organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(9H-Fluoren-9-yl­­idene)(2-meth­­oxy­phen­yl)meth­yl]-1,1,1-tri­methyl­silanamine

aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: chenxia@sxu.edu.cn

(Received 7 December 2013; accepted 10 December 2013; online 14 December 2013)

The title mol­ecule, C24H25NOSi, is a hydrolysis product of the reaction between 9-tri­methyl­silyfluorenyl lithium and 2-meth­oxy­benzo­nitrile. The fluorene ring system is substanti­ally planar, with an r.m.s. deviation of 0.0288 Å from the best-fit plane through its 13 C atoms. This plane forms a dihedral angle of 58.07 (7)° with the 2-meth­oxy­benzyl­amine ring plane. In the crystal, mol­ecules are linked by N—H⋯π and C—H⋯π inter­actions, which leads to the formation of two-dimensional network lying parallel to the bc plane.

Related literature

For the use of fluorene as a ligand in organometallic chemistry, see: Alt & Samuel (1998[Alt, H. G. & Samuel, E. (1998). Chem. Soc. Rev. 27, 323-329.]); Kirillov et al. (2005[Kirillov, E., Saillard, J. Y. & Carpentier, J. F. (2005). Coord. Chem. Rev. 249, 1221-1248.]); Bochmann et al. (1993[Bochmann, M., Lancaster, S. J., Hursthouse, M. B. & Mazid, M. (1993). Organometallics, 12, 4718-4720.]); Decken et al. (2002[Decken, A., Mackay, A. J., Brown, M. J. & Bottomley, F. (2002). Organometallics, 21, 2006-2009.]); Knjazhanski et al. (2002[Knjazhanski, S. Y., Cadenas, G., García, M., Pérez, C. M., Nifant'ev, I. E., Kashulin, I. A., Ivchenko, P. V. & Lyssenko, K. A. (2002). Organometallics, 21, 3094-3099.]); Novikova et al. (1985[Novikova, L. N., Ustynyuk, N. A., Zvorykin, V. E., Dneprovskaya, L. S. & Ustynyuk, Y. A. (1985). J. Organomet. Chem. 292, 237-243.]); Johnson & Treichel (1977[Johnson, J. W. & Treichel, P. M. (1977). J. Am. Chem. Soc. 99, 1427-1436.]). For σπ stacking, see: Calhorda (2000[Calhorda, M. J. (2000). Chem. Commun. pp. 801-809.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 152. Oxford University Press.]). For a related amino­fulvene structure, see: Axenov et al. (2009[Axenov, K. V., Kehr, G., Fröhlich, R. & Erker, G. (2009). Organometallics, 28, 5148-5158.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25NOSi

  • Mr = 371.54

  • Monoclinic, P 21 /c

  • a = 12.611 (3) Å

  • b = 9.5694 (19) Å

  • c = 20.325 (6) Å

  • β = 124.10 (2)°

  • V = 2031.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.19 × 0.17 × 0.12 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.985

  • 15991 measured reflections

  • 4628 independent reflections

  • 4212 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.173

  • S = 1.24

  • 4628 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the C1,C2,C7,C8,C13, C2–C7 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg1i 0.88 2.69 3.347 (3) 133
C12—H12ACg4 0.95 2.99 3.750 (4) 138
C16—H16ACg2i 0.95 2.65 3.470 (3) 145
C21—H21CCg2ii 0.98 2.94 3.736 (4) 139
C24—H24ACg3i 0.98 2.99 3.923 (4) 158
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Experimental top

Synthesis and crystallization top

The 9-tri­methyl­silyl-fluorenyllithium (0.68 g, 2.8 mmol) mixed with (o-MeO)PhCN (0.34 ml, 2.8 mmol) at 0 °C. The resulting mixture was slowly warmed to room temperature and stirred for a further 10 hours to give a clear brown solution. H2O (2.8 mmol, 0.41 ml, 6.94 M in THF) was added to a stirred solution, prepared in situ without purification, at 0 °C. The resulting cloudy yellow solution was allowed to warm to room temperature for 7 days, yielding colorless crystals of the title compound (0.62 g, 59% yield). Mp: 172 °C. 1H NMR (300 MHz, C6D6): δ (ppm) -0.14 (s, 9H, -Si(CH3)3), 2.68 (s,1H,-NH), 3.78 (s, 3H, -OCH3), 6.71 (s, 2H, -CH- of phenyl), 6.88-6.90 (d, JHH=7.5 Hz, 2H, -CH- of fluorenyl), 7.21-7.44 (m, 2H, -CH- of phenyl), 7.59-7.63 (m, 2H, -CH- of fluorenyl), 7.71-7.73 (d, JHH=7.8 Hz, 2H, -CH- of fluorenyl), 7.89-7.92 (d, JHH=7.8 Hz, 2H, -CH- of fluorenyl). 13C NMR (75 MHz, CDCl3): δ (ppm) 1.99 (3C, C of -SiMe3), 58.23 (1C, -OCH3), 109.33, 113.23, 120.27, 121.02, 122.11, 124.21, 126.35, 127.33, 128.53, 138.40, 139.24, 140.12, 140.35, 141.11, 143.23 (17C, C of fluorenyl and phenyl), 151.78, 166.65 (2C, Cipso of phenyl), 154.32 (1C, PhCNHSiMe3). Anal. Calc. for C24H25NOSi (Mr = 371.55): C, 77.58; H, 6.78; N, 3.77%. Found: C, 77.80; H, 6.68; N, 3.82%.

Refinement top

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C). N–H bond distances was restrained to be 0.88 Å and Uiso(H) = 1.2Ueq(N). The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Comment top

Fluorene is an attractive ligand for organometallic chemistry for several reasons. It may be regarded as a doubly benzannelated cyclo­penta­diene, which may be deprotonated at the 9 position to generate a substituted Cp ligand. Indeed, it is this unit upon which much of the organometallic chemistry of fluorene is based. This ligand may bind to metals in a wide variety of ways, many of which are unavailable to analogous Cp species, with η1, η3, and η5 forms all structurally characterized (Alt and Samuel, 1998; Kirillov et al., 2005; Bochmann et al., 1993; Decken et al., 2002; Knjazhanski et al., 2002). Fluorene may also be regarded as a CH2-bridged bi­phenyl unit, with two potential binding sites on the arene rings. Again, this has been exploited, with the synthesis of several bimetallic systems with the ligand again showing the ability to bind in a variety of coordination modes, η5 and η6 are both known (Novikova et al., 1985; Johnson and Treichel, 1977). Here, we report the synthesis and structure of the new compound N-((9H-fluoren-9-yl­idene)(2-meth­oxy­phenyl)­methyl)-1,1,1-tri­methyl­silanamine.

The molecular structure of the title compound is illustrated in Fig. 1. The compound is a hydrolysis product of the reaction between 9-tri­methyl­silyfluorenyl lithium and 2-meth­oxy­benzo­nitrile. The fluorene ring system is substanti­ally planar with an rms deviation of 0.0288 Å from the best fit plane through its 13 C atoms. This plane forms a dihedral angle of 58.07 (7)° with the 2-meth­oxy­benzo­nitrile ring plane. The five-membered shows alternating C=C and C—C bond length. The exocyclic C1—C14 [1.368 (4)Å] linkage is in the typical double bond range [1.32 Å]. This comound contains a typical amino­fulvene framework (Axenov et al., 2009). The adjacent C14—N1 bond is also short, indicating the presence of delocalization in the C1—C14—N1 fragments to some extent. The other adjacent bond distance, C14—C15, is 1.490 (3)Å which is in agreement with single bond character [1.53 Å]. A number of N–H···π and C–H···π stacking inter­actions involving the phenyl rings help to consolidate the crystal packing. The N···Cg and C···Cg (Cg = ring centroid) distances lie in the range 2.989-3.473 Å, which is normal for such inter­actions (Calhorda, 2000; Desiraju & Steiner, 1999) and lead to the formation of an infinite one-dimensional chain structure (Fig. 2).

