organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{2-[5-(4-Cyano-5-di­cyano­methyl­­idene-2,2-di­methyl-2,5-di­hydro­furan-3-yl)penta-2,4-dienyl­­idene]-3,3-di­methyl-2,3-di­hydro-1H-indol-1-yl}ethyl 3,5-bis­­(benz­yl­oxy)benzoate

aCallaghan Innovation, PO Box 31-310, Lower Hutt, 5040, New Zealand
*Correspondence e-mail: graeme.gainsford@callaghaninnovation.govt.nz

(Received 28 November 2013; accepted 3 December 2013; online 11 December 2013)

In the title mol­ecule, C48H42N4O5, a potential non-linear optical compound, the furan ring [r.m.s. deviation = 0.010 (1) Å] and the indolyl­idene ring system [r.m.s. deviation = 0.013 (2) Å] are inclined to one another by 18.52 (6)°. This is similar to the arrangement [16.51 (18)°] found for the N-hy­droxy­ethyl adduct of the title compound [Bhuiyan et al. (2011[Bhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 1-12.]). Mol. Cryst. Liq. Cryst. 548, 1–12]. Replacing the hy­droxy­ethyl group with 3,5-di­benzyl­oxybenzoate has not resulted in a non-centrosymmetric lattice arrangement or significant changes to the basic mol­ecular structure. In the crystal, mol­ecules are linked via pairs of C—H⋯N hydrogen bonds, forming inversion dimers with an R22(20) ring motif. The dimers are linked via C—H⋯O hydrogen bonds, forming C(17) chains along [010]. The chains are linked by further C—H⋯N hydrogen bonds, forming layers parallel to (001) and enclosing R22(44) ring motifs. There are also C—H⋯π inter­actions present, stabilizing the inter­layer orientation of the pendant bis­(benz­yloxy)benzo­yloxy group.

Related literature

For general background to organic non-linear optical (NLO) materials and details of similar structures, see: Kim et al. (2007[Kim, T. D., Kang, J. W., Luo, J. & Jang, S. H. (2007). J. Am. Chem. Soc. 2007, 129, 488-489.]); Gainsford et al. (2007[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633-o637.], 2008[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616-o619.]); Smith et al. (2006[Smith, G. J., Dunford, C. L., Kay, A. J. & Woolhouse, A. D. (2006). J. Photochem. Photobiol. A Chem. 179, 237-242.]); Bhuiyan et al. (2011[Bhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 1-12.]); Li et al. (2005[Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093-o2095.]); Ojala et al. (2012[Ojala, A., Burckstummer, H., Hwang, J., Graf, K., Von Vacano, B., Meerholz, K., Erk, P. & Wurthner, F. (2012). J. Mater. Chem. 22, 4473-4482.]). For the synthesis of the title compound, see: Clarke et al. (2009[Clarke, D. J., Middleton, A., Teshome, A., Bhuiyan, M. D. H., Ashraf, M., Gainsford, G. J., Asselberghs, I., Clays, K., Smith, G. J. & Kay, A. J. (2009). AIP Conf. Proc. V, 1151, 90-93.]). For details of the N-hy­droxy­ethyl adduct of the title compound, see: Bhuiyan et al. (2011[Bhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 1-12.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of the Cambridge Structural Database (CSD), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C48H42N4O5

  • Mr = 754.86

  • Monoclinic, P 21 /c

  • a = 16.1925 (5) Å

  • b = 15.6802 (5) Å

  • c = 17.6529 (6) Å

  • β = 115.038 (2)°

  • V = 4060.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.31 × 0.26 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.682, Tmax = 0.746

  • 106328 measured reflections

  • 14582 independent reflections

  • 9621 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.153

  • S = 1.02

  • 14582 reflections

  • 518 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C29–C34 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N3i 0.95 2.48 3.404 (2) 165
C30—H30⋯O1ii 0.95 2.50 3.4136 (17) 162
C32—H32⋯N2iii 0.95 2.54 3.475 (2) 167
C9—H9ACg1iii 0.98 2.89 3.8454 (16) 166
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organic non-linear optical (NLO) chromophores are highly polar and tend to readily form aggregates in both solution and/or the solid state (Smith et al., 2006). This is a potential downfall when considering the usage of NLO materials in a host polymer. The presence of aggregation will lower the overall poling efficiency and increase the tendency for relaxation of the aligned dipoles which decreases the observed macroscopic response. The introduction of bulky, arene-rich substituents has been shown to be very effective in reducing aggregation and increasing the observed NLO response (Kim et al., 2007). We report herein on the synthesis of an indoline chromophore which contains a 3,5-dibenzyloxybenzoate substituent and which was designed to reduce the tendency for molecular aggregation to occur.

A number of related compounds, namely 2-(3-Cyano-4-(3-(1-decyl-1,4-dihydroquinolin-4-ylidene)prop-1-enyl)-5,5-dimethyl- 2,5-dihydrofuran-2-ylidene)malononitrile (NOJKUT; Gainsford et al., 2008), (4-Butyl-5-(2-(1-butyl-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene)ethylidene)-1,3-thiazol-2(5H)-ylidene)malononitrile (NAPZAH; Ojala et al., 2012) and 2-(4-(4-(N-Formylanilino)-trans-1,3-butadienyl)-3-cyano-5,5-dimethyl- 2,5-dihydrofuranylidene)propanedinitrile (GIMQAV; Gainsford et al., 2007) were located in the Cambridge Structural Database (CSD; V5.34, last update May 2013; Allen, 2002).

The molecular structure of the title compound is shown in Fig. 1. The 5-membered ring plane of atoms (O1/C4—C7) of the acceptor group (hereafter CTF; 3-cyano-5,5-Dimethyl-2,5-dihydrofuran-2-ylidene]propanedinitrile) can be regarded as planar [r.m.s. deviations 0.010 (1) Å]. The dicyano group (N1/C1-C3/N2) is planar [r.m.s.d. 0.013 (2) Å] but twisted by 5.75 (10)° with respect to the CTF group; this is similar to the twist in the related compound (NOJKUT - see above) of 5.69 (17)°. We note that in the related compound (NAPZAH - see above) the subtended dicyano group is coplanar with the 1,3-thiazolylidene ring.

The fused indolylidene system (N4/C16-C23) is also essentially planar [r.m.s.d. 0.013 (2) Å] and makes a dihedral angle with the CTF ring of 18.52 (6)°, similar to the 16.51 (18)° angle found in the N-hydroxyethyl adduct of the title compound, 2-(3-cyano-4-{5-[1-(2-hydroxy-ethyl)-3,3-dimethyl-1,3-dihydro- indol-2-ylidene]-penta-1,3-dienyl}-5,5-dimethyl-5H-furan-2-ylidene)-malononitrile (henceforth FAFP; Bhuiyan et al., 2011). This angle reflects a twist in the C11–C14 polyene chain beginning at C11 and the plane through C11–C14 subtends 7.23 (13)° with the CTF plane; a view illustrating the relative conformations of the various chemical entities is given in Fig. 2. Again this is in contrast to the smaller NAPZAH structure where the polyene chain atoms and indolylidene ring are coplanar, and twist from the 5-membered 1,3-thiazolylidene ring plane by 5.48 (6)°. Rings A (C29–C34) and B (C43–C48) subtend an angle of 18.72 (7)°, whilst the phenyl ring C (C36–C41) makes an angle of 54.69 (8)° to ring A, and 65.37 (9)° to ring B. Ring A makes an angle of 44.54 (6)° to the indolylidene ring.

There is considerable delocalization of charge along the polyene/CTF chain with a bond length alternation (BLA) value of 0.016 Å compared with the free CTF value of 0.108 Å (Li et al., 2005) 0.060 Å in (GIMQAV - see above) and 0.024 Å in FAFP.

The crystal packing involves attractive non-classical hydrogen bond interactions of the (alkene)CH···N(cyano), (phenyl)C—H···O and phenyl(CH)···N(cyano) types (Table 1, Fig. 3). The alkene H15···N3 interaction (entry 1, Table 1) connects molecules around centers of symmetry (e.g. at 1/2, 1/2, 0) into dimer layers, approximately parallel to (1,-1,1) or (3,1,1) crystallographic planes, which can be described by the H bonding motif R22(20) (Bernstein et al., 1995). The other two main contacts (entries 2 and 3, Table 1) connect other molecules into these layers. The H30···O1 interaction forms a C(17) motif as it links the identical molecule related by a b axis translation. The H32···N2 interactions form a R22(44) motif utilizing an inversion center at (0, 1/2, 0). In addition, there are C—H···π interactions between methyl H9A and the phenyl ring (atoms C43—C48) which stabilizes the interlayer orientation of the "dangling" bis-benzyloxoy-benzoic acid moiety. Providing weak links between the layers are alkene CH···N(cyano) interactions involving atoms C12 and C14, an interaction also observed previously in FAFP (Bhuiyan et al., 2011).

Related literature top

For general background to organic non-linear optical (NLO) materials and details of similar structures, see: Kim et al. (2007); Gainsford et al. (2007, 2008); Smith et al. (2006); Bhuiyan et al. (2011); Li et al. (2005); Ojala et al. (2012). For the synthesis of the title compound, see: Clarke et al. (2009). For details of the N-hydroxyethyl adduct of the title compound, see: Bhuiyan et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For details of the Cambridge Structural Database (CSD), see: Allen (2002).

Experimental top

The title compound was synthesized by the procedure described by Clarke et al. (2009). Single crystals were grown by slow ether diffusion into an ethyl acetate solution of the title compound. Spectroscopic and other data for the title compound are included in the archived CIF.

Refinement top

Eight reflections affected by the backstop were omitted from the refinement. All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: C—H = 0.98, 0.99 and 0.95 Å CH3, CH2 and CH(aromatic) H atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The methyl H atoms were allowed to rotate freely about the adjacent C—C bond.

Structure description top

Organic non-linear optical (NLO) chromophores are highly polar and tend to readily form aggregates in both solution and/or the solid state (Smith et al., 2006). This is a potential downfall when considering the usage of NLO materials in a host polymer. The presence of aggregation will lower the overall poling efficiency and increase the tendency for relaxation of the aligned dipoles which decreases the observed macroscopic response. The introduction of bulky, arene-rich substituents has been shown to be very effective in reducing aggregation and increasing the observed NLO response (Kim et al., 2007). We report herein on the synthesis of an indoline chromophore which contains a 3,5-dibenzyloxybenzoate substituent and which was designed to reduce the tendency for molecular aggregation to occur.

A number of related compounds, namely 2-(3-Cyano-4-(3-(1-decyl-1,4-dihydroquinolin-4-ylidene)prop-1-enyl)-5,5-dimethyl- 2,5-dihydrofuran-2-ylidene)malononitrile (NOJKUT; Gainsford et al., 2008), (4-Butyl-5-(2-(1-butyl-3,3-dimethyl-1,3-dihydro-2H-indol-2-ylidene)ethylidene)-1,3-thiazol-2(5H)-ylidene)malononitrile (NAPZAH; Ojala et al., 2012) and 2-(4-(4-(N-Formylanilino)-trans-1,3-butadienyl)-3-cyano-5,5-dimethyl- 2,5-dihydrofuranylidene)propanedinitrile (GIMQAV; Gainsford et al., 2007) were located in the Cambridge Structural Database (CSD; V5.34, last update May 2013; Allen, 2002).

The molecular structure of the title compound is shown in Fig. 1. The 5-membered ring plane of atoms (O1/C4—C7) of the acceptor group (hereafter CTF; 3-cyano-5,5-Dimethyl-2,5-dihydrofuran-2-ylidene]propanedinitrile) can be regarded as planar [r.m.s. deviations 0.010 (1) Å]. The dicyano group (N1/C1-C3/N2) is planar [r.m.s.d. 0.013 (2) Å] but twisted by 5.75 (10)° with respect to the CTF group; this is similar to the twist in the related compound (NOJKUT - see above) of 5.69 (17)°. We note that in the related compound (NAPZAH - see above) the subtended dicyano group is coplanar with the 1,3-thiazolylidene ring.

The fused indolylidene system (N4/C16-C23) is also essentially planar [r.m.s.d. 0.013 (2) Å] and makes a dihedral angle with the CTF ring of 18.52 (6)°, similar to the 16.51 (18)° angle found in the N-hydroxyethyl adduct of the title compound, 2-(3-cyano-4-{5-[1-(2-hydroxy-ethyl)-3,3-dimethyl-1,3-dihydro- indol-2-ylidene]-penta-1,3-dienyl}-5,5-dimethyl-5H-furan-2-ylidene)-malononitrile (henceforth FAFP; Bhuiyan et al., 2011). This angle reflects a twist in the C11–C14 polyene chain beginning at C11 and the plane through C11–C14 subtends 7.23 (13)° with the CTF plane; a view illustrating the relative conformations of the various chemical entities is given in Fig. 2. Again this is in contrast to the smaller NAPZAH structure where the polyene chain atoms and indolylidene ring are coplanar, and twist from the 5-membered 1,3-thiazolylidene ring plane by 5.48 (6)°. Rings A (C29–C34) and B (C43–C48) subtend an angle of 18.72 (7)°, whilst the phenyl ring C (C36–C41) makes an angle of 54.69 (8)° to ring A, and 65.37 (9)° to ring B. Ring A makes an angle of 44.54 (6)° to the indolylidene ring.

There is considerable delocalization of charge along the polyene/CTF chain with a bond length alternation (BLA) value of 0.016 Å compared with the free CTF value of 0.108 Å (Li et al., 2005) 0.060 Å in (GIMQAV - see above) and 0.024 Å in FAFP.

The crystal packing involves attractive non-classical hydrogen bond interactions of the (alkene)CH···N(cyano), (phenyl)C—H···O and phenyl(CH)···N(cyano) types (Table 1, Fig. 3). The alkene H15···N3 interaction (entry 1, Table 1) connects molecules around centers of symmetry (e.g. at 1/2, 1/2, 0) into dimer layers, approximately parallel to (1,-1,1) or (3,1,1) crystallographic planes, which can be described by the H bonding motif R22(20) (Bernstein et al., 1995). The other two main contacts (entries 2 and 3, Table 1) connect other molecules into these layers. The H30···O1 interaction forms a C(17) motif as it links the identical molecule related by a b axis translation. The H32···N2 interactions form a R22(44) motif utilizing an inversion center at (0, 1/2, 0). In addition, there are C—H···π interactions between methyl H9A and the phenyl ring (atoms C43—C48) which stabilizes the interlayer orientation of the "dangling" bis-benzyloxoy-benzoic acid moiety. Providing weak links between the layers are alkene CH···N(cyano) interactions involving atoms C12 and C14, an interaction also observed previously in FAFP (Bhuiyan et al., 2011).

For general background to organic non-linear optical (NLO) materials and details of similar structures, see: Kim et al. (2007); Gainsford et al. (2007, 2008); Smith et al. (2006); Bhuiyan et al. (2011); Li et al. (2005); Ojala et al. (2012). For the synthesis of the title compound, see: Clarke et al. (2009). For details of the N-hydroxyethyl adduct of the title compound, see: Bhuiyan et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For details of the Cambridge Structural Database (CSD), see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Edge-on view of the title molecule illustrating the molecular twisting from planarity and relative conformations.
[Figure 3] Fig. 3. A partial view of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
2-{2-[5-(4-Cyano-5-dicyanomethylidene-2,2-dimethyl-2,5-dihydrofuran-3-yl)penta-2,4-dienylidene]-3,3-dimethyl-2,3-dihydro-1H-indol-1-yl}ethyl 3,5-bis(benzyloxy)benzoate top
Crystal data top
C48H42N4O5F(000) = 1592
Mr = 754.86Dx = 1.235 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9867 reflections
a = 16.1925 (5) Åθ = 2.6–31.1°
b = 15.6802 (5) ŵ = 0.08 mm1
c = 17.6529 (6) ÅT = 120 K
β = 115.038 (2)°Block, blue
V = 4060.9 (2) Å30.31 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
14582 independent reflections
Radiation source: fine-focus sealed tube9621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.333 pixels mm-1θmax = 32.7°, θmin = 2.6°
φ and ω scansh = 2424
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 2323
Tmin = 0.682, Tmax = 0.746l = 2625
106328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.7163P]
where P = (Fo2 + 2Fc2)/3
14582 reflections(Δ/σ)max = 0.001
518 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C48H42N4O5V = 4060.9 (2) Å3
Mr = 754.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1925 (5) ŵ = 0.08 mm1
b = 15.6802 (5) ÅT = 120 K
c = 17.6529 (6) Å0.31 × 0.26 × 0.25 mm
β = 115.038 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
14582 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
9621 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.746Rint = 0.049
106328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
14582 reflectionsΔρmin = 0.25 e Å3
518 parameters
Special details top

Experimental. Spectroscopic and other data for the title compound: 1H NMR (d6-DMSO) δ 1.60 (6H, s, 2xCH3), 1.64 (6H, s, 2xCH3), 4.51 (2H, t, J 5.1 Hz, CH2), 4.65 (2H, t, J 5.1, CH2), 5.02 (4H, s, 2xCH2), 6.01 (1H, d, J 14.2 Hz, CH), 6.32–6.43 (2H, m, 2xCH), 6.86 (1H, t, J 2.3 Hz, ArH), 7.05 (2H, d, J 2.5 Hz, ArH), 7.15 (1 H, t, J 8.0 Hz, ArH), 7.29–7.41 (11H, m, ArH), 7.45 (1H, d, J 8.0 Hz, ArH), 7.54 (1H, d, J 7.6 Hz, ArH), 7.82 (1H, t, J 13.5 Hz, CH), 8.06 (1H, t, J 13.5 Hz, CH). 13C NMR (d6-DMSO) δ 26.8, 27.5, 42.9, 45.9, 48.9, 61.9, 69.9, 95.9, 103.8, 107.5, 108.4, 109.2, 111.2, 113.5, 114.5, 115.3, 122.6, 124.6, 125.9, 127.6, 128.3, 128.8, 131.4, 136.8, 141.0, 142.6, 151.7, 152.8, 159.7, 165.5, 170.8, 172.1, 176.8. MS - Found: MNa+ 777.3050; Calc: 777.3053; Δ = 0.3 p.p.m.; M.p. = 549 K (dec.).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27488 (6)0.17454 (5)0.02308 (5)0.02415 (17)
O20.28317 (6)0.87522 (5)0.11107 (6)0.02664 (18)
O30.33004 (7)1.01185 (6)0.13326 (7)0.0354 (2)
O40.02801 (6)1.15735 (5)0.06642 (6)0.0315 (2)
O50.00979 (7)0.87452 (6)0.14487 (7)0.0380 (2)
N10.36962 (14)0.09712 (9)0.18815 (11)0.0610 (5)
N20.21981 (9)0.03146 (8)0.07112 (9)0.0389 (3)
N30.46305 (13)0.29291 (10)0.09615 (11)0.0584 (4)
N40.40465 (7)0.79660 (6)0.25765 (6)0.02294 (19)
C10.34424 (12)0.10072 (8)0.13685 (10)0.0375 (3)
C20.30870 (9)0.10250 (7)0.07603 (8)0.0266 (2)
C30.25862 (9)0.02976 (8)0.07198 (8)0.0281 (2)
C40.35515 (8)0.30273 (7)0.04015 (7)0.0212 (2)
C50.29468 (8)0.25456 (7)0.07175 (7)0.0213 (2)
C60.31764 (8)0.17354 (7)0.02671 (7)0.0221 (2)
C70.36677 (9)0.25051 (7)0.01856 (8)0.0234 (2)
C80.34273 (9)0.22813 (8)0.16286 (8)0.0272 (2)
H8A0.30480.18710.17570.041*
H8B0.35310.27850.19860.041*
H8C0.40140.20170.17310.041*
C90.20331 (9)0.29729 (8)0.04958 (9)0.0306 (3)
H9A0.17620.31300.00970.046*
H9B0.21200.34860.08370.046*
H9C0.16260.25780.06040.046*
C100.41958 (11)0.27260 (8)0.06229 (9)0.0337 (3)
C110.39111 (9)0.38450 (7)0.06261 (7)0.0236 (2)
H110.42620.40640.03540.028*
C120.38020 (8)0.43656 (7)0.12114 (7)0.0225 (2)
H120.35010.41330.15240.027*
C130.41038 (8)0.52084 (7)0.13727 (7)0.0233 (2)
H130.44310.54460.10860.028*
C140.39374 (8)0.57040 (7)0.19393 (7)0.0229 (2)
H140.36810.54380.22740.028*
C150.41262 (8)0.65764 (7)0.20468 (7)0.0227 (2)
H150.44410.68210.17520.027*
C160.38935 (8)0.71132 (7)0.25470 (7)0.0217 (2)
C170.34510 (9)0.68940 (8)0.31372 (8)0.0262 (2)
C180.33633 (10)0.77700 (9)0.34542 (8)0.0307 (3)
C190.29889 (12)0.80185 (11)0.39941 (10)0.0450 (4)
H190.27340.76090.42310.054*
C200.29939 (14)0.88811 (12)0.41813 (11)0.0526 (4)
H200.27450.90620.45550.063*
C210.33549 (12)0.94761 (11)0.38333 (10)0.0453 (4)
H210.33521.00610.39730.054*
C220.37253 (10)0.92416 (9)0.32799 (9)0.0337 (3)
H220.39690.96520.30350.040*
C230.37188 (9)0.83781 (8)0.31062 (8)0.0265 (2)
C240.40886 (10)0.63264 (9)0.38589 (8)0.0343 (3)
H24A0.46810.66080.41450.052*
H24B0.41710.57770.36350.052*
H24C0.38200.62330.42560.052*
C250.25050 (10)0.64853 (9)0.26807 (9)0.0343 (3)
H25A0.22060.64550.30600.051*
H25B0.25710.59090.24990.051*
H25C0.21350.68310.21920.051*
C260.44046 (8)0.84259 (7)0.20598 (8)0.0241 (2)
H26A0.49490.81230.20760.029*
H26B0.45980.90030.22950.029*
C270.37088 (9)0.85040 (7)0.11610 (8)0.0259 (2)
H27A0.39190.89330.08710.031*
H27B0.36530.79500.08740.031*
C280.27154 (9)0.95937 (7)0.12110 (8)0.0266 (2)
C290.17925 (8)0.97655 (7)0.11620 (8)0.0258 (2)
C300.14390 (9)1.05744 (7)0.09358 (8)0.0270 (2)
H300.17781.10020.08110.032*
C310.05758 (9)1.07557 (7)0.08930 (8)0.0261 (2)
C320.00763 (9)1.01335 (8)0.10696 (8)0.0275 (2)
H320.05111.02590.10400.033*
C330.04495 (9)0.93180 (8)0.12925 (9)0.0292 (3)
C340.13050 (9)0.91234 (8)0.13456 (8)0.0289 (3)
H340.15550.85690.15020.035*
C350.05544 (9)1.18186 (8)0.07035 (9)0.0312 (3)
H35A0.05161.17140.12700.037*
H35B0.10711.14850.02970.037*
C360.06892 (9)1.27525 (8)0.04970 (8)0.0289 (3)
C370.14460 (10)1.30486 (9)0.01773 (9)0.0365 (3)
H370.18881.26560.05310.044*
C380.15680 (12)1.39206 (10)0.03448 (10)0.0442 (4)
H380.20931.41180.08100.053*
C390.09368 (13)1.44910 (10)0.01558 (12)0.0481 (4)
H390.10261.50850.00440.058*
C400.01739 (14)1.42040 (10)0.08203 (13)0.0566 (5)
H400.02691.46000.11660.068*
C410.00462 (12)1.33398 (10)0.09894 (11)0.0461 (4)
H410.04881.31470.14480.055*
C420.02282 (11)0.78935 (8)0.16259 (10)0.0371 (3)
H42A0.08100.78820.21350.045*
H42B0.03410.76650.11550.045*
C430.04667 (10)0.73513 (8)0.17551 (9)0.0339 (3)
C440.11661 (11)0.76979 (10)0.19029 (9)0.0387 (3)
H440.12330.83000.19070.046*
C450.17766 (12)0.71686 (12)0.20469 (10)0.0495 (4)
H450.22560.74100.21520.059*
C460.16855 (14)0.62960 (12)0.20376 (11)0.0551 (5)
H460.21010.59360.21380.066*
C480.03825 (13)0.64694 (9)0.17448 (11)0.0465 (4)
H480.00970.62240.16420.056*
C470.09962 (15)0.59470 (11)0.18843 (11)0.0578 (5)
H470.09380.53450.18730.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0326 (5)0.0186 (3)0.0293 (4)0.0060 (3)0.0209 (4)0.0063 (3)
O20.0267 (4)0.0188 (4)0.0355 (5)0.0004 (3)0.0142 (4)0.0002 (3)
O30.0307 (5)0.0218 (4)0.0535 (6)0.0023 (4)0.0177 (5)0.0007 (4)
O40.0326 (5)0.0187 (4)0.0493 (6)0.0035 (3)0.0231 (4)0.0048 (4)
O50.0388 (6)0.0226 (4)0.0617 (7)0.0014 (4)0.0303 (5)0.0103 (4)
N10.1162 (15)0.0314 (6)0.0732 (10)0.0188 (8)0.0769 (11)0.0161 (6)
N20.0481 (7)0.0293 (5)0.0517 (7)0.0109 (5)0.0333 (6)0.0112 (5)
N30.0851 (12)0.0507 (8)0.0711 (10)0.0260 (8)0.0638 (10)0.0172 (7)
N40.0282 (5)0.0182 (4)0.0264 (5)0.0009 (4)0.0153 (4)0.0028 (3)
C10.0633 (10)0.0191 (5)0.0462 (8)0.0076 (6)0.0387 (8)0.0077 (5)
C20.0367 (7)0.0200 (5)0.0317 (6)0.0033 (4)0.0228 (5)0.0039 (4)
C30.0359 (7)0.0235 (5)0.0322 (6)0.0024 (5)0.0215 (5)0.0065 (5)
C40.0265 (5)0.0167 (4)0.0234 (5)0.0004 (4)0.0133 (4)0.0010 (4)
C50.0277 (6)0.0163 (4)0.0244 (5)0.0029 (4)0.0155 (5)0.0036 (4)
C60.0278 (6)0.0184 (5)0.0246 (5)0.0010 (4)0.0155 (5)0.0004 (4)
C70.0311 (6)0.0184 (5)0.0276 (6)0.0031 (4)0.0189 (5)0.0021 (4)
C80.0351 (7)0.0226 (5)0.0262 (6)0.0049 (5)0.0152 (5)0.0004 (4)
C90.0284 (6)0.0270 (6)0.0394 (7)0.0004 (5)0.0172 (6)0.0067 (5)
C100.0480 (8)0.0256 (6)0.0402 (7)0.0083 (5)0.0311 (7)0.0070 (5)
C110.0306 (6)0.0180 (5)0.0264 (5)0.0019 (4)0.0162 (5)0.0008 (4)
C120.0273 (6)0.0172 (5)0.0244 (5)0.0009 (4)0.0123 (5)0.0013 (4)
C130.0289 (6)0.0169 (5)0.0263 (5)0.0008 (4)0.0139 (5)0.0008 (4)
C140.0264 (6)0.0182 (5)0.0252 (5)0.0009 (4)0.0120 (5)0.0015 (4)
C150.0277 (6)0.0172 (5)0.0271 (6)0.0020 (4)0.0154 (5)0.0007 (4)
C160.0245 (5)0.0184 (5)0.0241 (5)0.0011 (4)0.0122 (4)0.0004 (4)
C170.0308 (6)0.0268 (5)0.0253 (6)0.0018 (5)0.0161 (5)0.0006 (4)
C180.0349 (7)0.0341 (6)0.0284 (6)0.0024 (5)0.0186 (5)0.0029 (5)
C190.0545 (10)0.0544 (9)0.0395 (8)0.0036 (8)0.0328 (8)0.0041 (7)
C200.0636 (11)0.0609 (11)0.0450 (9)0.0115 (9)0.0343 (9)0.0126 (8)
C210.0510 (9)0.0424 (8)0.0415 (8)0.0117 (7)0.0184 (7)0.0148 (7)
C220.0363 (7)0.0274 (6)0.0353 (7)0.0034 (5)0.0130 (6)0.0089 (5)
C230.0282 (6)0.0264 (5)0.0261 (6)0.0028 (5)0.0126 (5)0.0055 (4)
C240.0419 (8)0.0343 (7)0.0269 (6)0.0010 (6)0.0146 (6)0.0046 (5)
C250.0316 (7)0.0403 (7)0.0361 (7)0.0061 (6)0.0194 (6)0.0007 (6)
C260.0266 (6)0.0174 (5)0.0319 (6)0.0024 (4)0.0160 (5)0.0005 (4)
C270.0304 (6)0.0211 (5)0.0312 (6)0.0016 (4)0.0180 (5)0.0015 (4)
C280.0289 (6)0.0189 (5)0.0314 (6)0.0007 (4)0.0121 (5)0.0021 (4)
C290.0268 (6)0.0209 (5)0.0303 (6)0.0012 (4)0.0128 (5)0.0005 (4)
C300.0282 (6)0.0196 (5)0.0346 (6)0.0022 (4)0.0147 (5)0.0004 (4)
C310.0309 (6)0.0174 (5)0.0319 (6)0.0004 (4)0.0150 (5)0.0001 (4)
C320.0284 (6)0.0225 (5)0.0350 (6)0.0001 (4)0.0169 (5)0.0003 (5)
C330.0339 (7)0.0212 (5)0.0372 (7)0.0014 (5)0.0194 (6)0.0024 (5)
C340.0311 (6)0.0199 (5)0.0372 (7)0.0006 (4)0.0159 (5)0.0037 (5)
C350.0332 (7)0.0242 (5)0.0424 (7)0.0034 (5)0.0220 (6)0.0025 (5)
C360.0329 (6)0.0235 (5)0.0344 (6)0.0043 (5)0.0183 (5)0.0020 (5)
C370.0329 (7)0.0334 (7)0.0404 (8)0.0036 (5)0.0127 (6)0.0024 (6)
C380.0465 (9)0.0405 (8)0.0414 (8)0.0166 (7)0.0144 (7)0.0096 (6)
C390.0593 (10)0.0267 (7)0.0609 (10)0.0097 (7)0.0279 (9)0.0078 (7)
C400.0586 (11)0.0271 (7)0.0676 (12)0.0023 (7)0.0107 (9)0.0053 (7)
C410.0470 (9)0.0297 (7)0.0457 (9)0.0046 (6)0.0043 (7)0.0008 (6)
C420.0417 (8)0.0227 (6)0.0523 (9)0.0014 (5)0.0252 (7)0.0075 (6)
C430.0406 (8)0.0279 (6)0.0305 (6)0.0057 (5)0.0123 (6)0.0057 (5)
C440.0418 (8)0.0366 (7)0.0378 (7)0.0072 (6)0.0169 (6)0.0064 (6)
C450.0461 (9)0.0617 (10)0.0408 (8)0.0168 (8)0.0184 (7)0.0074 (7)
C460.0626 (12)0.0576 (10)0.0387 (8)0.0318 (9)0.0154 (8)0.0090 (7)
C480.0629 (11)0.0283 (7)0.0469 (9)0.0062 (7)0.0220 (8)0.0048 (6)
C470.0840 (14)0.0348 (8)0.0465 (10)0.0225 (9)0.0198 (10)0.0067 (7)
Geometric parameters (Å, º) top
O1—C61.3294 (13)C21—H210.9500
O1—C51.4772 (13)C22—C231.3873 (17)
O2—C281.3550 (14)C22—H220.9500
O2—C271.4387 (15)C24—H24A0.9800
O3—C281.2036 (15)C24—H24B0.9800
O4—C311.3686 (14)C24—H24C0.9800
O4—C351.4344 (16)C25—H25A0.9800
O5—C331.3694 (15)C25—H25B0.9800
O5—C421.4215 (15)C25—H25C0.9800
N1—C11.1433 (18)C26—C271.5128 (18)
N2—C31.1510 (16)C26—H26A0.9900
N3—C101.1446 (18)C26—H26B0.9900
N4—C161.3570 (14)C27—H27A0.9900
N4—C231.4119 (15)C27—H27B0.9900
N4—C261.4615 (15)C28—C291.4845 (18)
C1—C21.4170 (17)C29—C301.3793 (17)
C2—C61.3830 (16)C29—C341.3994 (17)
C2—C31.4187 (17)C30—C311.3968 (18)
C4—C111.3945 (15)C30—H300.9500
C4—C71.3947 (15)C31—C321.3843 (17)
C4—C51.5173 (15)C32—C331.3979 (17)
C5—C91.5170 (17)C32—H320.9500
C5—C81.5182 (17)C33—C341.3823 (18)
C6—C71.4190 (15)C34—H340.9500
C7—C101.4162 (17)C35—C361.5025 (17)
C8—H8A0.9800C35—H35A0.9900
C8—H8B0.9800C35—H35B0.9900
C8—H8C0.9800C36—C371.378 (2)
C9—H9A0.9800C36—C411.386 (2)
C9—H9B0.9800C37—C381.395 (2)
C9—H9C0.9800C37—H370.9500
C11—C121.3854 (16)C38—C391.364 (3)
C11—H110.9500C38—H380.9500
C12—C131.3959 (15)C39—C401.370 (3)
C12—H120.9500C39—H390.9500
C13—C141.3801 (16)C40—C411.384 (2)
C13—H130.9500C40—H400.9500
C14—C151.3969 (15)C41—H410.9500
C14—H140.9500C42—C431.5027 (19)
C15—C161.3826 (15)C42—H42A0.9900
C15—H150.9500C42—H42B0.9900
C16—C171.5328 (16)C43—C441.377 (2)
C17—C181.5124 (18)C43—C481.391 (2)
C17—C251.5367 (19)C44—C451.394 (2)
C17—C241.5387 (18)C44—H440.9500
C18—C191.3845 (19)C45—C461.377 (3)
C18—C231.3846 (19)C45—H450.9500
C19—C201.392 (2)C46—C471.369 (3)
C19—H190.9500C46—H460.9500
C20—C211.376 (3)C48—C471.388 (2)
C20—H200.9500C48—H480.9500
C21—C221.395 (2)C47—H470.9500
C6—O1—C5110.42 (8)C17—C25—H25A109.5
C28—O2—C27116.33 (9)C17—C25—H25B109.5
C31—O4—C35117.11 (10)H25A—C25—H25B109.5
C33—O5—C42116.65 (11)C17—C25—H25C109.5
C16—N4—C23111.27 (10)H25A—C25—H25C109.5
C16—N4—C26125.20 (9)H25B—C25—H25C109.5
C23—N4—C26123.17 (9)N4—C26—C27112.24 (10)
N1—C1—C2176.93 (18)N4—C26—H26A109.2
C6—C2—C1121.67 (11)C27—C26—H26A109.2
C6—C2—C3121.70 (11)N4—C26—H26B109.2
C1—C2—C3116.52 (11)C27—C26—H26B109.2
N2—C3—C2176.49 (13)H26A—C26—H26B107.9
C11—C4—C7125.42 (10)O2—C27—C26111.36 (10)
C11—C4—C5127.58 (10)O2—C27—H27A109.4
C7—C4—C5106.97 (9)C26—C27—H27A109.4
O1—C5—C9106.09 (9)O2—C27—H27B109.4
O1—C5—C4102.95 (8)C26—C27—H27B109.4
C9—C5—C4113.33 (10)H27A—C27—H27B108.0
O1—C5—C8105.78 (9)O3—C28—O2123.14 (12)
C9—C5—C8113.60 (10)O3—C28—C29125.68 (11)
C4—C5—C8113.84 (10)O2—C28—C29111.18 (10)
O1—C6—C2118.73 (10)C30—C29—C34121.53 (12)
O1—C6—C7110.45 (9)C30—C29—C28117.90 (11)
C2—C6—C7130.82 (11)C34—C29—C28120.57 (11)
C4—C7—C10124.33 (11)C29—C30—C31119.08 (11)
C4—C7—C6109.18 (10)C29—C30—H30120.5
C10—C7—C6126.50 (11)C31—C30—H30120.5
C5—C8—H8A109.5O4—C31—C32124.20 (11)
C5—C8—H8B109.5O4—C31—C30115.07 (10)
H8A—C8—H8B109.5C32—C31—C30120.73 (11)
C5—C8—H8C109.5C31—C32—C33118.94 (12)
H8A—C8—H8C109.5C31—C32—H32120.5
H8B—C8—H8C109.5C33—C32—H32120.5
C5—C9—H9A109.5O5—C33—C34123.86 (11)
C5—C9—H9B109.5O5—C33—C32114.65 (11)
H9A—C9—H9B109.5C34—C33—C32121.49 (11)
C5—C9—H9C109.5C33—C34—C29118.22 (11)
H9A—C9—H9C109.5C33—C34—H34120.9
H9B—C9—H9C109.5C29—C34—H34120.9
N3—C10—C7177.74 (15)O4—C35—C36107.01 (10)
C12—C11—C4125.74 (11)O4—C35—H35A110.3
C12—C11—H11117.1C36—C35—H35A110.3
C4—C11—H11117.1O4—C35—H35B110.3
C11—C12—C13124.47 (11)C36—C35—H35B110.3
C11—C12—H12117.8H35A—C35—H35B108.6
C13—C12—H12117.8C37—C36—C41118.36 (13)
C14—C13—C12121.48 (11)C37—C36—C35121.51 (13)
C14—C13—H13119.3C41—C36—C35120.13 (13)
C12—C13—H13119.3C36—C37—C38120.50 (14)
C13—C14—C15123.46 (11)C36—C37—H37119.8
C13—C14—H14118.3C38—C37—H37119.8
C15—C14—H14118.3C39—C38—C37120.35 (15)
C16—C15—C14125.44 (11)C39—C38—H38119.8
C16—C15—H15117.3C37—C38—H38119.8
C14—C15—H15117.3C38—C39—C40119.74 (14)
N4—C16—C15121.99 (10)C38—C39—H39120.1
N4—C16—C17108.97 (9)C40—C39—H39120.1
C15—C16—C17129.03 (10)C39—C40—C41120.29 (16)
C18—C17—C16101.06 (9)C39—C40—H40119.9
C18—C17—C25110.12 (11)C41—C40—H40119.9
C16—C17—C25112.71 (10)C40—C41—C36120.74 (15)
C18—C17—C24110.74 (11)C40—C41—H41119.6
C16—C17—C24110.46 (11)C36—C41—H41119.6
C25—C17—C24111.32 (11)O5—C42—C43109.42 (12)
C19—C18—C23119.80 (13)O5—C42—H42A109.8
C19—C18—C17130.34 (13)C43—C42—H42A109.8
C23—C18—C17109.85 (10)O5—C42—H42B109.8
C18—C19—C20118.48 (15)C43—C42—H42B109.8
C18—C19—H19120.8H42A—C42—H42B108.2
C20—C19—H19120.8C44—C43—C48119.21 (14)
C21—C20—C19120.91 (14)C44—C43—C42122.29 (13)
C21—C20—H20119.5C48—C43—C42118.48 (14)
C19—C20—H20119.5C43—C44—C45120.21 (15)
C20—C21—C22121.59 (14)C43—C44—H44119.9
C20—C21—H21119.2C45—C44—H44119.9
C22—C21—H21119.2C46—C45—C44120.10 (18)
C23—C22—C21116.54 (14)C46—C45—H45119.9
C23—C22—H22121.7C44—C45—H45119.9
C21—C22—H22121.7C47—C46—C45120.00 (16)
C18—C23—C22122.67 (12)C47—C46—H46120.0
C18—C23—N4108.78 (10)C45—C46—H46120.0
C22—C23—N4128.55 (12)C47—C48—C43120.21 (18)
C17—C24—H24A109.5C47—C48—H48119.9
C17—C24—H24B109.5C43—C48—H48119.9
H24A—C24—H24B109.5C46—C47—C48120.27 (17)
C17—C24—H24C109.5C46—C47—H47119.9
H24A—C24—H24C109.5C48—C47—H47119.9
H24B—C24—H24C109.5
C6—O1—C5—C9120.87 (11)C17—C18—C23—N40.33 (15)
C6—O1—C5—C41.58 (12)C21—C22—C23—C180.3 (2)
C6—O1—C5—C8118.16 (10)C21—C22—C23—N4179.88 (13)
C11—C4—C5—O1177.18 (11)C16—N4—C23—C181.80 (14)
C7—C4—C5—O11.19 (12)C26—N4—C23—C18175.25 (11)
C11—C4—C5—C963.04 (16)C16—N4—C23—C22178.07 (13)
C7—C4—C5—C9115.32 (11)C26—N4—C23—C224.6 (2)
C11—C4—C5—C868.82 (15)C16—N4—C26—C2772.97 (14)
C7—C4—C5—C8112.81 (11)C23—N4—C26—C2799.56 (13)
C5—O1—C6—C2178.65 (11)C28—O2—C27—C2680.57 (12)
C5—O1—C6—C71.38 (13)N4—C26—C27—O245.16 (12)
C1—C2—C6—O1173.19 (13)C27—O2—C28—O30.31 (18)
C3—C2—C6—O12.79 (19)C27—O2—C28—C29178.92 (10)
C1—C2—C6—C76.8 (2)O3—C28—C29—C3024.9 (2)
C3—C2—C6—C7177.25 (13)O2—C28—C29—C30155.89 (11)
C11—C4—C7—C101.9 (2)O3—C28—C29—C34154.74 (14)
C5—C4—C7—C10179.64 (13)O2—C28—C29—C3424.47 (17)
C11—C4—C7—C6177.95 (12)C34—C29—C30—C310.28 (19)
C5—C4—C7—C60.46 (14)C28—C29—C30—C31179.36 (11)
O1—C6—C7—C40.56 (14)C35—O4—C31—C327.28 (18)
C2—C6—C7—C4179.47 (13)C35—O4—C31—C30173.09 (11)
O1—C6—C7—C10179.33 (13)C29—C30—C31—O4179.96 (11)
C2—C6—C7—C100.6 (2)C29—C30—C31—C320.39 (19)
C7—C4—C11—C12179.67 (12)O4—C31—C32—C33179.65 (12)
C5—C4—C11—C122.2 (2)C30—C31—C32—C330.03 (19)
C4—C11—C12—C13174.28 (12)C42—O5—C33—C343.8 (2)
C11—C12—C13—C14177.11 (12)C42—O5—C33—C32176.13 (12)
C12—C13—C14—C15171.91 (12)C31—C32—C33—O5179.50 (12)
C13—C14—C15—C16173.53 (12)C31—C32—C33—C340.5 (2)
C23—N4—C16—C15177.74 (11)O5—C33—C34—C29179.39 (12)
C26—N4—C16—C154.45 (18)C32—C33—C34—C290.6 (2)
C23—N4—C16—C172.48 (14)C30—C29—C34—C330.2 (2)
C26—N4—C16—C17175.77 (11)C28—C29—C34—C33179.82 (12)
C14—C15—C16—N4175.51 (12)C31—O4—C35—C36175.24 (11)
C14—C15—C16—C174.8 (2)O4—C35—C36—C37119.95 (14)
N4—C16—C17—C182.10 (13)O4—C35—C36—C4160.16 (17)
C15—C16—C17—C18178.15 (12)C41—C36—C37—C381.5 (2)
N4—C16—C17—C25119.60 (12)C35—C36—C37—C38178.39 (14)
C15—C16—C17—C2560.65 (17)C36—C37—C38—C390.3 (2)
N4—C16—C17—C24115.17 (11)C37—C38—C39—C400.8 (3)
C15—C16—C17—C2464.58 (16)C38—C39—C40—C410.6 (3)
C16—C17—C18—C19177.87 (16)C39—C40—C41—C360.7 (3)
C25—C17—C18—C1958.5 (2)C37—C36—C41—C401.7 (3)
C24—C17—C18—C1965.1 (2)C35—C36—C41—C40178.20 (17)
C16—C17—C18—C231.03 (14)C33—O5—C42—C43178.33 (12)
C25—C17—C18—C23120.40 (12)O5—C42—C43—C4416.2 (2)
C24—C17—C18—C23116.04 (12)O5—C42—C43—C48165.43 (14)
C23—C18—C19—C200.9 (2)C48—C43—C44—C450.5 (2)
C17—C18—C19—C20179.73 (16)C42—C43—C44—C45177.84 (14)
C18—C19—C20—C210.6 (3)C43—C44—C45—C460.3 (2)
C19—C20—C21—C220.2 (3)C44—C45—C46—C470.2 (3)
C20—C21—C22—C230.6 (2)C44—C43—C48—C470.2 (2)
C19—C18—C23—C220.5 (2)C42—C43—C48—C47178.25 (15)
C17—C18—C23—C22179.55 (12)C45—C46—C47—C480.5 (3)
C19—C18—C23—N4179.36 (13)C43—C48—C47—C460.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C29–C34 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···N3i0.952.483.404 (2)165
C30—H30···O1ii0.952.503.4136 (17)162
C32—H32···N2iii0.952.543.475 (2)167
C9—H9A···Cg1iii0.982.893.8454 (16)166
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C29–C34 ring.
D—H···AD—HH···AD···AD—H···A
C15—H15···N3i0.952.483.404 (2)165
C30—H30···O1ii0.952.503.4136 (17)162
C32—H32···N2iii0.952.543.475 (2)167
C9—H9A···Cg1iii0.982.893.8454 (16)166
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

We thank Drs J. Wikaira and C. Fitchett of the University of Canterbury, New Zealand, for their assistance with the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhuiyan, M. D. H., Gainsford, G. J., Kutuvantavida, Y., Quilty, J. W., Kay, A. J., Williams, G. V. M. & Waterland, M. R. (2011). Mol. Cryst. Liq. Cryst. 548, 1–12.  Web of Science CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarke, D. J., Middleton, A., Teshome, A., Bhuiyan, M. D. H., Ashraf, M., Gainsford, G. J., Asselberghs, I., Clays, K., Smith, G. J. & Kay, A. J. (2009). AIP Conf. Proc. V, 1151, 90–93.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKim, T. D., Kang, J. W., Luo, J. & Jang, S. H. (2007). J. Am. Chem. Soc. 2007, 129, 488–489.  Google Scholar
First citationLi, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093–o2095.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOjala, A., Burckstummer, H., Hwang, J., Graf, K., Von Vacano, B., Meerholz, K., Erk, P. & Wurthner, F. (2012). J. Mater. Chem. 22, 4473–4482.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. J., Dunford, C. L., Kay, A. J. & Woolhouse, A. D. (2006). J. Photochem. Photobiol. A Chem. 179, 237–242.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds