800.0290*
H420.142600.161600.861400.0290*
H430.063600.115300.820500.0290*
H510.428000.109500.152400.0330*
H610.534500.165300.295400.0320*
H4110.111900.073200.032000.0410*
H4120.117200.108200.010200.0410*
H2A0.312400.001400.358800.0370*
H3A0.551100.052300.469700.0400*
H5A1.006400.050800.248900.0380*
H6A0.766100.001300.135300.0330*
H41A1.090200.100800.408500.0800*
H42A1.016000.067400.509100.0800*
H43A0.880400.120000.470900.0800*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0384 (6)0.0232 (5)0.0178 (5)0.0097 (4)0.0024 (4)0.0024 (4)
O110.0397 (17)0.0460 (17)0.0256 (15)0.0258 (14)0.0008 (13)0.0054 (13)
O120.067 (2)0.0179 (13)0.0270 (15)0.0014 (13)0.0020 (14)0.0015 (12)
N40.0212 (16)0.0297 (16)0.0225 (16)0.0006 (13)0.0051 (13)0.0015 (14)
N410.053 (2)0.0245 (16)0.0255 (17)0.0009 (15)0.0028 (16)0.0072 (14)
C10.033 (2)0.0158 (16)0.0127 (17)0.0093 (15)0.0012 (15)0.0047 (14)
C20.0224 (19)0.032 (2)0.0196 (18)0.0037 (16)0.0056 (16)0.0030 (16)
C30.0213 (19)0.0253 (18)0.027 (2)0.0029 (15)0.0001 (16)0.0011 (16)
C40.0245 (19)0.0162 (16)0.0162 (17)0.0054 (15)0.0027 (15)0.0006 (14)
C50.0185 (18)0.0260 (18)0.0195 (18)0.0032 (15)0.0010 (15)0.0039 (16)
C60.025 (2)0.0253 (18)0.0181 (18)0.0033 (16)0.0014 (16)0.0012 (16)
C110.0280 (19)0.0205 (17)0.0128 (16)0.0046 (15)0.0015 (15)0.0005 (15)
C210.030 (2)0.0215 (17)0.0234 (19)0.0017 (16)0.0011 (16)0.0011 (16)
C310.026 (2)0.0237 (18)0.0213 (18)0.0031 (16)0.0048 (16)0.0011 (16)
C410.039 (2)0.0172 (17)0.0200 (18)0.0057 (16)0.0033 (17)0.0031 (15)
C510.029 (2)0.0234 (18)0.031 (2)0.0055 (16)0.0073 (18)0.0014 (17)
C610.024 (2)0.029 (2)0.025 (2)0.0019 (16)0.0003 (16)0.0029 (17)
S1A0.0234 (5)0.0236 (5)0.0251 (5)0.0014 (4)0.0042 (4)0.0005 (4)
O11A0.0294 (15)0.0369 (15)0.0349 (16)0.0134 (12)0.0001 (12)0.0049 (13)
O12A0.0332 (16)0.0354 (15)0.0290 (15)0.0083 (12)0.0075 (12)0.0059 (13)
O13A0.0323 (15)0.0293 (13)0.0316 (15)0.0037 (12)0.0027 (12)0.0059 (12)
C1A0.0204 (19)0.0224 (18)0.028 (2)0.0016 (15)0.0006 (16)0.0029 (16)
C2A0.024 (2)0.039 (2)0.029 (2)0.0027 (18)0.0030 (17)0.0007 (19)
C3A0.038 (2)0.039 (2)0.022 (2)0.0068 (19)0.0050 (18)0.0029 (18)
C4A0.036 (2)0.026 (2)0.038 (2)0.0029 (18)0.0075 (19)0.0020 (19)
C5A0.025 (2)0.033 (2)0.037 (2)0.0086 (17)0.0053 (18)0.0017 (19)
C6A0.030 (2)0.0265 (19)0.026 (2)0.0020 (17)0.0023 (17)0.0014 (17)
C41A0.053 (3)0.052 (3)0.053 (3)0.018 (2)0.005 (3)0.020 (3)
Geometric parameters (Å, º) top
S1—O111.445 (3)C41—C511.401 (5)
S1—O121.435 (3)C51—C611.367 (5)
S1—C11.767 (4)C2—H20.9500
S1—C111.744 (4)C3—H30.9500
S1A—C1A1.773 (4)C5—H50.9500
S1A—O13A1.455 (3)C6—H60.9500
S1A—O11A1.454 (3)C21—H210.9500
S1A—O12A1.442 (3)C31—H310.9500
N4—C41.457 (4)C51—H510.9500
N41—C411.368 (5)C61—H610.9500
N4—H420.8300C1A—C2A1.383 (5)
N4—H430.8600C1A—C6A1.371 (5)
N4—H410.8600C2A—C3A1.378 (5)
N41—H4110.9000C3A—C4A1.382 (6)
N41—H4120.9700C4A—C5A1.381 (5)
C1—C61.383 (5)C4A—C41A1.513 (6)
C1—C21.381 (5)C5A—C6A1.381 (5)
C2—C31.392 (5)C2A—H2A0.9500
C3—C41.375 (5)C3A—H3A0.9500
C4—C51.376 (5)C5A—H5A0.9500
C5—C61.378 (5)C6A—H6A0.9500
C11—C611.390 (5)C41A—H41A0.9800
C11—C211.390 (5)C41A—H42A0.9800
C21—C311.370 (5)C41A—H43A0.9800
C31—C411.394 (5)
O11—S1—O12118.50 (16)C1—C2—H2120.00
O11—S1—C1106.46 (16)C3—C2—H2120.00
O11—S1—C11108.20 (16)C2—C3—H3121.00
O12—S1—C1107.72 (16)C4—C3—H3121.00
O12—S1—C11108.61 (16)C6—C5—H5120.00
C1—S1—C11106.77 (16)C4—C5—H5120.00
O11A—S1A—O13A111.75 (15)C1—C6—H6120.00
O11A—S1A—C1A105.06 (16)C5—C6—H6120.00
O12A—S1A—O13A112.45 (15)C11—C21—H21120.00
O12A—S1A—C1A107.06 (15)C31—C21—H21120.00
O13A—S1A—C1A106.80 (16)C41—C31—H31119.00
O11A—S1A—O12A113.12 (15)C21—C31—H31119.00
C4—N4—H41105.00C41—C51—H51120.00
C4—N4—H42110.00C61—C51—H51120.00
H41—N4—H42111.00C51—C61—H61120.00
H41—N4—H43108.00C11—C61—H61120.00
H42—N4—H43105.00S1A—C1A—C2A119.5 (3)
C4—N4—H43118.00S1A—C1A—C6A119.8 (3)
C41—N41—H412116.00C2A—C1A—C6A120.8 (3)
H411—N41—H412120.00C1A—C2A—C3A119.3 (3)
C41—N41—H411120.00C2A—C3A—C4A121.0 (3)
S1—C1—C2118.9 (3)C3A—C4A—C5A118.5 (4)
S1—C1—C6119.7 (3)C3A—C4A—C41A120.0 (4)
C2—C1—C6121.3 (3)C5A—C4A—C41A121.5 (4)
C1—C2—C3119.3 (3)C4A—C5A—C6A121.3 (3)
C2—C3—C4118.8 (3)C1A—C6A—C5A119.2 (3)
N4—C4—C3119.7 (3)C1A—C2A—H2A120.00
N4—C4—C5118.5 (3)C3A—C2A—H2A120.00
C3—C4—C5121.8 (3)C2A—C3A—H3A120.00
C4—C5—C6119.6 (3)C4A—C3A—H3A119.00
C1—C6—C5119.2 (3)C4A—C5A—H5A119.00
S1—C11—C21119.4 (3)C6A—C5A—H5A119.00
S1—C11—C61120.7 (3)C1A—C6A—H6A120.00
C21—C11—C61120.0 (3)C5A—C6A—H6A120.00
C11—C21—C31119.6 (3)C4A—C41A—H41A109.00
C21—C31—C41121.2 (3)C4A—C41A—H42A109.00
N41—C41—C51121.3 (3)C4A—C41A—H43A109.00
N41—C41—C31120.2 (4)H41A—C41A—H42A110.00
C31—C41—C51118.5 (3)H41A—C41A—H43A110.00
C41—C51—C61120.5 (3)H42A—C41A—H43A109.00
C11—C61—C51120.2 (3)
O11—S1—C1—C228.1 (3)C2—C3—C4—N4176.6 (3)
O11—S1—C1—C6149.6 (3)N4—C4—C5—C6176.2 (3)
O12—S1—C1—C2156.2 (3)C3—C4—C5—C62.5 (5)
O12—S1—C1—C621.5 (3)C4—C5—C6—C11.0 (5)
C11—S1—C1—C287.3 (3)S1—C11—C61—C51179.8 (3)
C11—S1—C1—C695.0 (3)C61—C11—C21—C311.8 (5)
O11—S1—C11—C21153.5 (3)S1—C11—C21—C31180.0 (3)
O11—S1—C11—C6128.2 (3)C21—C11—C61—C511.6 (5)
O12—S1—C11—C2123.7 (3)C11—C21—C31—C410.9 (5)
O12—S1—C11—C61158.1 (3)C21—C31—C41—N41179.9 (3)
C1—S1—C11—C2192.2 (3)C21—C31—C41—C510.2 (5)
C1—S1—C11—C6186.0 (3)C31—C41—C51—C610.4 (5)
O12A—S1A—C1A—C2A92.7 (3)N41—C41—C51—C61179.9 (3)
O12A—S1A—C1A—C6A85.3 (3)C41—C51—C61—C110.5 (5)
O13A—S1A—C1A—C2A146.7 (3)S1A—C1A—C2A—C3A177.7 (3)
O13A—S1A—C1A—C6A35.4 (3)C6A—C1A—C2A—C3A0.2 (5)
O11A—S1A—C1A—C2A27.8 (3)S1A—C1A—C6A—C5A178.5 (3)
O11A—S1A—C1A—C6A154.2 (3)C2A—C1A—C6A—C5A0.5 (5)
S1—C1—C2—C3176.3 (3)C1A—C2A—C3A—C4A1.4 (6)
C2—C1—C6—C50.9 (5)C2A—C3A—C4A—C5A1.8 (6)
C6—C1—C2—C31.4 (5)C2A—C3A—C4A—C41A177.9 (4)
S1—C1—C6—C5176.8 (3)C3A—C4A—C5A—C6A1.0 (6)
C1—C2—C3—C40.1 (5)C41A—C4A—C5A—C6A178.7 (4)
C2—C3—C4—C52.0 (5)C4A—C5A—C6A—C1A0.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O13Ai0.861.912.759 (4)165
N4—H42···O11ii0.832.243.008 (4)153
N4—H43···O11Aiii0.861.892.718 (4)160
N41—H411···O12A0.902.183.012 (4)152
N41—H412···O13Aiv0.972.463.369 (4)155
C2—H2···O110.952.592.918 (4)101
C2A—H2A···O11A0.952.562.907 (4)102
C6—H6···O120.952.592.933 (4)102
C21—H21···O120.952.582.935 (4)102
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O13Ai0.861.912.759 (4)165
N4—H42···O11ii0.832.243.008 (4)153
N4—H43···O11Aiii0.861.892.718 (4)160
N41—H411···O12A0.902.183.012 (4)152
N41—H412···O13Aiv0.972.463.369 (4)155
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Committee and the University Library and the Science and Engineering Faculty, Queensland University of Technology.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Tehnologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKus'mina, L. G., Struchkov, Yu. T., Novozhilova, N. V. & Tudorovskaya, G. L. (1981). Kristallografiya, 26, 690–694.  Google Scholar
First citationLemmer, H., Stieger, N., Liebenberg, W. & Caira, M. R. (2012). Cryst. Growth Des. 12, 1683–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2012a). Acta Cryst. E68, o494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2012b). Acta Cryst. E68, o669.  CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2013). J. Chem. Crystallogr. 43, 664–670.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, J. D., Braunwald, E., Isselbacher, K. J., Petersdorf, R. G., Martin, J. B., Fauci, A. S. & Root, R. K. (1991). Harrison's Principles of Internal Medicine 12th ed., pp. 320, 647–648, 787. New York: McGraw–Hill.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds