organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­methyl-4-(pyren-1-yl)aniline

aFS–SCS, Deutsches Elecktronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany, bMax Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and cFS–PS, Deutsches Elecktronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
*Correspondence e-mail: sreevidya.thekku.veedu@desy.de, simone.techert@desy.de

(Received 29 November 2013; accepted 2 December 2013; online 7 December 2013)

In the title compound, C24H19N, the di­methyl­amino group is inclined to the benzene ring by 2.81 (9)°. Their mean plane makes a dihedral angle of 64.12 (2)° with the mean plane of the pyrene ring system [r.m.s. deviation = 0.031 (1) Å]. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, which connect neighbouring mol­ecules into columns along the c axis.

Related literature

For charge transfer involving donor and acceptor mol­ecules, see: Wasielewski (1992[Wasielewski, M. R. (1992). Chem. Rev. 92, 435-461.]); Willemse et al. (2000[Willemse, R. J., Piet, J. J., Warman, J. M., Hartl, F., Verhoeven, J. W. & Brouwer, A. M. (2000). J. Am. Chem. Soc. 122, 3721-3730.]). For a related structure, N,N-Diphenyl-4-(pyren-1-yl)aniline, see: Wang et al. (2010[Wang, Z.-Q., Zhang, R., Sun, X.-J., Zhang, Y.-P., Xu, Y. & Xu, C. (2010). Z. Kristallogr. New Cryst. Struct. 225, 573-575.]). For the synthesis of the title compound, see: Dewar & Mole (1956[Dewar, M. J. S. & Mole, T. (1956). J. Chem. Soc. 7, 1441-1443.]); Norman et al. (1958[Norman, R. O. C., Thompson, G. A. & Waters, W. A. (1958). J. Chem. Soc. 12, 175-179.]). For standard bond lengths, see. Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19N

  • Mr = 321.40

  • Monoclinic, P 21 /c

  • a = 6.1270 (12) Å

  • b = 30.686 (6) Å

  • c = 9.478 (3) Å

  • β = 113.35 (2)°

  • V = 1636.0 (8) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.600 Å

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Huber diffractometer with a Mar CCD detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.993

  • 47866 measured reflections

  • 5872 independent reflections

  • 4806 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.08

  • 5872 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C1–C6, C7–C10/C19/C20, C10–C13/C18/C19, C13–C18 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg2i 0.95 2.93 3.6043 (15) 129
C6—H6⋯Cg5ii 0.95 2.90 3.6495 (15) 137
C22—H22⋯Cg1iii 0.95 2.68 3.5499 (15) 152
C23—H52ACg3i 0.98 2.74 3.5994 (15) 147
C24—H52ECg4ii 0.98 2.77 3.5284 (15) 135
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: XDS (Kabsch, 1993[Kabsch, W. (1993). J. Appl. Cryst. 26, 795-800.]); cell refinement: XDS; data reduction: XDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Electron donor acceptor molecules play an important role in the understanding of charge transfer processes. In the past decades, in order to gain more insight into electron transfer processes, extensive studies have been carried out on the optical behavior of systems consisting of donor acceptor groups linked by different bridges (Wasielewski, 1992; Willemse et al., 2000). These molecules are also ideal systems for studying the solvation dynamics and also for the demonstration of non-linear optical properties. Pyrene-N,N-dimethylaniline (PyDMA), is a compound in which the electron donor N,N-dimethylaniline (DMA) is covalently linked to the electron acceptor pyrene. Due to the lack of an extended bridge between the donor and acceptor in PyDMA, the physical characteristics of these groups strongly influence the electron transfer mechanism. This leads to a very unusual absorption and emission spectra in the optical regime and because of this PyDMA is considered to be a molecular diode where electron donor and electron acceptor moieties are twisted against each other modulating the electron charge transfer processes.

The title compound, Fig. 1, is a pyrene derivative. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for a similar structure, N,N-Diphenyl-4-(pyren-1-yl)aniline (Wang et al., 2010). The dimethylamine group and the benzene ring are almost coplanar (dihedral angle = 2.81 (9) °) and their mean plane makes a dihedral angle of 64.12 (2) ° with the pyrene ring system [r.m.s.d. = 0.031 (1) Å].

In the crystal, packing is stabilized by C—H···π interactions (Table 1). The interaction C23—H52A···Cg3i (see Table 1; Cg3 is the centroid of the C10-C13/C18/C19 ring) connects neighbouring molecules into columns along the c-axis (Fig. 2).

Related literature top

For charge transfer involving donor and acceptor molecules, see: Wasielewski (1992); Willemse et al. (2000). For a related structure, N,N-Diphenyl-4-(pyren-1-yl)aniline, see: Wang et al. (2010). For the synthesis of the title compound, see: Dewar & Mole (1956); Norman et al. (1958). For standard bond lengths, see. Allen et al. (1987).

Experimental top

Commercially available 1-aminopyrene after diazotization reaction was coupled with N,N-dimethylaniline according to the previously reported procedure (Dewar & Mole, 1956; Norman et al., 1958). The crude product was then purified on an aluminium oxide column with a mixture of cyclohexane/toluene as eluent and applying HPLC. Block-like colourless crystals of the title compound were obtained by crystallization from ethyl acetate/diethyl ether (2:1) by slow evaporation.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Structure description top

Electron donor acceptor molecules play an important role in the understanding of charge transfer processes. In the past decades, in order to gain more insight into electron transfer processes, extensive studies have been carried out on the optical behavior of systems consisting of donor acceptor groups linked by different bridges (Wasielewski, 1992; Willemse et al., 2000). These molecules are also ideal systems for studying the solvation dynamics and also for the demonstration of non-linear optical properties. Pyrene-N,N-dimethylaniline (PyDMA), is a compound in which the electron donor N,N-dimethylaniline (DMA) is covalently linked to the electron acceptor pyrene. Due to the lack of an extended bridge between the donor and acceptor in PyDMA, the physical characteristics of these groups strongly influence the electron transfer mechanism. This leads to a very unusual absorption and emission spectra in the optical regime and because of this PyDMA is considered to be a molecular diode where electron donor and electron acceptor moieties are twisted against each other modulating the electron charge transfer processes.

The title compound, Fig. 1, is a pyrene derivative. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for a similar structure, N,N-Diphenyl-4-(pyren-1-yl)aniline (Wang et al., 2010). The dimethylamine group and the benzene ring are almost coplanar (dihedral angle = 2.81 (9) °) and their mean plane makes a dihedral angle of 64.12 (2) ° with the pyrene ring system [r.m.s.d. = 0.031 (1) Å].

In the crystal, packing is stabilized by C—H···π interactions (Table 1). The interaction C23—H52A···Cg3i (see Table 1; Cg3 is the centroid of the C10-C13/C18/C19 ring) connects neighbouring molecules into columns along the c-axis (Fig. 2).

For charge transfer involving donor and acceptor molecules, see: Wasielewski (1992); Willemse et al. (2000). For a related structure, N,N-Diphenyl-4-(pyren-1-yl)aniline, see: Wang et al. (2010). For the synthesis of the title compound, see: Dewar & Mole (1956); Norman et al. (1958). For standard bond lengths, see. Allen et al. (1987).

Computing details top

Data collection: XDS (Kabsch, 1993); cell refinement: XDS (Kabsch, 1993); data reduction: XDS (Kabsch, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing molecules linked by C—H···π interactions (dashed lines; see Table 1 for details).
N,N-Dimethyl-4-(pyren-1-yl)aniline top
Crystal data top
C24H19NF(000) = 680
Mr = 321.40Dx = 1.305 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.600 Å
a = 6.1270 (12) ÅCell parameters from 2549 reflections
b = 30.686 (6) Åθ = 2.5–26.7°
c = 9.478 (3) ŵ = 0.08 mm1
β = 113.35 (2)°T = 100 K
V = 1636.0 (8) Å3Block, colourless
Z = 40.30 × 0.15 × 0.10 mm
Data collection top
Huber
diffractometer with a Mar CCD detector
4806 reflections with I > 2σ(I)
Radiation source: synchrotronRint = 0.063
φ and ω scanθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 89
Tmin = 0.978, Tmax = 0.993k = 4445
47866 measured reflectionsl = 1414
5872 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0707P)2 + 0.2446P]
where P = (Fo2 + 2Fc2)/3
5872 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H19NV = 1636.0 (8) Å3
Mr = 321.40Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.600 Å
a = 6.1270 (12) ŵ = 0.08 mm1
b = 30.686 (6) ÅT = 100 K
c = 9.478 (3) Å0.30 × 0.15 × 0.10 mm
β = 113.35 (2)°
Data collection top
Huber
diffractometer with a Mar CCD detector
5872 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4806 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.993Rint = 0.063
47866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.08Δρmax = 0.40 e Å3
5872 reflectionsΔρmin = 0.23 e Å3
228 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.83448 (13)0.39409 (2)0.82389 (9)0.0218 (2)
C10.89994 (14)0.35082 (3)0.85268 (9)0.0180 (2)
C21.05726 (15)0.33134 (3)0.79588 (10)0.0198 (2)
C31.11516 (15)0.28751 (3)0.82171 (10)0.0199 (2)
C41.01916 (14)0.26098 (3)0.90243 (9)0.0187 (2)
C50.86753 (15)0.28065 (3)0.96166 (10)0.0201 (2)
C60.80935 (15)0.32448 (3)0.93886 (10)0.0197 (2)
C71.07388 (14)0.21366 (3)0.92100 (9)0.0184 (2)
C81.30833 (15)0.19960 (3)0.99985 (10)0.0207 (2)
C91.36781 (15)0.15583 (3)1.01804 (10)0.0214 (2)
C101.19330 (14)0.12377 (3)0.95599 (9)0.0193 (2)
C111.24827 (15)0.07810 (3)0.97107 (10)0.0222 (2)
C121.07813 (16)0.04746 (3)0.90639 (10)0.0226 (2)
C130.83518 (15)0.05968 (3)0.81869 (10)0.0207 (2)
C140.65740 (17)0.02878 (3)0.74593 (11)0.0250 (2)
C150.42488 (17)0.04181 (3)0.66041 (11)0.0266 (2)
C160.36320 (16)0.08558 (3)0.64636 (10)0.0236 (2)
C170.53509 (15)0.11768 (3)0.71636 (9)0.0194 (2)
C180.77440 (14)0.10477 (3)0.80332 (9)0.0184 (2)
C190.95341 (14)0.13704 (3)0.87271 (9)0.0176 (2)
C200.89286 (14)0.18211 (3)0.85573 (9)0.0176 (2)
C210.64894 (14)0.19381 (3)0.76703 (10)0.0193 (2)
C220.47894 (14)0.16319 (3)0.70109 (10)0.0204 (2)
C230.94074 (16)0.42139 (3)0.74417 (11)0.0248 (2)
C240.67405 (16)0.41312 (3)0.88441 (11)0.0249 (2)
H21.124200.348400.739400.0240*
H31.223100.275200.783400.0240*
H50.802600.263501.019100.0240*
H60.707300.336900.981700.0240*
H81.430400.220701.042200.0250*
H91.528700.147501.073200.0260*
H111.407700.069101.027700.0270*
H121.120100.017500.919200.0270*
H140.696300.001300.755200.0300*
H150.306800.020500.611000.0320*
H160.202900.093900.588700.0280*
H210.605900.223700.754300.0230*
H220.319700.172100.643700.0240*
H52A0.903100.409700.640900.0370*
H52B1.113600.422000.801300.0370*
H52C0.877600.451100.736200.0370*
H52D0.631600.442700.843600.0370*
H52E0.751700.414300.996800.0370*
H52F0.529900.395300.854000.0370*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0259 (3)0.0181 (3)0.0254 (4)0.0010 (3)0.0143 (3)0.0023 (3)
C10.0195 (3)0.0180 (4)0.0158 (3)0.0010 (3)0.0064 (3)0.0002 (3)
C20.0232 (3)0.0206 (4)0.0181 (3)0.0012 (3)0.0109 (3)0.0008 (3)
C30.0229 (3)0.0208 (4)0.0188 (4)0.0002 (3)0.0112 (3)0.0007 (3)
C40.0211 (3)0.0185 (4)0.0169 (3)0.0010 (3)0.0080 (3)0.0008 (3)
C50.0242 (4)0.0194 (4)0.0198 (4)0.0015 (3)0.0121 (3)0.0004 (3)
C60.0226 (3)0.0196 (4)0.0197 (4)0.0001 (3)0.0114 (3)0.0000 (3)
C70.0219 (3)0.0189 (4)0.0159 (3)0.0004 (3)0.0092 (3)0.0006 (3)
C80.0210 (3)0.0224 (4)0.0186 (4)0.0012 (3)0.0079 (3)0.0019 (3)
C90.0204 (3)0.0245 (4)0.0186 (3)0.0019 (3)0.0070 (3)0.0001 (3)
C100.0218 (3)0.0210 (4)0.0155 (3)0.0023 (3)0.0077 (3)0.0008 (3)
C110.0244 (4)0.0226 (4)0.0194 (4)0.0045 (3)0.0085 (3)0.0018 (3)
C120.0293 (4)0.0192 (4)0.0201 (4)0.0043 (3)0.0107 (3)0.0016 (3)
C130.0271 (4)0.0188 (4)0.0168 (3)0.0007 (3)0.0092 (3)0.0004 (3)
C140.0319 (4)0.0184 (4)0.0239 (4)0.0022 (3)0.0103 (3)0.0006 (3)
C150.0300 (4)0.0219 (4)0.0251 (4)0.0054 (3)0.0079 (3)0.0012 (3)
C160.0239 (4)0.0233 (4)0.0215 (4)0.0025 (3)0.0067 (3)0.0001 (3)
C170.0224 (4)0.0201 (4)0.0157 (3)0.0006 (3)0.0076 (3)0.0005 (3)
C180.0225 (3)0.0185 (4)0.0145 (3)0.0001 (3)0.0078 (3)0.0003 (3)
C190.0216 (3)0.0180 (4)0.0139 (3)0.0011 (3)0.0079 (3)0.0002 (3)
C200.0213 (3)0.0183 (4)0.0143 (3)0.0009 (3)0.0082 (3)0.0005 (3)
C210.0219 (3)0.0189 (4)0.0170 (3)0.0023 (3)0.0077 (3)0.0014 (3)
C220.0210 (3)0.0218 (4)0.0177 (3)0.0016 (3)0.0070 (3)0.0014 (3)
C230.0285 (4)0.0222 (4)0.0263 (4)0.0006 (3)0.0138 (3)0.0056 (3)
C240.0290 (4)0.0222 (4)0.0269 (4)0.0045 (3)0.0148 (3)0.0023 (3)
Geometric parameters (Å, º) top
N1—C11.3826 (12)C17—C221.4318 (14)
N1—C231.4445 (13)C18—C191.4298 (13)
N1—C241.4433 (14)C19—C201.4244 (14)
C1—C21.4098 (14)C20—C211.4399 (14)
C1—C61.4099 (14)C21—C221.3573 (14)
C2—C31.3878 (14)C2—H20.9500
C3—C41.3967 (14)C3—H30.9500
C4—C51.3986 (14)C5—H50.9500
C4—C71.4850 (14)C6—H60.9500
C5—C61.3862 (14)C8—H80.9500
C7—C81.3990 (14)C9—H90.9500
C7—C201.4164 (14)C11—H110.9500
C8—C91.3845 (14)C12—H120.9500
C9—C101.3995 (14)C14—H140.9500
C10—C111.4352 (14)C15—H150.9500
C10—C191.4246 (13)C16—H160.9500
C11—C121.3565 (14)C21—H210.9500
C12—C131.4375 (15)C22—H220.9500
C13—C141.4020 (14)C23—H52A0.9800
C13—C181.4253 (14)C23—H52B0.9800
C14—C151.3897 (16)C23—H52C0.9800
C15—C161.3873 (14)C24—H52D0.9800
C16—C171.4020 (14)C24—H52E0.9800
C17—C181.4241 (14)C24—H52F0.9800
C1—N1—C23120.30 (8)C20—C21—C22121.72 (9)
C1—N1—C24120.01 (8)C17—C22—C21121.26 (9)
C23—N1—C24119.50 (7)C1—C2—H2120.00
N1—C1—C2121.37 (8)C3—C2—H2120.00
N1—C1—C6120.99 (9)C2—C3—H3119.00
C2—C1—C6117.64 (9)C4—C3—H3119.00
C1—C2—C3120.61 (9)C4—C5—H5119.00
C2—C3—C4121.86 (9)C6—C5—H5119.00
C3—C4—C5117.34 (9)C1—C6—H6120.00
C3—C4—C7120.70 (8)C5—C6—H6120.00
C5—C4—C7121.95 (8)C7—C8—H8119.00
C4—C5—C6121.79 (9)C9—C8—H8119.00
C1—C6—C5120.70 (9)C8—C9—H9120.00
C4—C7—C8120.05 (8)C10—C9—H9120.00
C4—C7—C20121.04 (8)C10—C11—H11119.00
C8—C7—C20118.88 (9)C12—C11—H11119.00
C7—C8—C9121.98 (9)C11—C12—H12120.00
C8—C9—C10120.67 (9)C13—C12—H12120.00
C9—C10—C11122.31 (9)C13—C14—H14120.00
C9—C10—C19118.72 (9)C15—C14—H14120.00
C11—C10—C19118.96 (8)C14—C15—H15120.00
C10—C11—C12121.59 (9)C16—C15—H15120.00
C11—C12—C13120.98 (9)C15—C16—H16120.00
C12—C13—C14122.18 (9)C17—C16—H16120.00
C12—C13—C18118.76 (8)C20—C21—H21119.00
C14—C13—C18119.06 (9)C22—C21—H21119.00
C13—C14—C15120.62 (9)C17—C22—H22119.00
C14—C15—C16120.79 (9)C21—C22—H22119.00
C15—C16—C17120.65 (9)N1—C23—H52A109.00
C16—C17—C18119.11 (9)N1—C23—H52B110.00
C16—C17—C22122.15 (9)N1—C23—H52C109.00
C18—C17—C22118.74 (8)H52A—C23—H52B109.00
C13—C18—C17119.77 (8)H52A—C23—H52C109.00
C13—C18—C19120.24 (8)H52B—C23—H52C109.00
C17—C18—C19119.98 (8)N1—C24—H52D109.00
C10—C19—C18119.46 (8)N1—C24—H52E109.00
C10—C19—C20120.36 (8)N1—C24—H52F109.00
C18—C19—C20120.17 (8)H52D—C24—H52E109.00
C7—C20—C19119.37 (8)H52D—C24—H52F109.00
C7—C20—C21122.44 (9)H52E—C24—H52F109.00
C19—C20—C21118.14 (8)
C23—N1—C1—C24.74 (13)C11—C10—C19—C20179.94 (8)
C23—N1—C1—C6175.91 (8)C10—C11—C12—C130.52 (14)
C24—N1—C1—C2179.66 (8)C11—C12—C13—C14177.63 (9)
C24—N1—C1—C60.99 (13)C11—C12—C13—C181.31 (14)
N1—C1—C2—C3177.93 (8)C12—C13—C14—C15179.17 (9)
C6—C1—C2—C31.44 (13)C18—C13—C14—C150.23 (14)
N1—C1—C6—C5177.17 (9)C12—C13—C18—C17179.69 (8)
C2—C1—C6—C52.20 (13)C12—C13—C18—C190.73 (13)
C1—C2—C3—C40.79 (14)C14—C13—C18—C170.72 (13)
C2—C3—C4—C52.22 (13)C14—C13—C18—C19178.25 (9)
C2—C3—C4—C7176.62 (8)C13—C14—C15—C160.61 (15)
C3—C4—C5—C61.44 (13)C14—C15—C16—C170.95 (15)
C7—C4—C5—C6177.39 (8)C15—C16—C17—C180.44 (13)
C3—C4—C7—C862.00 (11)C15—C16—C17—C22178.41 (9)
C3—C4—C7—C20115.98 (10)C16—C17—C18—C130.39 (13)
C5—C4—C7—C8119.22 (10)C16—C17—C18—C19178.58 (8)
C5—C4—C7—C2062.80 (11)C22—C17—C18—C13179.28 (8)
C4—C5—C6—C10.77 (14)C22—C17—C18—C190.31 (12)
C4—C7—C8—C9179.10 (8)C16—C17—C22—C21178.57 (9)
C20—C7—C8—C91.07 (13)C18—C17—C22—C210.30 (13)
C4—C7—C20—C19178.40 (8)C13—C18—C19—C100.63 (12)
C4—C7—C20—C210.82 (13)C13—C18—C19—C20179.27 (8)
C8—C7—C20—C190.39 (12)C17—C18—C19—C10178.34 (8)
C8—C7—C20—C21177.19 (8)C17—C18—C19—C200.30 (12)
C7—C8—C9—C100.64 (14)C10—C19—C20—C70.69 (12)
C8—C9—C10—C11179.36 (9)C10—C19—C20—C21178.38 (8)
C8—C9—C10—C190.47 (13)C18—C19—C20—C7177.94 (8)
C9—C10—C11—C12178.03 (9)C18—C19—C20—C210.26 (12)
C19—C10—C11—C120.86 (13)C7—C20—C21—C22177.84 (9)
C9—C10—C19—C18177.52 (8)C19—C20—C21—C220.24 (13)
C9—C10—C19—C201.12 (12)C20—C21—C22—C170.26 (14)
C11—C10—C19—C181.41 (12)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C1–C6, C7–C10/C19/C20, C10–C13/C18/C19, C13–C18 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.952.933.6043 (15)129
C6—H6···Cg5ii0.952.903.6495 (15)137
C22—H22···Cg1iii0.952.683.5499 (15)152
C23—H52A···Cg3i0.982.743.5994 (15)147
C24—H52E···Cg4ii0.982.773.5284 (15)135
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the C1–C6, C7–C10/C19/C20, C10–C13/C18/C19, C13–C18 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.952.933.6043 (15)129
C6—H6···Cg5ii0.952.903.6495 (15)137
C22—H22···Cg1iii0.952.683.5499 (15)152
C23—H52A···Cg3i0.982.743.5994 (15)147
C24—H52E···Cg4ii0.982.773.5284 (15)135
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y+1/2, z1/2.
 

Acknowledgements

ST thanks the DFG, SFB 755 and SFB 1073 for financial support. STV thanks G. Busse and L. Busse for technical help.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDewar, M. J. S. & Mole, T. (1956). J. Chem. Soc. 7, 1441–1443.  CrossRef Web of Science Google Scholar
First citationKabsch, W. (1993). J. Appl. Cryst. 26, 795–800.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorman, R. O. C., Thompson, G. A. & Waters, W. A. (1958). J. Chem. Soc. 12, 175–179.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-Q., Zhang, R., Sun, X.-J., Zhang, Y.-P., Xu, Y. & Xu, C. (2010). Z. Kristallogr. New Cryst. Struct. 225, 573–575.  CAS Google Scholar
First citationWasielewski, M. R. (1992). Chem. Rev. 92, 435–461.  CrossRef CAS Web of Science Google Scholar
First citationWillemse, R. J., Piet, J. J., Warman, J. M., Hartl, F., Verhoeven, J. W. & Brouwer, A. M. (2000). J. Am. Chem. Soc. 122, 3721–3730.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds