organic compounds
4-Amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione
aDepartment of Chemistry, P.A. College of Engineering, Nadupadavu 574 153, D.K., Mangalore, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C9H10N4OS, the dihedral angle between the benzene and 1H-1,2,4-triazole-5(4H)-thione rings is 67.51 (16)°. In the crystal, molecules are liked via N—H⋯O hydrogen bonds, forming chains along the c-axis direction. The chains are linked via O—H⋯S hydrogen bonds, forming corrugated layers lying parallel to the bc plane. The layers are linked via N—H⋯N and N—H⋯S hydrogen bonds, forming a three-dimensional network.
CCDC reference: 976026
Related literature
For biological properties of 1,2,4-triazole derivatives, see: Holla et al. (2001, 2006); Mullican et al. (1993); Jones et al. (1965); Shams El-Dine et al. (1974); Misato et al. (1977); Kane et al. (1988). For related structures, see: Puviarasan et al. (1999); Chen et al. (2007); Karczmarzyk et al. (2012); Gao et al. (2011).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 976026
https://doi.org/10.1107/S1600536813033370/su2674sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813033370/su2674Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813033370/su2674Isup3.cml
The synthesis of the title compound is described in Fig. 3. A well triturated mixture of 4-hydroxyphenylacetic acid (0.755 g, 0.005 mol) and thiocarbohydrazide (0.53 g, 0.005 mol) was fused in a round bottom flask for one hour on an oil bath at 413 K. It was cooled to room temperature and washed with sodium bicarbonate (5%) solution to remove unreacted acid and again washed with water. The dried compound was recrystallized from methanol yielding colourless block-like crystals (M.p. 475-477 K).
The OH and NH2 H atoms (H1, and H4A/H4B, respectively) were located in a difference Fourier map and freely refined. The remaining H atoms were placed in calculated positions and refined using the riding model approximation: N-H = 0.88 Å, C-H = 0.95 and 0.99 Å for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2Ueq(N,C).
The chemistry of triazoles has received considerable attention in recent years because of their versatility in the synthesis of many other
1,2,4-Triazole derivatives are well known for their different biological activities, therefore various 1,2,4-triazole derivatives and their N-bridged heterocyclic analogs have been extensively studied (Holla et al., 2001,2006). The derivatives of 1,2,4-triazole are known to exhibit anti-inflammatory (Mullican et al., 1993), antiviral (Jones et al., 1965), antimicrobial (Shams El-Dine et al., 1974; Misato et al., 1977) and antidepressant activity (Kane et al., 1988). Hence synthesis of the corresponding could be of interest from the viewpoint of chemical reactivity and biological activity.The crystal structures of some related triazoles have been reported: 5-(2-Chlorophenyl)-4-phenyl-3,4-dihydro-2H-1,2,4-triazole-3-thione (Puviarasan et al., 1999); 4-Amino-5-(2-ethoxyphenyl)-2,4-dihydro- 2H-1,2,4-triazole-3-thione-triphenylphosphine oxide (Chen et al., 2007); Ethyl2-(3-methyl-5-sulfanylidene-4,5-dihydro- 1H-1,2,4-triazol-4-yl)acetate (Karczmarzyk et al., 2012); 3-(4-Amino-3-phenyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1- yl)-3-(2-chlorophenyl)-1-phenylpropan-1-one (Gao et al., 2011). The present work describes the synthesis and
of the title compound.In the title compound, Fig. 1, the dihedral angle between the benzene ring (C2-C7) and the 1H-1,2,4-triazole-5(4H)-thione ring (N1/N2/C9/N3/C8) is 67.51 (16) °.
In the crystal, a single N2—H2···O1 hydrogen bond and additional weak O1—H1···S1, N4—H4A···S1 and N4—H4B···N1 hydrogen bonds are observed (Table 1 and Fig. 2). These interactions link the molecules into one-dimensional chains extending along each of the three axes forming a three-dimensional supramolecular framework.
For biological properties of 1,2,4-triazole derivatives, see: Holla et al. (2001, 2006); Mullican et al. (1993); Jones et al. (1965); Shams El-Dine et al. (1974); Misato et al. (1977); Kane et al. (1988). For related structures, see: Puviarasan et al. (1999); Chen et al. (2007); Karczmarzyk et al. (2012); Gao et al. (2011).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines; see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity. | |
Fig. 3. Synthesis of the title compound. |
C9H10N4OS | Z = 1 |
Mr = 222.27 | F(000) = 116 |
Triclinic, P1 | Dx = 1.493 Mg m−3 |
a = 4.2117 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 6.1891 (7) Å | Cell parameters from 1329 reflections |
c = 10.0641 (11) Å | θ = 3.5–32.8° |
α = 100.590 (9)° | µ = 0.31 mm−1 |
β = 94.916 (9)° | T = 173 K |
γ = 104.589 (10)° | Block, colourless |
V = 247.14 (5) Å3 | 0.34 × 0.30 × 0.24 mm |
Agilent Gemini EOS diffractometer | 1897 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1826 reflections with I > 2σ(I) |
Detector resolution: 16.0416 pixels mm-1 | Rint = 0.035 |
ω scans | θmax = 32.9°, θmin = 3.5° |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012). | h = −6→6 |
Tmin = 0.941, Tmax = 1.000 | k = −8→9 |
2555 measured reflections | l = −14→12 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0512P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.29 e Å−3 |
1897 reflections | Δρmin = −0.27 e Å−3 |
145 parameters | Absolute structure: Flack (1983), 265 Friedel pairs (15% coverage) |
3 restraints | Absolute structure parameter: −0.02 (9) |
Primary atom site location: structure-invariant direct methods |
C9H10N4OS | γ = 104.589 (10)° |
Mr = 222.27 | V = 247.14 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.2117 (5) Å | Mo Kα radiation |
b = 6.1891 (7) Å | µ = 0.31 mm−1 |
c = 10.0641 (11) Å | T = 173 K |
α = 100.590 (9)° | 0.34 × 0.30 × 0.24 mm |
β = 94.916 (9)° |
Agilent Gemini EOS diffractometer | 1897 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012). | 1826 reflections with I > 2σ(I) |
Tmin = 0.941, Tmax = 1.000 | Rint = 0.035 |
2555 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.102 | Δρmax = 0.29 e Å−3 |
S = 1.10 | Δρmin = −0.27 e Å−3 |
1897 reflections | Absolute structure: Flack (1983), 265 Friedel pairs (15% coverage) |
145 parameters | Absolute structure parameter: −0.02 (9) |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.98393 (10) | 0.49047 (8) | −0.16110 (7) | 0.02134 (16) | |
O1 | 1.3407 (6) | 1.0709 (3) | 0.7411 (2) | 0.0248 (4) | |
N1 | 0.8426 (6) | 1.0486 (4) | 0.0472 (3) | 0.0217 (5) | |
N2 | 0.9604 (6) | 0.9245 (4) | −0.0560 (2) | 0.0205 (5) | |
H2 | 1.0738 | 0.9862 | −0.1156 | 0.025* | |
N3 | 0.7176 (5) | 0.6844 (3) | 0.0529 (2) | 0.0164 (4) | |
N4 | 0.5720 (6) | 0.4828 (4) | 0.0952 (3) | 0.0227 (5) | |
H4A | 0.3813 | 0.4158 | 0.0464 | 0.027* | |
C1 | 0.5336 (7) | 0.9471 (5) | 0.2357 (3) | 0.0211 (5) | |
H1A | 0.3342 | 0.8192 | 0.2314 | 0.025* | |
H1B | 0.4603 | 1.0871 | 0.2357 | 0.025* | |
C2 | 0.7593 (7) | 0.9795 (4) | 0.3678 (3) | 0.0187 (5) | |
C3 | 0.7404 (8) | 0.8033 (5) | 0.4367 (3) | 0.0238 (6) | |
H3 | 0.5876 | 0.6587 | 0.3991 | 0.029* | |
C4 | 0.9400 (8) | 0.8336 (5) | 0.5596 (3) | 0.0248 (6) | |
H4 | 0.9254 | 0.7104 | 0.6049 | 0.030* | |
C5 | 1.1611 (7) | 1.0458 (5) | 0.6157 (3) | 0.0200 (5) | |
C6 | 1.1905 (7) | 1.2236 (5) | 0.5479 (3) | 0.0229 (6) | |
H6 | 1.3466 | 1.3672 | 0.5849 | 0.027* | |
C7 | 0.9885 (8) | 1.1898 (5) | 0.4243 (3) | 0.0219 (5) | |
H7 | 1.0071 | 1.3119 | 0.3779 | 0.026* | |
C8 | 0.6955 (6) | 0.8986 (4) | 0.1125 (3) | 0.0167 (5) | |
C9 | 0.8850 (6) | 0.7017 (4) | −0.0565 (3) | 0.0168 (5) | |
H1 | 1.500 (12) | 1.216 (7) | 0.758 (5) | 0.038 (11)* | |
H4B | 0.713 (8) | 0.395 (5) | 0.079 (3) | 0.009 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0238 (3) | 0.0209 (3) | 0.0187 (3) | 0.0076 (2) | 0.0035 (2) | 0.0003 (2) |
O1 | 0.0279 (10) | 0.0253 (10) | 0.0156 (10) | −0.0007 (8) | −0.0003 (8) | 0.0027 (8) |
N1 | 0.0283 (12) | 0.0185 (10) | 0.0187 (11) | 0.0085 (9) | 0.0033 (9) | 0.0020 (8) |
N2 | 0.0267 (12) | 0.0182 (10) | 0.0158 (11) | 0.0041 (9) | 0.0051 (9) | 0.0039 (8) |
N3 | 0.0182 (10) | 0.0157 (9) | 0.0148 (10) | 0.0033 (8) | 0.0018 (8) | 0.0041 (8) |
N4 | 0.0253 (11) | 0.0180 (10) | 0.0247 (13) | 0.0021 (9) | 0.0074 (10) | 0.0079 (9) |
C1 | 0.0215 (11) | 0.0252 (12) | 0.0185 (13) | 0.0102 (10) | 0.0038 (10) | 0.0038 (10) |
C2 | 0.0221 (11) | 0.0212 (11) | 0.0132 (12) | 0.0070 (9) | 0.0053 (9) | 0.0017 (9) |
C3 | 0.0278 (13) | 0.0204 (11) | 0.0203 (13) | 0.0018 (10) | 0.0023 (11) | 0.0043 (10) |
C4 | 0.0322 (14) | 0.0202 (12) | 0.0194 (13) | 0.0012 (10) | 0.0023 (11) | 0.0061 (10) |
C5 | 0.0215 (12) | 0.0234 (12) | 0.0145 (11) | 0.0059 (10) | 0.0058 (10) | 0.0016 (9) |
C6 | 0.0253 (13) | 0.0194 (11) | 0.0199 (13) | 0.0007 (10) | 0.0050 (11) | 0.0008 (10) |
C7 | 0.0289 (13) | 0.0193 (11) | 0.0187 (13) | 0.0067 (10) | 0.0067 (11) | 0.0051 (9) |
C8 | 0.0185 (11) | 0.0173 (11) | 0.0138 (11) | 0.0059 (9) | −0.0013 (9) | 0.0020 (9) |
C9 | 0.0182 (11) | 0.0173 (10) | 0.0135 (11) | 0.0034 (9) | 0.0002 (9) | 0.0026 (9) |
S1—C9 | 1.683 (3) | C1—H1B | 0.9900 |
O1—C5 | 1.376 (4) | C1—C2 | 1.517 (4) |
O1—H1 | 0.95 (4) | C1—C8 | 1.484 (4) |
N1—N2 | 1.379 (3) | C2—C3 | 1.385 (4) |
N1—C8 | 1.297 (4) | C2—C7 | 1.396 (4) |
N2—H2 | 0.8800 | C3—H3 | 0.9500 |
N2—C9 | 1.334 (3) | C3—C4 | 1.389 (4) |
N3—N4 | 1.403 (3) | C4—H4 | 0.9500 |
N3—C8 | 1.380 (3) | C4—C5 | 1.390 (4) |
N3—C9 | 1.364 (3) | C5—C6 | 1.384 (4) |
N4—H4A | 0.8645 | C6—H6 | 0.9500 |
N4—H4B | 0.91 (3) | C6—C7 | 1.395 (4) |
C1—H1A | 0.9900 | C7—H7 | 0.9500 |
C5—O1—H1 | 106 (3) | C2—C3—C4 | 121.4 (3) |
C8—N1—N2 | 104.5 (2) | C4—C3—H3 | 119.3 |
N1—N2—H2 | 123.4 | C3—C4—H4 | 120.3 |
C9—N2—N1 | 113.2 (2) | C3—C4—C5 | 119.4 (3) |
C9—N2—H2 | 123.4 | C5—C4—H4 | 120.3 |
C8—N3—N4 | 124.5 (2) | O1—C5—C4 | 117.3 (3) |
C9—N3—N4 | 126.6 (2) | O1—C5—C6 | 122.3 (2) |
C9—N3—C8 | 108.8 (2) | C6—C5—C4 | 120.4 (3) |
N3—N4—H4A | 109.6 | C5—C6—H6 | 120.4 |
N3—N4—H4B | 104 (2) | C5—C6—C7 | 119.3 (3) |
H4A—N4—H4B | 109.9 | C7—C6—H6 | 120.4 |
H1A—C1—H1B | 107.8 | C2—C7—H7 | 119.4 |
C2—C1—H1A | 109.0 | C6—C7—C2 | 121.1 (3) |
C2—C1—H1B | 109.0 | C6—C7—H7 | 119.4 |
C8—C1—H1A | 109.0 | N1—C8—N3 | 110.1 (2) |
C8—C1—H1B | 109.0 | N1—C8—C1 | 125.8 (2) |
C8—C1—C2 | 113.0 (2) | N3—C8—C1 | 124.2 (2) |
C3—C2—C1 | 121.1 (2) | N2—C9—S1 | 129.2 (2) |
C3—C2—C7 | 118.3 (3) | N2—C9—N3 | 103.4 (2) |
C7—C2—C1 | 120.6 (2) | N3—C9—S1 | 127.36 (19) |
C2—C3—H3 | 119.3 | ||
O1—C5—C6—C7 | −176.7 (3) | C3—C2—C7—C6 | −0.9 (4) |
N1—N2—C9—S1 | −178.7 (2) | C3—C4—C5—O1 | 176.6 (3) |
N1—N2—C9—N3 | −1.2 (3) | C3—C4—C5—C6 | −2.1 (5) |
N2—N1—C8—N3 | −0.1 (3) | C4—C5—C6—C7 | 1.9 (4) |
N2—N1—C8—C1 | 178.4 (3) | C5—C6—C7—C2 | −0.4 (4) |
N4—N3—C8—N1 | −177.2 (3) | C7—C2—C3—C4 | 0.7 (4) |
N4—N3—C8—C1 | 4.3 (4) | C8—N1—N2—C9 | 0.8 (3) |
N4—N3—C9—S1 | −4.9 (4) | C8—N3—C9—S1 | 178.64 (19) |
N4—N3—C9—N2 | 177.5 (3) | C8—N3—C9—N2 | 1.1 (3) |
C1—C2—C3—C4 | −178.2 (3) | C8—C1—C2—C3 | −98.8 (3) |
C1—C2—C7—C6 | 178.1 (3) | C8—C1—C2—C7 | 82.2 (3) |
C2—C1—C8—N1 | −94.8 (3) | C9—N3—C8—N1 | −0.7 (3) |
C2—C1—C8—N3 | 83.5 (3) | C9—N3—C8—C1 | −179.1 (2) |
C2—C3—C4—C5 | 0.7 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.88 | 1.97 | 2.840 (3) | 170 |
O1—H1···S1ii | 0.95 (5) | 2.27 (5) | 3.180 (2) | 159 (4) |
N4—H4A···S1iii | 0.86 | 2.74 | 3.435 (3) | 138 |
N4—H4B···N1iv | 0.91 (3) | 2.32 (3) | 3.149 (4) | 153 (3) |
Symmetry codes: (i) x, y, z−1; (ii) x+1, y+1, z+1; (iii) x−1, y, z; (iv) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.88 | 1.97 | 2.840 (3) | 170 |
O1—H1···S1ii | 0.95 (5) | 2.27 (5) | 3.180 (2) | 159 (4) |
N4—H4A···S1iii | 0.86 | 2.74 | 3.435 (3) | 138 |
N4—H4B···N1iv | 0.91 (3) | 2.32 (3) | 3.149 (4) | 153 (3) |
Symmetry codes: (i) x, y, z−1; (ii) x+1, y+1, z+1; (iii) x−1, y, z; (iv) x, y−1, z. |
Acknowledgements
BKS and PSM gratefully acknowledge the Department of Chemistry, P. A. College of Engineering, for providing research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Chen, X.-A., Huang, X.-B. & Wu, H.-Y. (2007). Acta Cryst. E63, o3191. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gao, Y., Zhang, L. & Wang, H. (2011). Acta Cryst. E67, o1794. Web of Science CSD CrossRef IUCr Journals Google Scholar
Holla, B. S., Rao, B. S., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). Eur. J. Med. Chem. 41, 657–663. PubMed CAS Google Scholar
Holla, B. S., Sarojini, B. K., Rao, B. S., Akberali, P. M. & Suchetha Kumari, N. (2001). Il Farmaco, 56, 565–570. Web of Science CrossRef PubMed CAS Google Scholar
Jones, D. H., Slack, R., Squires, S. & Wooldridge, K. R. H. (1965). J. Med. Chem. 8, 676–680. CrossRef CAS Web of Science Google Scholar
Kane, J. M., Dudley, M. W., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253–1258. CrossRef CAS PubMed Web of Science Google Scholar
Karczmarzyk, Z., Pitucha, M., Wysocki, W., Fruziński, A. & Olender, E. (2012). Acta Cryst. E68, o3264–o3265. CSD CrossRef CAS IUCr Journals Google Scholar
Misato, T., Ko, K., Honma, Y., Konno, K. & Taniyama, E. (1977). Chem. Abstr. 87, 147054a. Google Scholar
Mullican, M. D., Wilson, M. W., Connor, D. T., Kostlan, C. R., Schrier, D. J. & Dyer, R. D. (1993). J. Med. Chem. 36, 1090–1099. CrossRef CAS PubMed Web of Science Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Puviarasan, K., Govindasamy, L., Shanmuga Sundara Raj, S., Velmurugan, D., Jayanthi, G. & Fun, H.-K. (1999). Acta Cryst. C55, 951–953. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Shams El-Dine, Sh. A. & Hazzaa, A. A. B. (1974). Pharmazie, 29, 761–768. CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of triazoles has received considerable attention in recent years because of their versatility in the synthesis of many other heterocyclic compounds. 1,2,4-Triazole derivatives are well known for their different biological activities, therefore various 1,2,4-triazole derivatives and their N-bridged heterocyclic analogs have been extensively studied (Holla et al., 2001,2006). The derivatives of 1,2,4-triazole are known to exhibit anti-inflammatory (Mullican et al., 1993), antiviral (Jones et al., 1965), antimicrobial (Shams El-Dine et al., 1974; Misato et al., 1977) and antidepressant activity (Kane et al., 1988). Hence synthesis of the corresponding heterocyclic compounds could be of interest from the viewpoint of chemical reactivity and biological activity.
The crystal structures of some related triazoles have been reported: 5-(2-Chlorophenyl)-4-phenyl-3,4-dihydro-2H-1,2,4-triazole-3-thione (Puviarasan et al., 1999); 4-Amino-5-(2-ethoxyphenyl)-2,4-dihydro- 2H-1,2,4-triazole-3-thione-triphenylphosphine oxide (Chen et al., 2007); Ethyl2-(3-methyl-5-sulfanylidene-4,5-dihydro- 1H-1,2,4-triazol-4-yl)acetate (Karczmarzyk et al., 2012); 3-(4-Amino-3-phenyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1- yl)-3-(2-chlorophenyl)-1-phenylpropan-1-one (Gao et al., 2011). The present work describes the synthesis and crystal structure of the title compound.
In the title compound, Fig. 1, the dihedral angle between the benzene ring (C2-C7) and the 1H-1,2,4-triazole-5(4H)-thione ring (N1/N2/C9/N3/C8) is 67.51 (16) °.
In the crystal, a single N2—H2···O1 hydrogen bond and additional weak O1—H1···S1, N4—H4A···S1 and N4—H4B···N1 hydrogen bonds are observed (Table 1 and Fig. 2). These interactions link the molecules into one-dimensional chains extending along each of the three axes forming a three-dimensional supramolecular framework.