Related literature top

For the use of fluorene as a ligand in organometallic chemistry, see: Alt & Samuel (1998); Kirillov et al. (2005); Bochmann et al. (1993); Decken et al. (2002); Knjazhanski et al. (2002); Novikova et al. (1985); Johnson & Treichel (1977). For σπ stacking, see: Calhorda (2000); Desiraju & Steiner (1999). For a related aminofulvene structure, see: Axenov et al. (2009).

Structure description top

Fluorene is an attractive ligand for organometallic chemistry for several reasons. It may be regarded as a doubly benzannelated cyclo­penta­diene, which may be deprotonated at the 9 position to generate a substituted Cp ligand. Indeed, it is this unit upon which much of the organometallic chemistry of fluorene is based. This ligand may bind to metals in a wide variety of ways, many of which are unavailable to analogous Cp species, with η1, η3, and η5 forms all structurally characterized (Alt and Samuel, 1998; Kirillov et al., 2005; Bochmann et al., 1993; Decken et al., 2002; Knjazhanski et al., 2002). Fluorene may also be regarded as a CH2-bridged bi­phenyl unit, with two potential binding sites on the arene rings. Again, this has been exploited, with the synthesis of several bimetallic systems with the ligand again showing the ability to bind in a variety of coordination modes, η5 and η6 are both known (Novikova et al., 1985; Johnson and Treichel, 1977). Here, we report the synthesis and structure of the new compound N-((9H-fluoren-9-yl­idene)(2-meth­oxy­phenyl)­methyl)-1,1,1-tri­methyl­silanamine.

The molecular structure of the title compound is illustrated in Fig. 1. The compound is a hydrolysis product of the reaction between 9-tri­methyl­silyfluorenyl lithium and 2-meth­oxy­benzo­nitrile. The fluorene ring system is substanti­ally planar with an rms deviation of 0.0288 Å from the best fit plane through its 13 C atoms. This plane forms a dihedral angle of 58.07 (7)° with the 2-meth­oxy­benzo­nitrile ring plane. The five-membered shows alternating C=C and C—C bond length. The exocyclic C1—C14 [1.368 (4)Å] linkage is in the typical double bond range [1.32 Å]. This comound contains a typical amino­fulvene framework (Axenov et al., 2009). The adjacent C14—N1 bond is also short, indicating the presence of delocalization in the C1—C14—N1 fragments to some extent. The other adjacent bond distance, C14—C15, is 1.490 (3)Å which is in agreement with single bond character [1.53 Å]. A number of N–H···π and C–H···π stacking inter­actions involving the phenyl rings help to consolidate the crystal packing. The N···Cg and C···Cg (Cg = ring centroid) distances lie in the range 2.989-3.473 Å, which is normal for such inter­actions (Calhorda, 2000; Desiraju & Steiner, 1999) and lead to the formation of an infinite one-dimensional chain structure (Fig. 2).

For the use of fluorene as a ligand in organometallic chemistry, see: Alt & Samuel (1998); Kirillov et al. (2005); Bochmann et al. (1993); Decken et al. (2002); Knjazhanski et al. (2002); Novikova et al. (1985); Johnson & Treichel (1977). For σπ stacking, see: Calhorda (2000); Desiraju & Steiner (1999). For a related aminofulvene structure, see: Axenov et al. (2009).

Synthesis and crystallization top

The 9-tri­methyl­silyl-fluorenyllithium (0.68 g, 2.8 mmol) mixed with (o-MeO)PhCN (0.34 ml, 2.8 mmol) at 0 °C. The resulting mixture was slowly warmed to room temperature and stirred for a further 10 hours to give a clear brown solution. H2O (2.8 mmol, 0.41 ml, 6.94 M in THF) was added to a stirred solution, prepared in situ without purification, at 0 °C. The resulting cloudy yellow solution was allowed to warm to room temperature for 7 days, yielding colorless crystals of the title compound (0.62 g, 59% yield). Mp: 172 °C. 1H NMR (300 MHz, C6D6): δ (ppm) -0.14 (s, 9H, -Si(CH3)3), 2.68 (s,1H,-NH), 3.78 (s, 3H, -OCH3), 6.71 (s, 2H, -CH- of phenyl), 6.88-6.90 (d, JHH=7.5 Hz, 2H, -CH- of fluorenyl), 7.21-7.44 (m, 2H, -CH- of phenyl), 7.59-7.63 (m, 2H, -CH- of fluorenyl), 7.71-7.73 (d, JHH=7.8 Hz, 2H, -CH- of fluorenyl), 7.89-7.92 (d, JHH=7.8 Hz, 2H, -CH- of fluorenyl). 13C NMR (75 MHz, CDCl3): δ (ppm) 1.99 (3C, C of -SiMe3), 58.23 (1C, -OCH3), 109.33, 113.23, 120.27, 121.02, 122.11, 124.21, 126.35, 127.33, 128.53, 138.40, 139.24, 140.12, 140.35, 141.11, 143.23 (17C, C of fluorenyl and phenyl), 151.78, 166.65 (2C, Cipso of phenyl), 154.32 (1C, PhCNHSiMe3). Anal. Calc. for C24H25NOSi (Mr = 371.55): C, 77.58; H, 6.78; N, 3.77%. Found: C, 77.80; H, 6.68; N, 3.82%.

Refinement details top

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C). N–H bond distances was restrained to be 0.88 Å and Uiso(H) = 1.2Ueq(N). The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of 1 with N–H···π and C–H···π contacts drawn as dotted lines and spheres representing the aromatic ring centroids.
N-[(9H-Fluoren-9-ylidene)(2-methoxyphenyl)methyl]-1,1,1-trimethylsilanamine top
Crystal data top
C24H25NOSiF(000) = 792
Mr = 371.54Dx = 1.215 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6083 reflections
a = 12.611 (3) Åθ = 1.6–27.5°
b = 9.5694 (19) ŵ = 0.13 mm1
c = 20.325 (6) ÅT = 173 K
β = 124.10 (2)°Prism, yellow
V = 2031.1 (9) Å30.19 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker P4
diffractometer
4628 independent reflections
Radiation source: fine-focus sealed tube4212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1612
Tmin = 0.976, Tmax = 0.985k = 1212
15991 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.0619P)2 + 1.2002P]
where P = (Fo2 + 2Fc2)/3
4628 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H25NOSiV = 2031.1 (9) Å3
Mr = 371.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.611 (3) ŵ = 0.13 mm1
b = 9.5694 (19) ÅT = 173 K
c = 20.325 (6) Å0.19 × 0.17 × 0.12 mm
β = 124.10 (2)°
Data collection top
Bruker P4
diffractometer
4628 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4212 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.985Rint = 0.057
15991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.24Δρmax = 0.50 e Å3
4628 reflectionsΔρmin = 0.26 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.66989 (6)0.64695 (7)0.46564 (4)0.02799 (19)
O10.94557 (19)0.4521 (2)0.70940 (11)0.0421 (5)
N10.81941 (18)0.5781 (2)0.49531 (11)0.0270 (4)
H10.84540.60090.46460.032*
C11.0326 (2)0.5139 (2)0.60208 (13)0.0253 (5)
C21.0993 (2)0.6446 (2)0.60736 (14)0.0253 (5)
C31.0568 (2)0.7744 (2)0.56909 (15)0.0300 (5)
H3A0.96960.78690.52680.036*
C41.1426 (2)0.8843 (3)0.59324 (16)0.0334 (6)
H4A1.11310.97190.56700.040*
C51.2708 (3)0.8693 (3)0.65494 (16)0.0353 (6)
H5A1.32760.94640.67080.042*
C61.3158 (2)0.7417 (3)0.69335 (15)0.0315 (5)
H6A1.40340.73050.73540.038*
C71.2307 (2)0.6306 (2)0.66934 (14)0.0268 (5)
C81.2521 (2)0.4893 (2)0.70131 (14)0.0274 (5)
C91.3646 (2)0.4240 (3)0.76098 (15)0.0342 (6)
H9A1.44360.47320.78860.041*
C101.3589 (3)0.2860 (3)0.77916 (16)0.0388 (6)
H10A1.43460.24030.81990.047*
C111.2439 (3)0.2140 (3)0.73847 (16)0.0386 (6)
H11A1.24210.11910.75150.046*
C121.1311 (2)0.2778 (3)0.67909 (16)0.0332 (6)
H12A1.05320.22650.65110.040*
C131.1335 (2)0.4186 (2)0.66094 (14)0.0271 (5)
C140.9032 (2)0.4938 (2)0.55932 (14)0.0257 (5)
C150.8397 (2)0.3807 (2)0.57581 (15)0.0278 (5)
C160.7537 (2)0.2919 (3)0.51407 (16)0.0347 (6)
H16A0.73690.30500.46270.042*
C170.6921 (3)0.1846 (3)0.5262 (2)0.0446 (7)
H17A0.63420.12430.48380.054*
C180.7167 (3)0.1672 (3)0.6009 (2)0.0517 (8)
H18A0.67480.09430.60960.062*
C190.8008 (3)0.2535 (3)0.66320 (19)0.0452 (7)
H19A0.81630.23950.71420.054*
C200.8628 (2)0.3610 (3)0.65138 (16)0.0340 (6)
C210.9910 (3)0.4175 (4)0.78948 (17)0.0574 (9)
H21A1.05790.48370.82580.086*
H21B1.02620.32260.80140.086*
H21C0.91990.42250.79620.086*
C220.6655 (3)0.6740 (4)0.55400 (18)0.0524 (8)
H22A0.66960.58340.57780.079*
H22B0.58570.72160.53830.079*
H22C0.73870.73140.59280.079*
C230.5336 (3)0.5378 (3)0.39032 (18)0.0457 (7)
H23A0.53270.45000.41480.069*
H23B0.54300.51760.34660.069*
H23C0.45320.58820.36980.069*
C240.6621 (3)0.8163 (3)0.41832 (18)0.0424 (7)
H24A0.67550.80010.37580.064*
H24B0.72890.87890.45820.064*
H24C0.57790.85900.39590.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0246 (3)0.0260 (3)0.0320 (4)0.0010 (3)0.0151 (3)0.0018 (3)
O10.0480 (11)0.0507 (12)0.0328 (10)0.0042 (9)0.0258 (9)0.0010 (9)
N10.0255 (10)0.0295 (10)0.0279 (10)0.0011 (8)0.0162 (9)0.0041 (8)
C10.0286 (11)0.0223 (11)0.0279 (11)0.0025 (9)0.0177 (10)0.0025 (9)
C20.0277 (11)0.0242 (11)0.0284 (12)0.0011 (9)0.0184 (10)0.0016 (9)
C30.0268 (12)0.0259 (12)0.0363 (13)0.0012 (9)0.0171 (11)0.0031 (10)
C40.0379 (13)0.0217 (11)0.0429 (15)0.0013 (10)0.0240 (12)0.0028 (10)
C50.0379 (14)0.0274 (13)0.0419 (15)0.0089 (11)0.0232 (12)0.0042 (11)
C60.0297 (12)0.0320 (13)0.0303 (13)0.0047 (10)0.0154 (11)0.0037 (10)
C70.0289 (12)0.0267 (12)0.0283 (12)0.0017 (9)0.0182 (10)0.0020 (9)
C80.0302 (12)0.0273 (12)0.0270 (12)0.0003 (9)0.0174 (10)0.0001 (9)
C90.0274 (12)0.0404 (14)0.0310 (13)0.0025 (10)0.0140 (11)0.0035 (11)
C100.0370 (14)0.0384 (15)0.0372 (14)0.0144 (12)0.0184 (12)0.0127 (12)
C110.0459 (15)0.0293 (13)0.0458 (16)0.0080 (12)0.0288 (13)0.0109 (12)
C120.0353 (13)0.0268 (12)0.0409 (14)0.0012 (10)0.0235 (12)0.0036 (11)
C130.0302 (12)0.0265 (12)0.0282 (12)0.0013 (9)0.0186 (10)0.0009 (9)
C140.0290 (12)0.0229 (11)0.0285 (12)0.0006 (9)0.0181 (10)0.0011 (9)
C150.0274 (11)0.0238 (11)0.0366 (13)0.0001 (9)0.0205 (11)0.0034 (10)
C160.0338 (13)0.0267 (12)0.0448 (15)0.0013 (10)0.0228 (12)0.0005 (11)
C170.0395 (15)0.0278 (13)0.065 (2)0.0071 (11)0.0282 (15)0.0017 (13)
C180.0493 (17)0.0341 (15)0.082 (2)0.0043 (13)0.0429 (18)0.0143 (15)
C190.0468 (16)0.0465 (16)0.0550 (18)0.0070 (13)0.0364 (15)0.0192 (14)
C200.0347 (13)0.0319 (13)0.0423 (15)0.0055 (11)0.0258 (12)0.0072 (11)
C210.071 (2)0.068 (2)0.0338 (16)0.0138 (18)0.0295 (16)0.0103 (15)
C220.0468 (17)0.071 (2)0.0466 (18)0.0152 (16)0.0306 (15)0.0058 (16)
C230.0296 (14)0.0359 (15)0.0547 (18)0.0058 (11)0.0132 (13)0.0013 (13)
C240.0390 (15)0.0309 (13)0.0519 (17)0.0021 (11)0.0221 (14)0.0078 (12)
Geometric parameters (Å, º) top
Si1—N11.754 (2)C11—C121.388 (4)
Si1—C221.846 (3)C11—H11A0.9500
Si1—C231.854 (3)C12—C131.402 (3)
Si1—C241.859 (3)C12—H12A0.9500
O1—C201.364 (3)C14—C151.491 (3)
O1—C211.429 (3)C15—C161.396 (3)
N1—C141.385 (3)C15—C201.407 (4)
N1—H10.8800C16—C171.390 (4)
C1—C141.366 (3)C16—H16A0.9500
C1—C131.475 (3)C17—C181.378 (5)
C1—C21.477 (3)C17—H17A0.9500
C2—C31.403 (3)C18—C191.380 (5)
C2—C71.417 (3)C18—H18A0.9500
C3—C41.387 (3)C19—C201.392 (4)
C3—H3A0.9500C19—H19A0.9500
C4—C51.391 (4)C21—H21A0.9800
C4—H4A0.9500C21—H21B0.9800
C5—C61.387 (4)C21—H21C0.9800
C5—H5A0.9500C22—H22A0.9800
C6—C71.391 (3)C22—H22B0.9800
C6—H6A0.9500C22—H22C0.9800
C7—C81.459 (3)C23—H23A0.9800
C8—C91.395 (3)C23—H23B0.9800
C8—C131.411 (3)C23—H23C0.9800
C9—C101.383 (4)C24—H24A0.9800
C9—H9A0.9500C24—H24B0.9800
C10—C111.385 (4)C24—H24C0.9800
C10—H10A0.9500
N1—Si1—C22109.34 (12)C12—C13—C1132.2 (2)
N1—Si1—C23113.09 (12)C8—C13—C1109.0 (2)
C22—Si1—C23111.28 (16)C1—C14—N1121.7 (2)
N1—Si1—C24103.88 (12)C1—C14—C15124.0 (2)
C22—Si1—C24111.08 (15)N1—C14—C15114.3 (2)
C23—Si1—C24107.95 (13)C16—C15—C20118.7 (2)
C20—O1—C21117.4 (2)C16—C15—C14119.0 (2)
C14—N1—Si1130.40 (16)C20—C15—C14122.3 (2)
C14—N1—H1114.8C17—C16—C15121.3 (3)
Si1—N1—H1114.8C17—C16—H16A119.3
C14—C1—C13127.5 (2)C15—C16—H16A119.3
C14—C1—C2126.5 (2)C18—C17—C16118.8 (3)
C13—C1—C2105.54 (19)C18—C17—H17A120.6
C3—C2—C7118.0 (2)C16—C17—H17A120.6
C3—C2—C1133.2 (2)C17—C18—C19121.4 (3)
C7—C2—C1108.6 (2)C17—C18—H18A119.3
C4—C3—C2119.7 (2)C19—C18—H18A119.3
C4—C3—H3A120.1C18—C19—C20120.0 (3)
C2—C3—H3A120.1C18—C19—H19A120.0
C3—C4—C5121.5 (2)C20—C19—H19A120.0
C3—C4—H4A119.2O1—C20—C19123.7 (3)
C5—C4—H4A119.2O1—C20—C15116.6 (2)
C6—C5—C4120.0 (2)C19—C20—C15119.7 (3)
C6—C5—H5A120.0O1—C21—H21A109.5
C4—C5—H5A120.0O1—C21—H21B109.5
C5—C6—C7118.9 (2)H21A—C21—H21B109.5
C5—C6—H6A120.6O1—C21—H21C109.5
C7—C6—H6A120.6H21A—C21—H21C109.5
C6—C7—C2121.8 (2)H21B—C21—H21C109.5
C6—C7—C8129.7 (2)Si1—C22—H22A109.5
C2—C7—C8108.4 (2)Si1—C22—H22B109.5
C9—C8—C13121.4 (2)H22A—C22—H22B109.5
C9—C8—C7130.3 (2)Si1—C22—H22C109.5
C13—C8—C7108.3 (2)H22A—C22—H22C109.5
C10—C9—C8118.7 (2)H22B—C22—H22C109.5
C10—C9—H9A120.7Si1—C23—H23A109.5
C8—C9—H9A120.7Si1—C23—H23B109.5
C9—C10—C11120.6 (2)H23A—C23—H23B109.5
C9—C10—H10A119.7Si1—C23—H23C109.5
C11—C10—H10A119.7H23A—C23—H23C109.5
C10—C11—C12121.3 (2)H23B—C23—H23C109.5
C10—C11—H11A119.3Si1—C24—H24A109.5
C12—C11—H11A119.3Si1—C24—H24B109.5
C11—C12—C13119.2 (2)H24A—C24—H24B109.5
C11—C12—H12A120.4Si1—C24—H24C109.5
C13—C12—H12A120.4H24A—C24—H24C109.5
C12—C13—C8118.7 (2)H24B—C24—H24C109.5
C22—Si1—N1—C1429.8 (3)C7—C8—C13—C12177.0 (2)
C23—Si1—N1—C1494.8 (2)C9—C8—C13—C1179.6 (2)
C24—Si1—N1—C14148.4 (2)C7—C8—C13—C10.3 (3)
C14—C1—C2—C35.7 (4)C14—C1—C13—C1213.6 (4)
C13—C1—C2—C3177.8 (2)C2—C1—C13—C12174.5 (2)
C14—C1—C2—C7168.4 (2)C14—C1—C13—C8169.6 (2)
C13—C1—C2—C73.6 (2)C2—C1—C13—C82.3 (2)
C7—C2—C3—C40.9 (3)C13—C1—C14—N1167.5 (2)
C1—C2—C3—C4172.9 (2)C2—C1—C14—N122.2 (4)
C2—C3—C4—C50.0 (4)C13—C1—C14—C1511.7 (4)
C3—C4—C5—C60.6 (4)C2—C1—C14—C15158.7 (2)
C4—C5—C6—C70.3 (4)Si1—N1—C14—C1139.9 (2)
C5—C6—C7—C20.6 (4)Si1—N1—C14—C1540.8 (3)
C5—C6—C7—C8177.5 (2)C1—C14—C15—C16127.0 (3)
C3—C2—C7—C61.2 (3)N1—C14—C15—C1652.3 (3)
C1—C2—C7—C6174.0 (2)C1—C14—C15—C2053.6 (3)
C3—C2—C7—C8178.7 (2)N1—C14—C15—C20127.2 (2)
C1—C2—C7—C83.5 (3)C20—C15—C16—C170.6 (4)
C6—C7—C8—C94.6 (4)C14—C15—C16—C17179.9 (2)
C2—C7—C8—C9178.2 (2)C15—C16—C17—C180.4 (4)
C6—C7—C8—C13175.2 (2)C16—C17—C18—C190.2 (5)
C2—C7—C8—C132.0 (3)C17—C18—C19—C200.1 (5)
C13—C8—C9—C101.4 (4)C21—O1—C20—C1913.5 (4)
C7—C8—C9—C10178.8 (2)C21—O1—C20—C15167.3 (2)
C8—C9—C10—C110.5 (4)C18—C19—C20—O1178.9 (3)
C9—C10—C11—C120.6 (4)C18—C19—C20—C150.3 (4)
C10—C11—C12—C131.1 (4)C16—C15—C20—O1178.7 (2)
C11—C12—C13—C82.9 (4)C14—C15—C20—O10.8 (3)
C11—C12—C13—C1179.5 (2)C16—C15—C20—C190.6 (4)
C9—C8—C13—C123.1 (3)C14—C15—C20—C19180.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C1,C2,C7,C8,C13, C2–C7 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg1i0.882.693.347 (3)133
C12—H12A···Cg40.952.993.750 (4)138
C16—H16A···Cg2i0.952.653.470 (3)145
C21—H21C···Cg2ii0.982.943.736 (4)139
C24—H24A···Cg3i0.982.993.923 (4)158
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C1,C2,C7,C8,C13, C2–C7 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cg1i0.882.693.347 (3)133
C12—H12A···Cg40.952.993.750 (4)138
C16—H16A···Cg2i0.952.653.470 (3)145
C21—H21C···Cg2ii0.982.943.736 (4)139
C24—H24A···Cg3i0.982.993.923 (4)158
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20942009, 21072120), the Shanxi Scholarship Council of China (No. 201310) and the Key Technologies R & D Program of Shanxi Province (No. 20110321055).

References

First citationAlt, H. G. & Samuel, E. (1998). Chem. Soc. Rev. 27, 323–329.  CrossRef CAS Google Scholar
First citationAxenov, K. V., Kehr, G., Fröhlich, R. & Erker, G. (2009). Organometallics, 28, 5148–5158.  Web of Science CSD CrossRef CAS Google Scholar
First citationBochmann, M., Lancaster, S. J., Hursthouse, M. B. & Mazid, M. (1993). Organometallics, 12, 4718–4720.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalhorda, M. J. (2000). Chem. Commun. pp. 801–809.  Web of Science CrossRef Google Scholar
First citationDecken, A., Mackay, A. J., Brown, M. J. & Bottomley, F. (2002). Organometallics, 21, 2006–2009.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 152. Oxford University Press.  Google Scholar
First citationJohnson, J. W. & Treichel, P. M. (1977). J. Am. Chem. Soc. 99, 1427–1436.  CSD CrossRef CAS Web of Science Google Scholar
First citationKirillov, E., Saillard, J. Y. & Carpentier, J. F. (2005). Coord. Chem. Rev. 249, 1221–1248.  Web of Science CrossRef CAS Google Scholar
First citationKnjazhanski, S. Y., Cadenas, G., García, M., Pérez, C. M., Nifant'ev, I. E., Kashulin, I. A., Ivchenko, P. V. & Lyssenko, K. A. (2002). Organometallics, 21, 3094–3099.  Web of Science CSD CrossRef CAS Google Scholar
First citationNovikova, L. N., Ustynyuk, N. A., Zvorykin, V. E., Dneprovskaya, L. S. & Ustynyuk, Y. A. (1985). J. Organomet. Chem. 292, 237–243.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds