metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­bis­­(4-formyl­benzoato-κO1)copper(II)]-μ-pyrazine-κ2N:N′]

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bAksaray University, Department of Physics, 68100 Aksaray, Turkey, cDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 18 November 2013; accepted 27 November 2013; online 7 December 2013)

In the title polymeric compound, [Cu(C8H5O3)2(C4H4N2)(H2O)2]n, the CuII atom is located on a twofold rotation axis and has a slightly distorted octa­hedral coordination sphere. In the equatorial plane, it is coordinated by two carboxyl­ate O atoms of two symmetry-related monodentate formyl­benzoate anions and by two N atoms of the bridging pyrazine ligand, which is bis­ected by the twofold rotation axis. The axial positions are occupied by two O atoms of the coordinating water mol­ecules. In the formyl­benzoate anion, the carboxyl­ate group is twisted away from the attached benzene ring by 6.2 (2)°, while the benzene and pyrazine rings are oriented at a dihedral angle of 68.91 (8)°. The pyrazine ligands bridge the CuII cations, forming polymeric chains running along the b-axis direction. Strong intra­molecular O—H⋯O hydrogen bonds link the water mol­ecules to the carboxyl­ate O atoms. In the crystal, O—Hwater⋯Owater hydrogen bonds link adjacent chains into layers parallel to the bc plane. The layers are linked via C—Hpyrazine⋯Oform­yl hydrogen bonds, forming a three-dimensional network. There are also weak C—H⋯π inter­actions present.

Related literature

For structural functions and coordination relationships of aryl­carboxyl­ate ions in transition metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For applications of transition metal complexes with biochemical mol­ecules in biological systems, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Some benzoic acid derivatives, such as 4-amino­benzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the variety of their coordination modes, see: Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]); Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]). For a related structure involving 4-formyl­benzoate, see: Hökelek et al. (2009[Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1399-m1400.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H5O3)2(C4H4N2)(H2O)2]

  • Mr = 477.90

  • Monoclinic, C 2/c

  • a = 21.7514 (4) Å

  • b = 6.8794 (2) Å

  • c = 12.9048 (3) Å

  • β = 93.621 (3)°

  • V = 1927.17 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 294 K

  • 0.42 × 0.22 × 0.13 mm

Data collection
  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.738, Tmax = 0.857

  • 14917 measured reflections

  • 2398 independent reflections

  • 2231 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.089

  • S = 1.14

  • 2398 reflections

  • 150 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H42⋯O2 0.80 (2) 1.86 (2) 2.640 (2) 163 (3)
O4—H41⋯O4i 0.79 (2) 2.41 (3) 2.778 (2) 110 (3)
C9—H9⋯O3ii 0.93 2.49 3.335 (3) 152
C7—H7⋯Cgiii 0.93 2.66 3.433 (2) 141
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound contains half a CuII ion, one formylbenzoate (FB) anion, one water molecule and half of a pyrazine molecule. Atoms Cu1, and N1 and N2 of the pyrazine ligand, are located on a two-fold rotation axis (Fig. 1). The pyrazine ligands bridge adjacent CuII ions forming polymeric chains running along the b-axis direction (Fig. 2). The distances between the symmetry related CuII ions [Cu1···Cu1i; symmetry code (i) = x, y-1, z] is 6.879 (3) Å.

In the equatorial plane of the CuII coordination sphere is compossed of two carboxylate O atoms (O1 and O1ii; symmetry code: (ii) -x+1, y, -z+0.5) of two symmtery related monodentate formylbenzoate anions and two N atoms (N1 and N2i) of the bridging pyrazine ligand, which is bisected by the two-fold rotation axis. The axial positions are occupied by two O atoms (O4 and O4ii) of the coordinated water molecules.

The near equality of the C1—O1 [1.278 (2) Å] and C1—O2 [1.234 (2) Å] bonds in the carboxylate group indicate a delocalized bonding arrangement, rather than localized single and double bonds. The average Cu—N bond length is 2.0497 (19) Å, while the Cu—O bond lengths are 1.9546 (12) Å (for benzoate oxygen O1) and 2.4768 (12) Å (for water oxygen O4), close to standard values (Allen et al., 1987). The dihedral angle between the planar carboxylate group (O1/C1/O2) and the adjacent benzene ring (C2—C7) is 6.2 (2)°, while the benzene and pyrazine rings are oriented at a dihedral angle of 68.91 (8)°. Strong intramolecular O—H···O hydrogen bonds (Table 1) link the water molecules to the carboxylate oxygens.

In the crystal, O-Hwater···Owater hydrogen bonds (Table 1) link adjacent chains into layers parallel to the bc plane. The layes are linked via C—Hpyrazine···Oformyl hydrogen bonds forming a three-dimensional network. There also weak C—H···π interactions present.

Related literature top

For structural functions and coordination relationships of arylcarboxylate ions in transition metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981); Shnulin et al. (1981). For applications of transition metal complexes with biochemical molecules in biological systems, see: Antolini et al. (1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the variety of their coordination modes, see: Chen & Chen (2002); Amiraslanov et al. (1979); Hauptmann et al. (2000). For a related structure involving 4-formylbenzoate, see: Hökelek et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.25 g, 5 mmol) in H2O (250 ml) and pyrazine (0.40 g, 5 mmol) in H2O (30 ml) with sodium 4-formylbenzoate (1.72 g, 10 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving blue block-like crystals.

Refinement top

The water H atoms (H41 and H42) were located in a difference Fourier map and freely refined. The C-bound H-atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound contains half a CuII ion, one formylbenzoate (FB) anion, one water molecule and half of a pyrazine molecule. Atoms Cu1, and N1 and N2 of the pyrazine ligand, are located on a two-fold rotation axis (Fig. 1). The pyrazine ligands bridge adjacent CuII ions forming polymeric chains running along the b-axis direction (Fig. 2). The distances between the symmetry related CuII ions [Cu1···Cu1i; symmetry code (i) = x, y-1, z] is 6.879 (3) Å.

In the equatorial plane of the CuII coordination sphere is compossed of two carboxylate O atoms (O1 and O1ii; symmetry code: (ii) -x+1, y, -z+0.5) of two symmtery related monodentate formylbenzoate anions and two N atoms (N1 and N2i) of the bridging pyrazine ligand, which is bisected by the two-fold rotation axis. The axial positions are occupied by two O atoms (O4 and O4ii) of the coordinated water molecules.

The near equality of the C1—O1 [1.278 (2) Å] and C1—O2 [1.234 (2) Å] bonds in the carboxylate group indicate a delocalized bonding arrangement, rather than localized single and double bonds. The average Cu—N bond length is 2.0497 (19) Å, while the Cu—O bond lengths are 1.9546 (12) Å (for benzoate oxygen O1) and 2.4768 (12) Å (for water oxygen O4), close to standard values (Allen et al., 1987). The dihedral angle between the planar carboxylate group (O1/C1/O2) and the adjacent benzene ring (C2—C7) is 6.2 (2)°, while the benzene and pyrazine rings are oriented at a dihedral angle of 68.91 (8)°. Strong intramolecular O—H···O hydrogen bonds (Table 1) link the water molecules to the carboxylate oxygens.

In the crystal, O-Hwater···Owater hydrogen bonds (Table 1) link adjacent chains into layers parallel to the bc plane. The layes are linked via C—Hpyrazine···Oformyl hydrogen bonds forming a three-dimensional network. There also weak C—H···π interactions present.

For structural functions and coordination relationships of arylcarboxylate ions in transition metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981); Shnulin et al. (1981). For applications of transition metal complexes with biochemical molecules in biological systems, see: Antolini et al. (1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the variety of their coordination modes, see: Chen & Chen (2002); Amiraslanov et al. (1979); Hauptmann et al. (2000). For a related structure involving 4-formylbenzoate, see: Hökelek et al. (2009). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the coordination geometry around the CuII atom of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The two-fold rotation axis bisects atoms Cu1, N1 and N2.
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound.
catena-Poly[[diaquabis(4-formylbenzoato-κO1)copper(II)]-µ-pyrazine-κ2N:N'] top
Crystal data top
[Cu(C8H5O3)2(C4H4N2)(H2O)2]F(000) = 980
Mr = 477.90Dx = 1.647 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9971 reflections
a = 21.7514 (4) Åθ = 2.4–28.4°
b = 6.8794 (2) ŵ = 1.19 mm1
c = 12.9048 (3) ÅT = 294 K
β = 93.621 (3)°Block, blue
V = 1927.17 (8) Å30.42 × 0.22 × 0.13 mm
Z = 4
Data collection top
Bruker SMART BREEZE CCD
diffractometer
2398 independent reflections
Radiation source: fine-focus sealed tube2231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2827
Tmin = 0.738, Tmax = 0.857k = 89
14917 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0478P)2 + 1.6638P]
where P = (Fo2 + 2Fc2)/3
2398 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.47 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C8H5O3)2(C4H4N2)(H2O)2]V = 1927.17 (8) Å3
Mr = 477.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.7514 (4) ŵ = 1.19 mm1
b = 6.8794 (2) ÅT = 294 K
c = 12.9048 (3) Å0.42 × 0.22 × 0.13 mm
β = 93.621 (3)°
Data collection top
Bruker SMART BREEZE CCD
diffractometer
2398 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2231 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 0.857Rint = 0.029
14917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.47 e Å3
2398 reflectionsΔρmin = 0.30 e Å3
150 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.500000.56167 (4)0.250000.0226 (1)
O10.58159 (6)0.55545 (17)0.19469 (11)0.0283 (3)
O20.63771 (7)0.6755 (3)0.33131 (11)0.0478 (5)
O30.90018 (8)0.6186 (4)0.03875 (15)0.0643 (7)
O40.54054 (7)0.5818 (3)0.43338 (12)0.0429 (5)
N10.500000.8590 (3)0.250000.0222 (5)
N20.500001.2632 (3)0.250000.0228 (5)
C10.63185 (7)0.6123 (2)0.24173 (13)0.0255 (4)
C20.68848 (7)0.5984 (2)0.18010 (13)0.0233 (4)
C30.68624 (8)0.5098 (3)0.08295 (13)0.0278 (4)
C40.73941 (8)0.4934 (3)0.02948 (13)0.0311 (5)
C50.79501 (8)0.5656 (3)0.07299 (15)0.0298 (5)
C60.79729 (8)0.6554 (3)0.16972 (14)0.0322 (5)
C70.74435 (8)0.6718 (3)0.22284 (13)0.0286 (5)
C80.85122 (10)0.5472 (3)0.01458 (19)0.0433 (7)
C90.52244 (8)0.9602 (2)0.17228 (13)0.0263 (5)
C100.52268 (8)1.1618 (2)0.17257 (13)0.0265 (5)
H30.649100.461500.053900.0330*
H40.737900.434200.035400.0370*
H60.834400.704200.198600.0390*
H70.745900.732000.287500.0340*
H80.848200.473800.046000.0520*
H90.538200.894100.117000.0310*
H100.539001.228000.117700.0320*
H410.5464 (15)0.485 (3)0.465 (2)0.065 (10)*
H420.5738 (10)0.609 (5)0.414 (2)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0165 (2)0.0139 (2)0.0382 (2)0.00000.0076 (1)0.0000
O10.0170 (5)0.0258 (6)0.0428 (7)0.0016 (4)0.0076 (5)0.0036 (5)
O20.0327 (7)0.0712 (11)0.0413 (8)0.0153 (7)0.0155 (6)0.0173 (7)
O30.0307 (8)0.0990 (15)0.0650 (11)0.0003 (9)0.0176 (7)0.0074 (11)
O40.0330 (8)0.0558 (10)0.0408 (8)0.0057 (7)0.0086 (6)0.0119 (7)
N10.0214 (8)0.0149 (9)0.0308 (9)0.00000.0065 (7)0.0000
N20.0206 (8)0.0160 (8)0.0322 (9)0.00000.0055 (7)0.0000
C10.0211 (7)0.0212 (7)0.0350 (8)0.0011 (6)0.0079 (6)0.0000 (6)
C20.0186 (7)0.0219 (7)0.0298 (8)0.0006 (6)0.0046 (6)0.0021 (6)
C30.0215 (7)0.0302 (8)0.0316 (8)0.0002 (6)0.0002 (6)0.0008 (7)
C40.0312 (9)0.0340 (9)0.0284 (8)0.0045 (7)0.0045 (7)0.0018 (7)
C50.0236 (8)0.0307 (9)0.0359 (9)0.0038 (6)0.0093 (7)0.0044 (7)
C60.0204 (7)0.0372 (10)0.0391 (9)0.0049 (7)0.0032 (6)0.0000 (8)
C70.0245 (8)0.0312 (9)0.0305 (8)0.0054 (7)0.0044 (6)0.0046 (7)
C80.0317 (10)0.0525 (14)0.0475 (11)0.0065 (8)0.0170 (9)0.0027 (9)
C90.0301 (8)0.0206 (8)0.0293 (8)0.0001 (6)0.0114 (6)0.0016 (6)
C100.0298 (8)0.0200 (8)0.0308 (8)0.0006 (6)0.0111 (6)0.0029 (6)
Geometric parameters (Å, º) top
Cu1—O11.9547 (13)C2—C31.392 (2)
Cu1—O42.4766 (15)C2—C71.397 (2)
Cu1—N12.046 (2)C3—C41.388 (2)
Cu1—N2i2.053 (2)C4—C51.392 (3)
Cu1—O1ii1.9547 (13)C5—C61.391 (3)
Cu1—O4ii2.4766 (15)C5—C81.482 (3)
O1—C11.278 (2)C6—C71.381 (2)
O2—C11.234 (2)C9—C101.3869 (19)
O3—C81.196 (3)C3—H30.9300
O4—H420.80 (2)C4—H40.9300
O4—H410.79 (2)C6—H60.9300
N1—C9ii1.3382 (19)C7—H70.9300
N1—C91.3382 (19)C8—H80.9300
N2—C101.3382 (19)C9—H90.9300
N2—C10ii1.3382 (19)C10—H100.9300
C1—C21.511 (2)
O1—Cu1—O494.21 (5)C3—C2—C7119.60 (15)
O1—Cu1—N191.25 (4)C1—C2—C7119.15 (14)
O1—Cu1—N2i88.75 (4)C1—C2—C3121.23 (14)
O1—Cu1—O1ii177.49 (5)C2—C3—C4120.02 (16)
O1—Cu1—O4ii85.93 (5)C3—C4—C5120.01 (16)
O4—Cu1—N186.80 (5)C4—C5—C6120.08 (16)
O4—Cu1—N2i93.21 (5)C4—C5—C8119.21 (18)
O1ii—Cu1—O485.93 (5)C6—C5—C8120.71 (17)
O4—Cu1—O4ii173.59 (7)C5—C6—C7119.87 (17)
N1—Cu1—N2i180.00C2—C7—C6120.41 (16)
O1ii—Cu1—N191.25 (4)O3—C8—C5125.6 (2)
O4ii—Cu1—N186.80 (5)N1—C9—C10121.31 (16)
O1ii—Cu1—N2i88.75 (4)N2—C10—C9121.45 (16)
O4ii—Cu1—N2i93.21 (5)C2—C3—H3120.00
O1ii—Cu1—O4ii94.21 (5)C4—C3—H3120.00
Cu1—O1—C1126.09 (12)C3—C4—H4120.00
Cu1—O4—H41119.0 (18)C5—C4—H4120.00
Cu1—O4—H4289.4 (18)C5—C6—H6120.00
H41—O4—H42104 (3)C7—C6—H6120.00
C9—N1—C9ii117.30 (18)C2—C7—H7120.00
Cu1—N1—C9121.35 (10)C6—C7—H7120.00
Cu1—N1—C9ii121.35 (10)O3—C8—H8117.00
Cu1iii—N2—C10121.42 (10)C5—C8—H8117.00
C10—N2—C10ii117.16 (18)N1—C9—H9119.00
Cu1iii—N2—C10ii121.42 (10)C10—C9—H9119.00
O1—C1—O2125.98 (16)N2—C10—H10119.00
O2—C1—C2118.42 (15)C9—C10—H10119.00
O1—C1—C2115.60 (14)
O4—Cu1—O1—C120.13 (13)O1—C1—C2—C7174.99 (15)
N1—Cu1—O1—C166.75 (12)O2—C1—C2—C3173.20 (18)
N2i—Cu1—O1—C1113.26 (12)O2—C1—C2—C75.2 (2)
O4ii—Cu1—O1—C1153.44 (13)C1—C2—C3—C4177.90 (16)
O1—Cu1—N1—C939.77 (10)C7—C2—C3—C40.5 (3)
O1—Cu1—N1—C9ii140.23 (10)C1—C2—C7—C6177.88 (16)
O4—Cu1—N1—C9133.92 (9)C3—C2—C7—C60.6 (3)
O4—Cu1—N1—C9ii46.08 (9)C2—C3—C4—C50.0 (3)
O1ii—Cu1—N1—C9140.23 (10)C3—C4—C5—C60.4 (3)
O4ii—Cu1—N1—C946.08 (9)C3—C4—C5—C8179.83 (19)
Cu1—O1—C1—O22.3 (2)C4—C5—C6—C70.4 (3)
Cu1—O1—C1—C2177.93 (9)C8—C5—C6—C7179.77 (19)
Cu1—N1—C9—C10179.70 (12)C4—C5—C8—O3172.6 (2)
C9ii—N1—C9—C100.3 (2)C6—C5—C8—O36.8 (4)
Cu1iii—N2—C10—C9179.70 (12)C5—C6—C7—C20.1 (3)
C10ii—N2—C10—C90.3 (2)N1—C9—C10—N20.6 (2)
O1—C1—C2—C36.6 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O4—H42···O20.80 (2)1.86 (2)2.640 (2)163 (3)
O4—H41···O4iv0.79 (2)2.41 (3)2.778 (2)110 (3)
C9—H9···O3v0.932.493.335 (3)152
C7—H7···Cgvi0.932.663.433 (2)141
Symmetry codes: (iv) x+1, y+1, z+1; (v) x+3/2, y+3/2, z; (vi) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O4—H42···O20.80 (2)1.86 (2)2.640 (2)163 (3)
O4—H41···O4i0.79 (2)2.41 (3)2.778 (2)110 (3)
C9—H9···O3ii0.932.493.335 (3)152
C7—H7···Cgiii0.932.663.433 (2)141
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+3/2, z; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization). This work was supported financially by Kafkas University Research Fund (grant No. 2012-FEF-12).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1399–m1400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds