organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(Diselanediylbis{[P,P-di­phenyl-N-(tri­methyl­sil­yl)phospho­rimido­yl]methanylyl­­idene})bis­­[1,1-di­phenyl-N-(tri­methyl­sil­yl)-λ5-phosphanamine] pentane disolvate

aDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada, and bDepartment of Chemistry, PO Box 3000, University of Oulu, 90014 Oulu, Finland
*Correspondence e-mail: risto.laitinen@oulu.fi

(Received 7 November 2013; accepted 2 December 2013; online 7 December 2013)

The title compound, C62H78N4P4Se2Si4·2C5H12, is made up of two [SeC(PPh2NSiMe3)(PPh2NHSiMe3)] units related by an inversion center situated at the mid-point of the diselenide bond. It crystallized with two disordered mol­ecules of pentane used as solvent of crystallization. It is a rare example of an anti­periplanar diselenide and exhibits a long Se—Se bond of 2.4717 (8) Å. The Se—C bond length of 1.876 (5) Å is short in comparison with the range of values found for other diselenides (1.91–1.97 Å). The mol­ecule exhibits two intra­molecular N—H⋯N hydrogen bonds. In the crystal, there are no significant inter­molecular inter­actions present. One of the Me3Si– groups is disordered over two positions with a refined occupancy ratio of 0.708 (8):0.292 (8). The contribution of the disordered solvent to the scattering was removed with the SQUEEZE option of PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. The solvent contribution has been included in the reported mol­ecular weight and density.

Related literature

For the coordination chemistry of diselenides, see: Risto et al. (2011[Risto, M., Konu, J. & Chivers, T. (2011). Inorg. Chem. 50, 406-408.]). For examples of anti­periplanar diselenides, see: Wagner et al. (1990[Wagner, I., du Mont, W.-W., Pohl, S. & Saak, W. (1990). Chem. Ber. 123, 2325-2327.]); Dhau et al. (2011[Dhau, J. S., Singh, A. & Dhir, R. (2011). J. Organomet. Chem. 696, 2008-2013.]). For geometric parameters in organic diselenides, see: Dickson et al. (1999[Dickson, P. M., McGowan, A. D., Yearwood, B., Heeg, M. J. & Oliver, J. P. (1999). J. Organomet. Chem. 588, 42-50.]); Steudel et al. (1980[Steudel, R., Steidel, J., Pickardt, J., Schuster, F. & Reinhardt, R. (1980). Z. Naturforsch. Teil B, 35, 1378-1383.]); Schmidbaur et al. (1983[Schmidbaur, H., Zybill, C. E. & Neugebauer, D. (1983). Angew. Chem. 95, 161.]); Konu et al. (2010[Konu, J., Chivers, T. & Tuononen, H. M. (2010). Chem. Eur. J. 16, 12977-12987.]); Back & Codding (1983[Back, T. G. & Codding, P. W. (1983). Can. J. Chem. 61, 2749-2752.]); Pyykkö & Atsumi (2009[Pyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 186-197.]). For the binding energies of organic dislenides, see; McDonough et al. (2005[McDonough, J. E., Weir, J. J., Carlson, M. J., Hoff, C. D., Kryatova, O. P., Rybak-Akimova, E. V., Clough, C. R. & Cummins, C. C. (2005). Inorg. Chem. 44, 3127-3136.]). For the synthesis of the reagent {Li2[C(PPh2NSiMe3)2]}, see: Kasani et al. (1999[Kasani, A., Babu, R. P. K., McDonald, R. & Cavell, R. G. (1999). Angew. Chem. Int. Ed. 38, 1483-1484.]).

[Scheme 1]

Experimental

Crystal data
  • C62H78N4P4Se2Si4·2C5H12

  • Mr = 1417.74

  • Triclinic, [P \overline 1]

  • a = 10.2500 (3) Å

  • b = 13.4420 (3) Å

  • c = 14.6670 (4) Å

  • α = 65.611 (1)°

  • β = 85.525 (1)°

  • γ = 76.730 (2)°

  • V = 1791.03 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 173 K

  • 0.22 × 0.15 × 0.09 mm

Data collection
  • Nonius KappaCCD FR540C diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.773, Tmax = 0.897

  • 11811 measured reflections

  • 6257 independent reflections

  • 4902 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.170

  • S = 1.04

  • 6257 reflections

  • 345 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1 0.99 (8) 1.86 (8) 2.795 (8) 156 (6)

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Putz & Brandenburg, 2013[Putz, H. & Brandenburg, K. (2013). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Organic diselenides are of interest from the viewpoint of coordination chemistry (Risto et al., 2011) as well as for their structural aspects. The C—Se—Se—C torsion angle typically falls within a wide range of ca. 73–128° (Dickson et al., 1999). The only examples of antiperiplanar diselenides (C—Se—Se—C = 180°) involve very bulky R groups, for example, (Me3Si)3CSeSeC(SiMe3)3 (d(Se—Se) = 2.388 (1) Å) (Wagner et al., 1990), or intramolecular heteroatom coordination to the Se centers as in bis(3,5-dimethyl-2-pyridyl)diselenide (d(Se—Se) = 2.352 (2) Å) (Dhau et al., 2011). In this work we unexpectedly isolated a small amount of the title diselenide as red crystals from the reaction of {Li2[C(PPh2NSiMe3)2]} with SeCl4 (1:1 molar ratio) in pentane.

The crystal structure analysis of the title compound revealed a centrosymmetric dimer in which a diselenido (–Se—Se-) unit bridges two monoprotonated units (Fig. 1). The torsion angle C25—Se—Sei—C25i is 180 °, as a result of the inversion centre, and the two anionic ligands are in a trans orientation with respect to –Se—Se- bridge. The Se—Se bond length of 2.4717 (8) Å is substantially longer than those in typical diaryl diselenides (range 2.29–2.35 Å) [Dickson et al., 1999]. At the same time the Se—C bond of 1.876 (5) Å is short in comparison with the range of values found for other diselenides (1.91–1.97 Å) (Back & Codding, 1983) and the calculated value of 1.91 Å (Pyykkö & Atsumi, 2009). This bonding arrangement is reminiscent of the alternation of the S—S bond lengths in cycloheptasulfur, which has been rationalized in terms of p lone pair repulsions of the neighbouring sulfur atoms due to the torsion angle of 0° and hyperconjugation (Steudel et al., 1980). We also note that the Se—Se bond lengths of 2.492 (2) Å found for the dication [(Ph3P)2CSe-SeC(PPh3)2]2+ (Schmidbaur et al., 1983) and 2.508 (1) Å exhibited by the dilithium complex {[Li(TMEDA)]2[(SPh2P)2CSe-SeC(PPh2S)2]} (Konu et al., 2010) are comparable to that of the title compound. In the latter case, the Se—Se bonding interaction is due solely to the poor overlap of the SOMOs of the anion radicals. Consequently the calculated binding energy is small (90 kJ mol-1) compared to typical values for organic diselenides, e.g. 172 kJ mol-1 for PhSe-SePh (McDonough et al., 2005). The Se—C distance of 1.885 (3) Å in [{Li(TMEDA)}2{(SPh2P)2CSe-SeC(PPh2S)2}] (Konu et al., 2010) is also comparable with that in the title compound.

The protonation of one of the nitrogen atoms, N1, is evident from the disparity of ca 0.07 Å in the P—N bond lengths, and smaller differences in the Si—N and P—C(Se) distances of 0.038 Å and 0.036 Å, respectively. Intramolecular hydrogen bonding between the N—H functionality and two-coordinate nitrogen atom (1.981 (15) Å) is observed (Table 1). The geometry at the three-coordinate carbon atom is almost planar (Σ<C(25) = 356.1°).

In the crystal, there are no significant intermolecular interactions present.

Related literature top

For the coordination chemistry of diselenides, see: Risto et al. (2011). For examples of antiperiplanar diselenides, see: Wagner et al. (1990); Dhau et al. (2011). For geometric parameters in organic diselenides, see: Dickson et al. (1999); Steudel et al. (1980); Schmidbaur et al. (1983); Konu et al. (2010); Back & Codding (1983); Pyykkö & Atsumi (2009). For the binding energies of organic dislenides, see; McDonough et al. (2005). For the synthesis of the reagent {Li2[C(PPh2NSiMe3)2]}, see: Kasani et al. (1999).

Experimental top

The reagent {Li2[C(PPh2NSiMe3)2]} (I), was prepared according to the literature procedure (Kasani et al., 1999). A mixture of (I) (0.254 g, 0.445 mmol) and SeCl4 (0.098 g, 0.445 mmol) was placed in a 50 ml round-bottomed flask under an argon atmosphere using standard Schlenk techniques. Pentane (10 ml) was added drop-wise over a period of 15 min. at 195 K. The solution was then allowed to reach room temperature and stirred for a further 8 h after which it was filtered, to remove LiCl, and gave an orange solution. The 31P NMR spectrum of the filtrate (400 MHz, pentane, 298 K) revealed a complex mixture of products with resonances at δ 4.99 (s), 1.14(s), 3.87(s), 5.40 (d, J = 5.0 Hz), 7.83(d, J = 5.0 Hz), 10.23(s), and 18.51(s). The filtrate was allowed to evaporate slowly at room temperature under an argon atmosphere to produce a few red crystals of the title compound after 45 days. Further details of the synthetic procedure are available in the archived CIF.

Refinement top

The hydrogen atom bound to atom N2 was located in the difference Fourier map and refined with Uiso(H) = 0.05 Å2. All C-bound H atoms were placed in idealized positions and treated as riding atoms: C-H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The Me3Si group involving Si2 is disordered with two alternative orientations, atoms C30/C31:C32/C33 with a refined occupany ratio of 0.708 (8):0.298 (8), and their anisotropic displacement parameters were made equal. The disordered solvent pentane molecules could not be refined satisfactorily and were excluded using the SQUEEZE routine in PLATON (Spek, 2009); solvent-accessible void space of 249 Å3 corresponding to 85 electron count/cell. This is equivalent to two pentane solvent molecules (84 electrons) per unit cell.

Structure description top

Organic diselenides are of interest from the viewpoint of coordination chemistry (Risto et al., 2011) as well as for their structural aspects. The C—Se—Se—C torsion angle typically falls within a wide range of ca. 73–128° (Dickson et al., 1999). The only examples of antiperiplanar diselenides (C—Se—Se—C = 180°) involve very bulky R groups, for example, (Me3Si)3CSeSeC(SiMe3)3 (d(Se—Se) = 2.388 (1) Å) (Wagner et al., 1990), or intramolecular heteroatom coordination to the Se centers as in bis(3,5-dimethyl-2-pyridyl)diselenide (d(Se—Se) = 2.352 (2) Å) (Dhau et al., 2011). In this work we unexpectedly isolated a small amount of the title diselenide as red crystals from the reaction of {Li2[C(PPh2NSiMe3)2]} with SeCl4 (1:1 molar ratio) in pentane.

The crystal structure analysis of the title compound revealed a centrosymmetric dimer in which a diselenido (–Se—Se-) unit bridges two monoprotonated units (Fig. 1). The torsion angle C25—Se—Sei—C25i is 180 °, as a result of the inversion centre, and the two anionic ligands are in a trans orientation with respect to –Se—Se- bridge. The Se—Se bond length of 2.4717 (8) Å is substantially longer than those in typical diaryl diselenides (range 2.29–2.35 Å) [Dickson et al., 1999]. At the same time the Se—C bond of 1.876 (5) Å is short in comparison with the range of values found for other diselenides (1.91–1.97 Å) (Back & Codding, 1983) and the calculated value of 1.91 Å (Pyykkö & Atsumi, 2009). This bonding arrangement is reminiscent of the alternation of the S—S bond lengths in cycloheptasulfur, which has been rationalized in terms of p lone pair repulsions of the neighbouring sulfur atoms due to the torsion angle of 0° and hyperconjugation (Steudel et al., 1980). We also note that the Se—Se bond lengths of 2.492 (2) Å found for the dication [(Ph3P)2CSe-SeC(PPh3)2]2+ (Schmidbaur et al., 1983) and 2.508 (1) Å exhibited by the dilithium complex {[Li(TMEDA)]2[(SPh2P)2CSe-SeC(PPh2S)2]} (Konu et al., 2010) are comparable to that of the title compound. In the latter case, the Se—Se bonding interaction is due solely to the poor overlap of the SOMOs of the anion radicals. Consequently the calculated binding energy is small (90 kJ mol-1) compared to typical values for organic diselenides, e.g. 172 kJ mol-1 for PhSe-SePh (McDonough et al., 2005). The Se—C distance of 1.885 (3) Å in [{Li(TMEDA)}2{(SPh2P)2CSe-SeC(PPh2S)2}] (Konu et al., 2010) is also comparable with that in the title compound.

The protonation of one of the nitrogen atoms, N1, is evident from the disparity of ca 0.07 Å in the P—N bond lengths, and smaller differences in the Si—N and P—C(Se) distances of 0.038 Å and 0.036 Å, respectively. Intramolecular hydrogen bonding between the N—H functionality and two-coordinate nitrogen atom (1.981 (15) Å) is observed (Table 1). The geometry at the three-coordinate carbon atom is almost planar (Σ<C(25) = 356.1°).

In the crystal, there are no significant intermolecular interactions present.

For the coordination chemistry of diselenides, see: Risto et al. (2011). For examples of antiperiplanar diselenides, see: Wagner et al. (1990); Dhau et al. (2011). For geometric parameters in organic diselenides, see: Dickson et al. (1999); Steudel et al. (1980); Schmidbaur et al. (1983); Konu et al. (2010); Back & Codding (1983); Pyykkö & Atsumi (2009). For the binding energies of organic dislenides, see; McDonough et al. (2005). For the synthesis of the reagent {Li2[C(PPh2NSiMe3)2]}, see: Kasani et al. (1999).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Putz & Brandenburg, 2013); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N-H···N hydrogen bonds are shown as dashed lines (see Table 1 for details; only the major components of the disordered methyl groups on Si2 are shown; the C-bound H atoms have been omitted for clarity).
1,1'-(Diselanediylbis{[P,P-diphenyl-N-(trimethylsilyl)phosphorimidoyl]methanylylidene})bis[1,1-diphenyl-N-(trimethylsilyl)-λ5-phosphanamine] pentane disolvate top
Crystal data top
C62H78N4P4Se2Si4·2C5H12Z = 1
Mr = 1417.74F(000) = 746
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2500 (3) ÅCell parameters from 6257 reflections
b = 13.4420 (3) Åθ = 1.7–25.0°
c = 14.6670 (4) ŵ = 1.23 mm1
α = 65.611 (1)°T = 173 K
β = 85.525 (1)°Block, red
γ = 76.730 (2)°0.22 × 0.15 × 0.09 mm
V = 1791.03 (8) Å3
Data collection top
Nonius KappaCCD FR540C
diffractometer
4902 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.064
φ scans, and ω scans with κ offsetsθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1212
Tmin = 0.773, Tmax = 0.897k = 1515
11811 measured reflectionsl = 1717
6257 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0591P)2 + 10.1653P]
where P = (Fo2 + 2Fc2)/3
6257 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C62H78N4P4Se2Si4·2C5H12γ = 76.730 (2)°
Mr = 1417.74V = 1791.03 (8) Å3
Triclinic, P1Z = 1
a = 10.2500 (3) ÅMo Kα radiation
b = 13.4420 (3) ŵ = 1.23 mm1
c = 14.6670 (4) ÅT = 173 K
α = 65.611 (1)°0.22 × 0.15 × 0.09 mm
β = 85.525 (1)°
Data collection top
Nonius KappaCCD FR540C
diffractometer
6257 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4902 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.897Rint = 0.064
11811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0591P)2 + 10.1653P]
where P = (Fo2 + 2Fc2)/3
6257 reflectionsΔρmax = 0.77 e Å3
345 parametersΔρmin = 0.71 e Å3
Special details top

Experimental. Some details of the procedure for the synthesis of the title compound: Solvents were dried over and distilled from Na/benzophenone (toluene). t–BuLi (1.7 M in pentane), CH2(PPh2)2, and azidotrimethylsilane were purchased from Aldrich Chemical Co. and were used without further purification. 31P NMR spectra were recorded on Bruker 400 NMR spectrometers. 31P NMR chemical shifts were referenced externally to 85% H3PO4 (0 p.p.m.).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Se10.62199 (5)0.46193 (4)0.01409 (4)0.0187 (2)
P10.66004 (14)0.20765 (11)0.15809 (10)0.0169 (4)
P20.68890 (14)0.37513 (11)0.23793 (10)0.0176 (4)
Si10.82048 (16)0.00542 (12)0.31167 (12)0.0221 (5)
Si20.6027 (2)0.28692 (16)0.46105 (14)0.0448 (7)
N10.7173 (4)0.1237 (4)0.2656 (3)0.0196 (12)
N20.6632 (5)0.2815 (4)0.3492 (3)0.0204 (14)
C10.5008 (5)0.1850 (4)0.1340 (4)0.0174 (16)
C20.4386 (6)0.1116 (5)0.2129 (5)0.0289 (17)
C30.3148 (6)0.0946 (5)0.1980 (5)0.036 (2)
C40.2537 (6)0.1490 (5)0.1036 (5)0.0300 (19)
C50.3150 (6)0.2206 (5)0.0253 (4)0.0260 (17)
C60.4372 (5)0.2381 (4)0.0400 (4)0.0213 (17)
C70.7647 (5)0.1909 (4)0.0565 (4)0.0202 (17)
C80.7466 (6)0.1186 (5)0.0134 (4)0.0250 (17)
C90.8349 (6)0.1011 (5)0.0570 (5)0.031 (2)
C100.9398 (6)0.1555 (5)0.0885 (5)0.0330 (19)
C110.9581 (6)0.2261 (5)0.0477 (5)0.0297 (17)
C120.8732 (6)0.2440 (5)0.0255 (4)0.0246 (17)
C130.8667 (5)0.3776 (5)0.2288 (4)0.0205 (17)
C140.9151 (6)0.4578 (5)0.1462 (4)0.0257 (17)
C151.0513 (6)0.4514 (5)0.1330 (5)0.0289 (17)
C161.1417 (6)0.3631 (5)0.2016 (5)0.034 (2)
C171.0965 (6)0.2834 (5)0.2835 (5)0.0364 (19)
C180.9581 (6)0.2898 (5)0.2983 (4)0.0254 (17)
C190.5998 (6)0.5112 (4)0.2292 (4)0.0211 (17)
C200.6627 (7)0.5828 (5)0.2472 (5)0.031 (2)
C210.5886 (7)0.6841 (5)0.2453 (5)0.0321 (19)
C220.4515 (7)0.7124 (5)0.2264 (5)0.0372 (19)
C230.3872 (7)0.6421 (5)0.2097 (4)0.0305 (19)
C240.4621 (6)0.5401 (4)0.2121 (4)0.0234 (17)
C250.6376 (5)0.3468 (4)0.1432 (4)0.0189 (17)
C260.9939 (6)0.0041 (5)0.2624 (5)0.0345 (19)
C270.7579 (7)0.1112 (5)0.2845 (5)0.037 (2)
C280.8339 (8)0.0567 (6)0.4512 (5)0.046 (3)
C290.6230 (9)0.1439 (7)0.5524 (6)0.061 (2)
C300.7320 (13)0.3449 (10)0.5058 (8)0.061 (2)0.708 (8)
C310.4399 (13)0.3696 (10)0.4602 (8)0.061 (2)0.708 (8)
C320.581 (3)0.409 (2)0.4776 (19)0.061 (2)0.292 (8)
C330.394 (3)0.287 (3)0.4303 (19)0.061 (2)0.292 (8)
H20.481100.073200.277000.0350*
H50.272800.257900.039000.0310*
H60.479000.287300.014700.0250*
H80.673700.081900.033000.0300*
H90.823400.050800.084400.0380*
H100.998700.143900.138200.0390*
H30.272000.045800.252200.0430*
H40.169500.136700.093200.0360*
H140.853700.517400.098500.0310*
H151.083100.507200.077200.0350*
H161.235300.357800.191600.0410*
H171.158900.223700.330300.0430*
H180.926900.234900.355200.0300*
H200.756500.562400.260800.0370*
H210.631400.733600.256800.0390*
H220.401000.781800.224800.0440*
H230.293300.662500.196900.0360*
H240.418500.490200.201800.0280*
H26A0.991300.019400.189700.0520*
H26B1.050600.079400.293700.0520*
H26C1.030800.048300.278000.0520*
H27A0.668000.115700.311600.0550*
H27B0.818700.184600.315600.0550*
H27C0.754300.088600.211900.0550*
H28A0.869600.004400.467800.0700*
H28B0.894200.130800.478600.0700*
H28C0.744900.061800.480100.0700*
H29A0.717700.106000.557700.0920*
H29B0.569600.104900.531400.0920*
H29C0.592500.143200.617700.0920*
H30A0.817000.289400.524400.0920*0.708 (8)
H30B0.696900.360000.564000.0920*0.708 (8)
H30C0.746800.414300.451500.0920*0.708 (8)
H31A0.387600.325500.514300.0920*0.708 (8)
H31B0.395000.393100.395800.0920*0.708 (8)
H31C0.447500.435900.470100.0920*0.708 (8)
H2N0.667 (7)0.215 (6)0.335 (5)0.0500*
H111.030100.263600.069600.0360*
H120.888700.291900.054400.0290*
H32A0.507500.464900.434100.0920*0.292 (8)
H32B0.663900.437200.460400.0920*0.292 (8)
H32C0.560000.394700.547600.0920*0.292 (8)
H33A0.356300.238700.491800.0920*0.292 (8)
H33B0.394600.257700.378800.0920*0.292 (8)
H33C0.339900.363100.406600.0920*0.292 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0189 (3)0.0179 (3)0.0156 (3)0.0032 (2)0.0016 (2)0.0033 (2)
P10.0168 (7)0.0161 (7)0.0175 (7)0.0032 (6)0.0008 (6)0.0066 (6)
P20.0211 (7)0.0178 (7)0.0139 (7)0.0054 (6)0.0003 (6)0.0058 (6)
Si10.0204 (8)0.0171 (8)0.0240 (8)0.0023 (6)0.0017 (7)0.0043 (6)
Si20.0679 (15)0.0298 (10)0.0244 (10)0.0030 (10)0.0196 (10)0.0063 (8)
N10.020 (2)0.018 (2)0.020 (2)0.0059 (19)0.0012 (19)0.0063 (19)
N20.027 (3)0.022 (2)0.013 (2)0.009 (2)0.0041 (19)0.0068 (19)
C10.015 (3)0.012 (2)0.022 (3)0.000 (2)0.001 (2)0.005 (2)
C20.024 (3)0.028 (3)0.029 (3)0.005 (3)0.002 (3)0.006 (3)
C30.023 (3)0.035 (4)0.042 (4)0.013 (3)0.001 (3)0.005 (3)
C40.018 (3)0.028 (3)0.040 (4)0.008 (3)0.007 (3)0.007 (3)
C50.020 (3)0.025 (3)0.026 (3)0.002 (2)0.005 (2)0.004 (3)
C60.020 (3)0.020 (3)0.023 (3)0.006 (2)0.001 (2)0.007 (2)
C70.016 (3)0.017 (3)0.021 (3)0.002 (2)0.006 (2)0.003 (2)
C80.022 (3)0.023 (3)0.029 (3)0.002 (2)0.000 (3)0.011 (3)
C90.035 (4)0.029 (3)0.035 (4)0.001 (3)0.001 (3)0.022 (3)
C100.025 (3)0.033 (3)0.037 (4)0.007 (3)0.005 (3)0.018 (3)
C110.017 (3)0.031 (3)0.031 (3)0.000 (3)0.004 (3)0.006 (3)
C120.019 (3)0.023 (3)0.028 (3)0.002 (2)0.005 (2)0.007 (2)
C130.022 (3)0.023 (3)0.019 (3)0.006 (2)0.002 (2)0.010 (2)
C140.025 (3)0.023 (3)0.025 (3)0.005 (2)0.005 (3)0.005 (2)
C150.030 (3)0.031 (3)0.028 (3)0.014 (3)0.003 (3)0.011 (3)
C160.025 (3)0.045 (4)0.037 (4)0.018 (3)0.009 (3)0.018 (3)
C170.028 (3)0.032 (3)0.039 (4)0.001 (3)0.002 (3)0.007 (3)
C180.020 (3)0.029 (3)0.025 (3)0.005 (3)0.005 (2)0.008 (3)
C190.027 (3)0.021 (3)0.014 (3)0.001 (2)0.000 (2)0.008 (2)
C200.038 (4)0.028 (3)0.031 (4)0.011 (3)0.001 (3)0.014 (3)
C210.043 (4)0.031 (3)0.030 (3)0.016 (3)0.002 (3)0.016 (3)
C220.055 (4)0.022 (3)0.025 (3)0.005 (3)0.000 (3)0.007 (3)
C230.036 (4)0.031 (3)0.022 (3)0.001 (3)0.008 (3)0.010 (3)
C240.035 (3)0.018 (3)0.012 (3)0.004 (2)0.000 (2)0.002 (2)
C250.018 (3)0.018 (3)0.016 (3)0.002 (2)0.002 (2)0.003 (2)
C260.020 (3)0.031 (3)0.048 (4)0.002 (3)0.004 (3)0.014 (3)
C270.034 (4)0.021 (3)0.053 (4)0.004 (3)0.000 (3)0.014 (3)
C280.051 (5)0.041 (4)0.034 (4)0.010 (3)0.010 (3)0.011 (3)
C290.073 (4)0.066 (4)0.027 (3)0.004 (3)0.011 (3)0.009 (3)
C300.073 (4)0.066 (4)0.027 (3)0.004 (3)0.011 (3)0.009 (3)
C310.073 (4)0.066 (4)0.027 (3)0.004 (3)0.011 (3)0.009 (3)
C320.073 (4)0.066 (4)0.027 (3)0.004 (3)0.011 (3)0.009 (3)
C330.073 (4)0.066 (4)0.027 (3)0.004 (3)0.011 (3)0.009 (3)
Geometric parameters (Å, º) top
Se1—C251.876 (5)C2—H20.9500
Se1—Se1i2.4717 (8)C3—H30.9500
P1—N11.573 (4)C4—H40.9500
P1—C11.814 (6)C5—H50.9500
P1—C71.827 (6)C6—H60.9500
P1—C251.753 (6)C8—H80.9500
P2—N21.645 (5)C9—H90.9500
P2—C131.824 (6)C10—H100.9500
P2—C191.804 (6)C11—H110.9500
P2—C251.731 (6)C12—H120.9500
Si1—N11.699 (5)C14—H140.9500
Si1—C261.867 (7)C15—H150.9500
Si1—C271.876 (7)C16—H160.9500
Si1—C281.876 (7)C17—H170.9500
Si2—N21.732 (5)C18—H180.9500
Si2—C291.808 (9)C20—H200.9500
Si2—C301.956 (14)C21—H210.9500
Si2—C311.778 (14)C22—H220.9500
Si2—C321.72 (3)C23—H230.9500
Si2—C332.22 (3)C24—H240.9500
N2—H2N0.99 (8)C26—H26A0.9800
C1—C21.396 (9)C26—H26B0.9800
C1—C61.396 (8)C26—H26C0.9800
C2—C31.389 (9)C27—H27A0.9800
C3—C41.390 (9)C27—H27B0.9800
C4—C51.376 (9)C27—H27C0.9800
C5—C61.375 (8)C28—H28A0.9800
C7—C121.404 (8)C28—H28B0.9800
C7—C81.410 (9)C28—H28C0.9800
C8—C91.378 (9)C29—H29A0.9800
C9—C101.382 (9)C29—H29B0.9800
C10—C111.365 (10)C29—H29C0.9800
C11—C121.393 (9)C30—H30A0.9800
C13—C141.396 (8)C30—H30B0.9800
C13—C181.399 (8)C30—H30C0.9800
C14—C151.382 (9)C31—H31A0.9800
C15—C161.391 (10)C31—H31B0.9800
C16—C171.372 (9)C31—H31C0.9800
C17—C181.407 (9)C32—H32A0.9800
C19—C241.389 (9)C32—H32B0.9800
C19—C201.390 (9)C32—H32C0.9800
C20—C211.389 (10)C33—H33A0.9800
C21—C221.387 (10)C33—H33B0.9800
C22—C231.375 (10)C33—H33C0.9800
C23—C241.397 (9)
Se1i—Se1—C25104.37 (16)C7—C8—H8120.00
N1—P1—C1111.4 (2)C9—C8—H8120.00
N1—P1—C7113.9 (3)C8—C9—H9119.00
N1—P1—C25111.2 (3)C10—C9—H9119.00
C1—P1—C7103.4 (3)C9—C10—H10120.00
C1—P1—C25108.6 (3)C11—C10—H10120.00
C7—P1—C25108.1 (3)C10—C11—H11119.00
N2—P2—C13108.3 (3)C12—C11—H11119.00
N2—P2—C19108.3 (3)C7—C12—H12120.00
N2—P2—C25111.6 (3)C11—C12—H12120.00
C13—P2—C19106.6 (3)C13—C14—H14120.00
C13—P2—C25111.1 (3)C15—C14—H14120.00
C19—P2—C25110.7 (3)C14—C15—H15120.00
N1—Si1—C26112.5 (3)C16—C15—H15120.00
N1—Si1—C27113.1 (3)C15—C16—H16120.00
N1—Si1—C28108.7 (3)C17—C16—H16120.00
C26—Si1—C27107.6 (3)C16—C17—H17120.00
C26—Si1—C28107.1 (3)C18—C17—H17120.00
C27—Si1—C28107.6 (3)C13—C18—H18120.00
N2—Si2—C29106.8 (4)C17—C18—H18120.00
N2—Si2—C30105.6 (4)C19—C20—H20120.00
N2—Si2—C31118.1 (4)C21—C20—H20120.00
N2—Si2—C32120.2 (9)C20—C21—H21120.00
N2—Si2—C3394.3 (8)C22—C21—H21120.00
C29—Si2—C30103.6 (5)C21—C22—H22119.00
C29—Si2—C31113.1 (5)C23—C22—H22119.00
C29—Si2—C32130.2 (9)C22—C23—H23120.00
C29—Si2—C3389.7 (9)C24—C23—H23121.00
C30—Si2—C31108.5 (6)C19—C24—H24120.00
C32—Si2—C33101.7 (15)C23—C24—H24120.00
P1—N1—Si1133.9 (3)Si1—C26—H26A109.00
P2—N2—Si2134.8 (4)Si1—C26—H26B109.00
P2—N2—H2N102 (4)Si1—C26—H26C109.00
Si2—N2—H2N122 (4)H26A—C26—H26B109.00
P1—C1—C2118.7 (4)H26A—C26—H26C110.00
P1—C1—C6122.9 (4)H26B—C26—H26C109.00
C2—C1—C6118.4 (5)Si1—C27—H27A110.00
C1—C2—C3120.3 (6)Si1—C27—H27B110.00
C2—C3—C4119.9 (6)Si1—C27—H27C109.00
C3—C4—C5120.1 (6)H27A—C27—H27B109.00
C4—C5—C6120.1 (5)H27A—C27—H27C109.00
C1—C6—C5121.1 (5)H27B—C27—H27C109.00
P1—C7—C12119.5 (4)Si1—C28—H28A110.00
P1—C7—C8121.8 (4)Si1—C28—H28B109.00
C8—C7—C12118.5 (5)Si1—C28—H28C109.00
C7—C8—C9119.9 (6)H28A—C28—H28B109.00
C8—C9—C10121.2 (6)H28A—C28—H28C110.00
C9—C10—C11119.5 (6)H28B—C28—H28C109.00
C10—C11—C12121.2 (6)Si2—C29—H29A110.00
C7—C12—C11119.8 (6)Si2—C29—H29B109.00
P2—C13—C14120.8 (4)Si2—C29—H29C109.00
P2—C13—C18119.6 (4)H29A—C29—H29B109.00
C14—C13—C18119.1 (5)H29A—C29—H29C110.00
C13—C14—C15120.8 (6)H29B—C29—H29C109.00
C14—C15—C16119.9 (6)Si2—C30—H30A109.00
C15—C16—C17120.4 (6)Si2—C30—H30B109.00
C16—C17—C18120.2 (6)Si2—C30—H30C109.00
C13—C18—C17119.6 (5)H30A—C30—H30B109.00
P2—C19—C20122.0 (5)H30A—C30—H30C110.00
P2—C19—C24118.1 (4)H30B—C30—H30C109.00
C20—C19—C24119.7 (6)Si2—C31—H31A109.00
C19—C20—C21120.1 (7)Si2—C31—H31B109.00
C20—C21—C22119.4 (7)Si2—C31—H31C109.00
C21—C22—C23121.4 (7)H31A—C31—H31B110.00
C22—C23—C24119.0 (7)H31A—C31—H31C109.00
C19—C24—C23120.5 (6)H31B—C31—H31C109.00
P1—C25—P2119.6 (3)Si2—C32—H32A110.00
Se1—C25—P1119.7 (3)Si2—C32—H32B109.00
Se1—C25—P2116.7 (3)Si2—C32—H32C110.00
C1—C2—H2120.00H32A—C32—H32B109.00
C3—C2—H2120.00H32A—C32—H32C110.00
C2—C3—H3120.00H32B—C32—H32C109.00
C4—C3—H3120.00Si2—C33—H33A109.00
C3—C4—H4120.00Si2—C33—H33B109.00
C5—C4—H4120.00Si2—C33—H33C110.00
C4—C5—H5120.00H33A—C33—H33B109.00
C6—C5—H5120.00H33A—C33—H33C110.00
C1—C6—H6119.00H33B—C33—H33C110.00
C5—C6—H6119.00
Se1i—Se1—C25—P198.8 (3)C13—P2—C25—P184.4 (4)
Se1i—Se1—C25—P2103.8 (3)C19—P2—C25—Se145.3 (4)
C25—Se1—Se1i—C25i180.0 (3)C19—P2—C25—P1157.3 (3)
C1—P1—N1—Si190.8 (4)C26—Si1—N1—P165.2 (5)
C7—P1—N1—Si125.6 (5)C27—Si1—N1—P156.9 (5)
C25—P1—N1—Si1148.0 (4)C28—Si1—N1—P1176.3 (4)
N1—P1—C1—C28.8 (6)C29—Si2—N2—P2174.0 (5)
N1—P1—C1—C6171.4 (5)C30—Si2—N2—P264.2 (6)
C7—P1—C1—C2131.5 (5)C31—Si2—N2—P257.2 (7)
C7—P1—C1—C648.8 (5)P1—C1—C2—C3178.2 (5)
C25—P1—C1—C2114.0 (5)C6—C1—C2—C31.6 (10)
C25—P1—C1—C665.8 (5)P1—C1—C6—C5178.5 (5)
N1—P1—C7—C890.3 (5)C2—C1—C6—C51.2 (9)
N1—P1—C7—C1284.4 (5)C1—C2—C3—C41.4 (11)
C1—P1—C7—C830.7 (5)C2—C3—C4—C50.8 (11)
C1—P1—C7—C12154.6 (5)C3—C4—C5—C60.4 (10)
C25—P1—C7—C8145.6 (5)C4—C5—C6—C10.6 (10)
C25—P1—C7—C1239.6 (5)P1—C7—C8—C9174.4 (5)
N1—P1—C25—Se1161.3 (3)C12—C7—C8—C90.4 (9)
N1—P1—C25—P24.6 (4)P1—C7—C12—C11176.1 (5)
C1—P1—C25—Se175.8 (4)C8—C7—C12—C111.3 (9)
C1—P1—C25—P2127.4 (3)C7—C8—C9—C101.7 (10)
C7—P1—C25—Se135.6 (4)C8—C9—C10—C111.4 (10)
C7—P1—C25—P2121.1 (3)C9—C10—C11—C120.3 (10)
C13—P2—N2—Si299.9 (5)C10—C11—C12—C71.6 (10)
C19—P2—N2—Si215.4 (5)P2—C13—C14—C15171.8 (5)
C25—P2—N2—Si2137.5 (4)C18—C13—C14—C150.3 (10)
N2—P2—C13—C14173.2 (5)P2—C13—C18—C17171.2 (5)
N2—P2—C13—C1815.3 (6)C14—C13—C18—C170.4 (10)
C19—P2—C13—C1456.9 (6)C13—C14—C15—C161.2 (10)
C19—P2—C13—C18131.7 (5)C14—C15—C16—C171.3 (11)
C25—P2—C13—C1463.9 (6)C15—C16—C17—C180.6 (11)
C25—P2—C13—C18107.6 (5)C16—C17—C18—C130.3 (10)
N2—P2—C19—C2097.1 (5)P2—C19—C20—C21176.3 (5)
N2—P2—C19—C2477.5 (5)C24—C19—C20—C211.8 (9)
C13—P2—C19—C2019.3 (6)P2—C19—C24—C23176.8 (4)
C13—P2—C19—C24166.1 (4)C20—C19—C24—C232.1 (8)
C25—P2—C19—C20140.3 (5)C19—C20—C21—C220.7 (10)
C25—P2—C19—C2445.1 (5)C20—C21—C22—C230.2 (10)
N2—P2—C25—Se1166.0 (3)C21—C22—C23—C240.1 (9)
N2—P2—C25—P136.6 (4)C22—C23—C24—C191.2 (8)
C13—P2—C25—Se173.0 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10.99 (8)1.86 (8)2.795 (8)156 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N10.99 (8)1.86 (8)2.795 (8)156 (6)
 

Acknowledgements

The authors thank NSERC (Canada) and the Academy of Finland for financial support.

References

First citationBack, T. G. & Codding, P. W. (1983). Can. J. Chem. 61, 2749–2752.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDhau, J. S., Singh, A. & Dhir, R. (2011). J. Organomet. Chem. 696, 2008–2013.  Web of Science CSD CrossRef CAS Google Scholar
First citationDickson, P. M., McGowan, A. D., Yearwood, B., Heeg, M. J. & Oliver, J. P. (1999). J. Organomet. Chem. 588, 42–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKasani, A., Babu, R. P. K., McDonald, R. & Cavell, R. G. (1999). Angew. Chem. Int. Ed. 38, 1483–1484.  Web of Science CrossRef CAS Google Scholar
First citationKonu, J., Chivers, T. & Tuononen, H. M. (2010). Chem. Eur. J. 16, 12977–12987.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcDonough, J. E., Weir, J. J., Carlson, M. J., Hoff, C. D., Kryatova, O. P., Rybak-Akimova, E. V., Clough, C. R. & Cummins, C. C. (2005). Inorg. Chem. 44, 3127–3136.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2013). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationPyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 186–197.  Web of Science CrossRef PubMed Google Scholar
First citationRisto, M., Konu, J. & Chivers, T. (2011). Inorg. Chem. 50, 406–408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSchmidbaur, H., Zybill, C. E. & Neugebauer, D. (1983). Angew. Chem. 95, 161.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteudel, R., Steidel, J., Pickardt, J., Schuster, F. & Reinhardt, R. (1980). Z. Naturforsch. Teil B, 35, 1378–1383.  Google Scholar
First citationWagner, I., du Mont, W.-W., Pohl, S. & Saak, W. (1990). Chem. Ber. 123, 2325–2327.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds