metal-organic compounds
Tri-μ-chlorido-bis[(η5-pentamethylcyclopentadienyl)rhodium(III)] hexafluoridophosphate from synchrotron radiation
aSchool of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia, and bMark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
*Correspondence e-mail: s.colbran@unsw.edu.au
In the title complex salt, [{(η5-C5Me5)Rh}2(μ-Cl)3]PF6, the dinuclear, single-charged cation is formed by the cojoining of two classic (η5-C5Me5)RhCl3 `piano-stool' units by bridging of the three choride ligand `legs'. The shows several close H⋯F contacts between the hexafluoridophosphate counter-ions and the C5Me5 ligands.
CCDC reference: 974403
Related literature
Complexes of the (η5-C5Me5)RhIII group, modified by innumerable co-ligands, exhibit a diverse and very useful chemistry, particularly as homogeneous catalysts, see, for example: McSkimming et al. (2013); Brewster et al. (2013); Yu, Wan & Li (2013); Yu, Yu, Xiao, et al. (2013), Becerra et al. (2013); Gupta et al. (2013). The title complex salt, [{(η5-C5Me5)Rh}2(μ-Cl)3][PF6], is a commonly encountered impurity produced in reactions of the much-used RhIII precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969; Booth et al., 1969). [{(η5-C5Me5)Rh}2(μ-Cl)3][PF6] was first reported by Koelle (1990), and often (co-)crystallizes with or instead of the desired product of a reaction employing [(η5-C5Me5)RhCl2]2 and anion metathesis with a simple [PF6]− salt. Several crystal structures of the [{(η5-C5Me5)Rh}2(μ-Cl)3]+ cation with other counter-ions have been reported, including salts with [PtCl5(CH3CONH2)]− and [PtCl6]2− (Umakoshi et al., 1991), [{(C6F5)2Pd(μ-Cl)}2]2− (Ara et al., 2001), and BF4− (Liu et al., 2004) anions.
Experimental
Crystal data
|
|
Data collection: BLU-ICE (McPhillips et al., 2002); cell XDS (Kabsch, 1993); data reduction: XDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2013); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 974403
https://doi.org/10.1107/S1600536813032480/tk5276sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813032480/tk5276Isup2.hkl
Precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969 and Booth et al., 1969) was dissolved in methanol and treated with a saturated aqueous solution of K[PF6]. The orange precipitate was collected, and was recrystallized from acetone–methanol overnight at 4 °C to afford the thin orange crystalline needles of [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] that were used for this X-ray determination.
Crystal data, data collection and structure
details are summarized in Table 1. The H atoms were geometrically placed (C—H = 0.96 Å) and refined as riding with Uiso(H) = 1.25Ueq(C).Fig. 1 presents a view of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation and the [PF6]- anion. In the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation, the two independent RhIII ions each exhibit pseudo-octahedral geometry with a C5Me5 group occupying three coordination sites and three bridging chlorido ligands the other three. The Rh–centroid (C5) distances are 2.12 and 2.15 Å and the mean Rh–Cl(bridge) bond length is 2.455 Å. The intramolecular Rh–Rh distance is 3.21 Å, consistent with the absence of a metal–metal bond as predicted by the 18-electron rule, and the mean Rh–Cl–Rh angle is noticeably acute at 82°.
Fig. 2 presents a 'ball-and-stick view' of the packing of the ions in the η5-C5Me5)Rh}2(µ-Cl)3]+ cations.
The hexafluoridophosphate counterions lie in layers parallel to the b-axis that interleave between layers of the cations. There are close C—H···F contacts, Table 1, between the [PF6]- ions and the methyl groups of the [{(Fig. 1 presents a view of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation and the [PF6]- anion. In the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation, the two independent RhIII ions each exhibit pseudo-octahedral geometry with a C5Me5 group occupying three coordination sites and three bridging chlorido ligands the other three. The Rh–centroid (C5) distances are 2.12 and 2.15 Å and the mean Rh–Cl(bridge) bond length is 2.455 Å. The intramolecular Rh–Rh distance is 3.21 Å, consistent with the absence of a metal–metal bond as predicted by the 18-electron rule, and the mean Rh–Cl–Rh angle is noticeably acute at 82°.
Fig. 2 presents a 'ball-and-stick view' of the packing of the ions in the η5-C5Me5)Rh}2(µ-Cl)3]+ cations.
The hexafluoridophosphate counterions lie in layers parallel to the b-axis that interleave between layers of the cations. There are close C—H···F contacts, Table 1, between the [PF6]- ions and the methyl groups of the [{(Complexes of the (η5-C5Me5)RhIII group, modified by innumerable co-ligands, exhibit a diverse and very useful chemistry, particularly as homogeneous catalysts, see, for example: McSkimming et al. (2013); Brewster et al. (2013), Yu, Wan & Li (2013), Yu, Yu, Xiao, et al. (2013), Becerra et al. (2013); Gupta et al. (2013). The title complex salt, [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6], is a commonly encountered impurity produced in reactions of the much-used RhIII precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969; Booth et al., 1969). [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] was first reported by Koelle (1990), and often (co-)crystallizes with or instead of the desired product of a reaction employing [(η5-C5Me5)RhCl2]2 and anion metathesis with a simple [PF6]- salt. The unit-cell parameters for [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] are not available and, therefore, we report its herein. Several crystal structures of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation with other counter-ions have been reported, including salts with [PtCl5(CH3CONH2)]- and [PtCl6]2- (Umakoshi et al., 1991), [{(C6F5)2Pd(µ-Cl)}2]2- (Ara et al., 2001), and BF4- (Liu et al., 2004) anions.
Precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969 and Booth et al., 1969) was dissolved in methanol and treated with a saturated aqueous solution of K[PF6]. The orange precipitate was collected, and was recrystallized from acetone–methanol overnight at 4 °C to afford the thin orange crystalline needles of [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] that were used for this X-ray determination.
detailsCrystal data, data collection and structure
details are summarized in Table 1. The H atoms were geometrically placed (C—H = 0.96 Å) and refined as riding with Uiso(H) = 1.25Ueq(C).Data collection: BLU-ICE (McPhillips et al., 2002); cell
XDS (Kabsch, 1993); data reduction: XDS (Kabsch, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and OLEX-2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2013); software used to prepare material for publication: publCIF (Westrip, 2010).[Rh2(C10H15)2Cl3]PF6 | Z = 2 |
Mr = 727.58 | F(000) = 720 |
Triclinic, P1 | Dx = 1.836 Mg m−3 |
a = 8.0970 (16) Å | Synchrotron radiation, λ = 0.71073 Å |
b = 12.604 (3) Å | Cell parameters from 9980 reflections |
c = 14.441 (3) Å | θ = 2.5–22.5° |
α = 64.28 (3)° | µ = 1.67 mm−1 |
β = 82.42 (3)° | T = 100 K |
γ = 86.70 (3)° | Plate, yellow |
V = 1316.1 (6) Å3 | 0.02 × 0.02 × 0.01 mm |
3-BM1 Australian Synchrotron diffractometer | 4064 reflections with I > 2σ(I) |
Radiation source: Synchrotron BM | Rint = 0.021 |
Si<111> monochromator | θmax = 25.0°, θmin = 1.8° |
Phi Scan scans | h = −9→9 |
15787 measured reflections | k = −14→14 |
4158 independent reflections | l = −17→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.018P)2 + 3.0381P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
4158 reflections | Δρmax = 1.03 e Å−3 |
299 parameters | Δρmin = −0.57 e Å−3 |
[Rh2(C10H15)2Cl3]PF6 | γ = 86.70 (3)° |
Mr = 727.58 | V = 1316.1 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.0970 (16) Å | Synchrotron radiation, λ = 0.71073 Å |
b = 12.604 (3) Å | µ = 1.67 mm−1 |
c = 14.441 (3) Å | T = 100 K |
α = 64.28 (3)° | 0.02 × 0.02 × 0.01 mm |
β = 82.42 (3)° |
3-BM1 Australian Synchrotron diffractometer | 4064 reflections with I > 2σ(I) |
15787 measured reflections | Rint = 0.021 |
4158 independent reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.060 | H-atom parameters constrained |
S = 1.09 | Δρmax = 1.03 e Å−3 |
4158 reflections | Δρmin = −0.57 e Å−3 |
299 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 is against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2; conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Rh1A | 0.10004 (3) | 0.61463 (2) | 0.24284 (2) | 0.01511 (8) | |
C1A | 0.1288 (4) | 0.7995 (2) | 0.1858 (2) | 0.0193 (6) | |
C2A | 0.0856 (4) | 0.7501 (2) | 0.2954 (2) | 0.0204 (6) | |
C3A | −0.0722 (4) | 0.6920 (2) | 0.3203 (3) | 0.0216 (6) | |
C4A | −0.1288 (4) | 0.7091 (2) | 0.2238 (2) | 0.0205 (6) | |
C5A | −0.0069 (4) | 0.7767 (2) | 0.1414 (2) | 0.0195 (6) | |
C6A | 0.2816 (4) | 0.8692 (3) | 0.1264 (3) | 0.0270 (7) | |
H6AA | 0.3726 | 0.8414 | 0.1675 | 0.041* | |
H6AB | 0.2616 | 0.9509 | 0.1102 | 0.041* | |
H6AC | 0.3089 | 0.8602 | 0.0635 | 0.041* | |
C7A | 0.1867 (4) | 0.7580 (3) | 0.3717 (3) | 0.0290 (7) | |
H7AA | 0.1621 | 0.6918 | 0.4376 | 0.044* | |
H7AB | 0.1599 | 0.8296 | 0.3786 | 0.044* | |
H7AC | 0.3030 | 0.7576 | 0.3478 | 0.044* | |
C8A | −0.1641 (4) | 0.6277 (3) | 0.4248 (3) | 0.0288 (7) | |
H8AA | −0.2167 | 0.5596 | 0.4283 | 0.043* | |
H8AB | −0.2473 | 0.6784 | 0.4380 | 0.043* | |
H8AC | −0.0877 | 0.6035 | 0.4758 | 0.043* | |
C9A | −0.2884 (4) | 0.6647 (3) | 0.2138 (3) | 0.0283 (7) | |
H9AA | −0.2774 | 0.6544 | 0.1512 | 0.043* | |
H9AB | −0.3754 | 0.7205 | 0.2116 | 0.043* | |
H9AC | −0.3155 | 0.5906 | 0.2721 | 0.043* | |
C10A | −0.0175 (4) | 0.8173 (3) | 0.0292 (3) | 0.0258 (7) | |
H10A | 0.0927 | 0.8243 | −0.0069 | 0.039* | |
H10B | −0.0720 | 0.8925 | 0.0025 | 0.039* | |
H10C | −0.0800 | 0.7613 | 0.0193 | 0.039* | |
Cl1 | 0.34572 (8) | 0.51534 (6) | 0.32353 (6) | 0.02165 (16) | |
Cl2 | 0.21608 (12) | 0.55011 (7) | 0.11061 (6) | 0.0337 (2) | |
Cl3 | −0.00889 (8) | 0.40972 (6) | 0.32708 (6) | 0.02133 (16) | |
Rh1B | 0.27583 (3) | 0.37186 (2) | 0.26318 (2) | 0.01627 (8) | |
C1B | 0.5043 (4) | 0.2970 (2) | 0.2305 (2) | 0.0200 (6) | |
C2B | 0.4541 (4) | 0.2404 (2) | 0.3399 (2) | 0.0208 (6) | |
C3B | 0.2944 (4) | 0.1876 (2) | 0.3568 (3) | 0.0230 (6) | |
C4B | 0.2479 (4) | 0.2083 (2) | 0.2568 (3) | 0.0226 (6) | |
C5B | 0.3795 (4) | 0.2738 (2) | 0.1797 (2) | 0.0212 (6) | |
C6B | 0.6637 (4) | 0.3625 (3) | 0.1790 (3) | 0.0250 (7) | |
H6BA | 0.6465 | 0.4236 | 0.1122 | 0.038* | |
H6BB | 0.7476 | 0.3091 | 0.1710 | 0.038* | |
H6BC | 0.6995 | 0.3968 | 0.2208 | 0.038* | |
C7B | 0.5525 (4) | 0.2373 (3) | 0.4214 (3) | 0.0254 (7) | |
H7BA | 0.6112 | 0.3103 | 0.3967 | 0.038* | |
H7BB | 0.6309 | 0.1735 | 0.4373 | 0.038* | |
H7BC | 0.4785 | 0.2260 | 0.4826 | 0.038* | |
C8B | 0.1955 (4) | 0.1180 (3) | 0.4585 (3) | 0.0305 (7) | |
H8BA | 0.2270 | 0.1400 | 0.5095 | 0.046* | |
H8BB | 0.2166 | 0.0356 | 0.4791 | 0.046* | |
H8BC | 0.0790 | 0.1336 | 0.4523 | 0.046* | |
C9B | 0.0951 (4) | 0.1628 (3) | 0.2385 (3) | 0.0310 (7) | |
H9BA | 0.0070 | 0.1553 | 0.2925 | 0.046* | |
H9BB | 0.1183 | 0.0873 | 0.2386 | 0.046* | |
H9BC | 0.0618 | 0.2167 | 0.1728 | 0.046* | |
C10B | 0.3836 (4) | 0.3111 (3) | 0.0667 (3) | 0.0273 (7) | |
H10D | 0.2756 | 0.3394 | 0.0460 | 0.041* | |
H10E | 0.4137 | 0.2451 | 0.0513 | 0.041* | |
H10F | 0.4642 | 0.3727 | 0.0297 | 0.041* | |
P1 | 0.65562 (9) | −0.00832 (6) | 0.23670 (6) | 0.02081 (17) | |
F1 | 0.6989 (3) | 0.12409 (17) | 0.1566 (2) | 0.0543 (7) | |
F2 | 0.6292 (4) | 0.0304 (2) | 0.32864 (19) | 0.0580 (8) | |
F3 | 0.6095 (3) | −0.14070 (16) | 0.31547 (17) | 0.0444 (6) | |
F4 | 0.6793 (3) | −0.04801 (18) | 0.14494 (16) | 0.0435 (5) | |
F5 | 0.4642 (2) | 0.01935 (18) | 0.2209 (2) | 0.0425 (5) | |
F6 | 0.8456 (3) | −0.0364 (2) | 0.2528 (3) | 0.0699 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1A | 0.01543 (12) | 0.01295 (12) | 0.01698 (14) | 0.00227 (8) | −0.00149 (9) | −0.00688 (9) |
C1A | 0.0213 (14) | 0.0129 (13) | 0.0248 (17) | 0.0034 (11) | −0.0064 (13) | −0.0084 (11) |
C2A | 0.0217 (14) | 0.0168 (13) | 0.0266 (17) | 0.0056 (11) | −0.0052 (13) | −0.0129 (12) |
C3A | 0.0227 (14) | 0.0176 (14) | 0.0253 (18) | 0.0061 (11) | −0.0002 (13) | −0.0113 (12) |
C4A | 0.0182 (14) | 0.0162 (13) | 0.0274 (18) | 0.0059 (11) | −0.0025 (13) | −0.0105 (12) |
C5A | 0.0202 (14) | 0.0122 (12) | 0.0249 (17) | 0.0029 (10) | −0.0050 (13) | −0.0067 (11) |
C6A | 0.0234 (15) | 0.0205 (15) | 0.0341 (19) | −0.0017 (12) | −0.0068 (14) | −0.0078 (13) |
C7A | 0.0357 (17) | 0.0268 (16) | 0.0307 (19) | 0.0050 (13) | −0.0125 (15) | −0.0163 (14) |
C8A | 0.0305 (16) | 0.0269 (16) | 0.0252 (19) | 0.0057 (13) | 0.0045 (15) | −0.0106 (14) |
C9A | 0.0197 (15) | 0.0236 (15) | 0.043 (2) | 0.0006 (12) | −0.0042 (14) | −0.0151 (14) |
C10A | 0.0277 (16) | 0.0245 (15) | 0.0255 (18) | 0.0022 (12) | −0.0082 (14) | −0.0098 (13) |
Cl1 | 0.0140 (3) | 0.0187 (3) | 0.0367 (4) | 0.0013 (2) | −0.0064 (3) | −0.0153 (3) |
Cl2 | 0.0535 (5) | 0.0247 (4) | 0.0181 (4) | 0.0177 (3) | −0.0013 (4) | −0.0077 (3) |
Cl3 | 0.0147 (3) | 0.0172 (3) | 0.0337 (4) | 0.0003 (2) | −0.0044 (3) | −0.0121 (3) |
Rh1B | 0.01803 (12) | 0.01362 (12) | 0.01822 (14) | 0.00375 (8) | −0.00374 (9) | −0.00785 (9) |
C1B | 0.0216 (14) | 0.0185 (13) | 0.0239 (17) | 0.0078 (11) | −0.0064 (13) | −0.0127 (12) |
C2B | 0.0217 (14) | 0.0150 (13) | 0.0265 (18) | 0.0089 (11) | −0.0085 (13) | −0.0093 (12) |
C3B | 0.0273 (15) | 0.0141 (13) | 0.0277 (18) | 0.0060 (11) | −0.0076 (14) | −0.0086 (12) |
C4B | 0.0249 (15) | 0.0163 (13) | 0.0303 (18) | 0.0043 (11) | −0.0066 (14) | −0.0131 (12) |
C5B | 0.0227 (14) | 0.0179 (14) | 0.0278 (18) | 0.0072 (11) | −0.0071 (13) | −0.0141 (12) |
C6B | 0.0224 (15) | 0.0253 (15) | 0.0315 (19) | 0.0044 (12) | −0.0046 (14) | −0.0162 (14) |
C7B | 0.0280 (16) | 0.0258 (15) | 0.0238 (18) | 0.0053 (12) | −0.0089 (14) | −0.0110 (13) |
C8B | 0.0335 (17) | 0.0220 (15) | 0.0293 (19) | −0.0002 (13) | −0.0017 (15) | −0.0054 (13) |
C9B | 0.0277 (16) | 0.0284 (16) | 0.043 (2) | 0.0001 (13) | −0.0100 (16) | −0.0198 (15) |
C10B | 0.0297 (16) | 0.0304 (16) | 0.0290 (19) | 0.0074 (13) | −0.0097 (15) | −0.0187 (14) |
P1 | 0.0211 (4) | 0.0157 (4) | 0.0277 (5) | 0.0025 (3) | −0.0044 (3) | −0.0112 (3) |
F1 | 0.0556 (14) | 0.0169 (10) | 0.0746 (19) | −0.0048 (9) | 0.0307 (13) | −0.0151 (10) |
F2 | 0.100 (2) | 0.0476 (13) | 0.0488 (15) | 0.0435 (14) | −0.0434 (15) | −0.0372 (12) |
F3 | 0.0634 (14) | 0.0196 (9) | 0.0375 (13) | 0.0082 (9) | 0.0102 (11) | −0.0058 (9) |
F4 | 0.0713 (15) | 0.0319 (11) | 0.0294 (12) | 0.0141 (10) | −0.0040 (11) | −0.0174 (9) |
F5 | 0.0265 (10) | 0.0384 (11) | 0.0757 (17) | 0.0103 (8) | −0.0171 (11) | −0.0348 (11) |
F6 | 0.0297 (11) | 0.0550 (14) | 0.163 (3) | 0.0194 (10) | −0.0407 (15) | −0.0760 (18) |
Rh1A—C1A | 2.123 (3) | Rh1B—C1B | 2.119 (3) |
Rh1A—C4A | 2.126 (3) | Rh1B—C4B | 2.129 (3) |
Rh1A—C3A | 2.127 (3) | Rh1B—C3B | 2.129 (3) |
Rh1A—C2A | 2.140 (3) | Rh1B—C5B | 2.142 (3) |
Rh1A—C5A | 2.145 (3) | Rh1B—C2B | 2.147 (3) |
Rh1A—Cl1 | 2.4372 (11) | C1B—C2B | 1.434 (5) |
Rh1A—Cl2 | 2.4448 (10) | C1B—C5B | 1.435 (4) |
Rh1A—Cl3 | 2.4860 (11) | C1B—C6B | 1.496 (4) |
C1A—C2A | 1.428 (5) | C2B—C3B | 1.433 (4) |
C1A—C5A | 1.443 (4) | C2B—C7B | 1.491 (4) |
C1A—C6A | 1.493 (4) | C3B—C4B | 1.449 (4) |
C2A—C3A | 1.434 (4) | C3B—C8B | 1.490 (5) |
C2A—C7A | 1.496 (4) | C4B—C5B | 1.430 (5) |
C3A—C4A | 1.447 (4) | C4B—C9B | 1.492 (4) |
C3A—C8A | 1.483 (5) | C5B—C10B | 1.486 (5) |
C4A—C5A | 1.423 (4) | C6B—H6BA | 0.9600 |
C4A—C9A | 1.485 (4) | C6B—H6BB | 0.9600 |
C5A—C10A | 1.485 (4) | C6B—H6BC | 0.9600 |
C6A—H6AA | 0.9600 | C7B—H7BA | 0.9600 |
C6A—H6AB | 0.9600 | C7B—H7BB | 0.9600 |
C6A—H6AC | 0.9600 | C7B—H7BC | 0.9600 |
C7A—H7AA | 0.9600 | C8B—H8BA | 0.9600 |
C7A—H7AB | 0.9600 | C8B—H8BB | 0.9600 |
C7A—H7AC | 0.9600 | C8B—H8BC | 0.9600 |
C8A—H8AA | 0.9600 | C9B—H9BA | 0.9600 |
C8A—H8AB | 0.9600 | C9B—H9BB | 0.9600 |
C8A—H8AC | 0.9600 | C9B—H9BC | 0.9600 |
C9A—H9AA | 0.9600 | C10B—H10D | 0.9600 |
C9A—H9AB | 0.9600 | C10B—H10E | 0.9600 |
C9A—H9AC | 0.9600 | C10B—H10F | 0.9600 |
C10A—H10A | 0.9600 | P1—F6 | 1.583 (2) |
C10A—H10B | 0.9600 | P1—F2 | 1.589 (2) |
C10A—H10C | 0.9600 | P1—F3 | 1.590 (2) |
Cl1—Rh1B | 2.4426 (9) | P1—F1 | 1.591 (2) |
Cl2—Rh1B | 2.4485 (13) | P1—F5 | 1.593 (2) |
Cl3—Rh1B | 2.4675 (10) | P1—F4 | 1.594 (2) |
C1A—Rh1A—C4A | 66.16 (11) | C1B—Rh1B—C2B | 39.27 (12) |
C1A—Rh1A—C3A | 66.24 (12) | C4B—Rh1B—C2B | 65.99 (11) |
C4A—Rh1A—C3A | 39.78 (12) | C3B—Rh1B—C2B | 39.15 (12) |
C1A—Rh1A—C2A | 39.13 (12) | C5B—Rh1B—C2B | 65.51 (11) |
C4A—Rh1A—C2A | 65.91 (11) | C1B—Rh1B—Cl1 | 106.37 (8) |
C3A—Rh1A—C2A | 39.26 (12) | C4B—Rh1B—Cl1 | 160.83 (9) |
C1A—Rh1A—C5A | 39.53 (11) | C3B—Rh1B—Cl1 | 121.24 (9) |
C4A—Rh1A—C5A | 38.91 (12) | C5B—Rh1B—Cl1 | 142.82 (8) |
C3A—Rh1A—C5A | 65.94 (12) | C2B—Rh1B—Cl1 | 96.84 (8) |
C2A—Rh1A—C5A | 65.55 (11) | C1B—Rh1B—Cl2 | 109.99 (9) |
C1A—Rh1A—Cl1 | 109.38 (8) | C4B—Rh1B—Cl2 | 116.63 (9) |
C4A—Rh1A—Cl1 | 158.78 (9) | C3B—Rh1B—Cl2 | 156.37 (9) |
C3A—Rh1A—Cl1 | 119.00 (9) | C5B—Rh1B—Cl2 | 95.96 (9) |
C2A—Rh1A—Cl1 | 97.15 (8) | C2B—Rh1B—Cl2 | 147.91 (9) |
C5A—Rh1A—Cl1 | 146.87 (8) | Cl1—Rh1B—Cl2 | 82.39 (3) |
C1A—Rh1A—Cl2 | 110.16 (9) | C1B—Rh1B—Cl3 | 166.37 (8) |
C4A—Rh1A—Cl2 | 118.62 (9) | C4B—Rh1B—Cl3 | 102.35 (9) |
C3A—Rh1A—Cl2 | 158.36 (9) | C3B—Rh1B—Cl3 | 100.28 (10) |
C2A—Rh1A—Cl2 | 147.40 (9) | C5B—Rh1B—Cl3 | 134.81 (8) |
C5A—Rh1A—Cl2 | 97.28 (9) | C2B—Rh1B—Cl3 | 130.39 (9) |
Cl1—Rh1A—Cl2 | 82.58 (3) | Cl1—Rh1B—Cl3 | 81.93 (3) |
C1A—Rh1A—Cl3 | 164.71 (8) | Cl2—Rh1B—Cl3 | 81.46 (5) |
C4A—Rh1A—Cl3 | 99.66 (9) | C2B—C1B—C5B | 108.0 (3) |
C3A—Rh1A—Cl3 | 99.37 (9) | C2B—C1B—C6B | 125.8 (3) |
C2A—Rh1A—Cl3 | 131.24 (9) | C5B—C1B—C6B | 126.1 (3) |
C5A—Rh1A—Cl3 | 131.26 (8) | C2B—C1B—Rh1B | 71.41 (16) |
Cl1—Rh1A—Cl3 | 81.65 (4) | C5B—C1B—Rh1B | 71.21 (16) |
Cl2—Rh1A—Cl3 | 81.16 (4) | C6B—C1B—Rh1B | 125.8 (2) |
C2A—C1A—C5A | 107.8 (3) | C3B—C2B—C1B | 108.2 (3) |
C2A—C1A—C6A | 126.4 (3) | C3B—C2B—C7B | 126.3 (3) |
C5A—C1A—C6A | 125.7 (3) | C1B—C2B—C7B | 125.6 (3) |
C2A—C1A—Rh1A | 71.08 (16) | C3B—C2B—Rh1B | 69.76 (16) |
C5A—C1A—Rh1A | 71.05 (15) | C1B—C2B—Rh1B | 69.32 (15) |
C6A—C1A—Rh1A | 126.3 (2) | C7B—C2B—Rh1B | 126.7 (2) |
C1A—C2A—C3A | 108.5 (3) | C2B—C3B—C4B | 107.8 (3) |
C1A—C2A—C7A | 126.0 (3) | C2B—C3B—C8B | 126.9 (3) |
C3A—C2A—C7A | 125.5 (3) | C4B—C3B—C8B | 125.2 (3) |
C1A—C2A—Rh1A | 69.79 (16) | C2B—C3B—Rh1B | 71.09 (16) |
C3A—C2A—Rh1A | 69.86 (16) | C4B—C3B—Rh1B | 70.09 (16) |
C7A—C2A—Rh1A | 126.5 (2) | C8B—C3B—Rh1B | 126.6 (2) |
C2A—C3A—C4A | 107.4 (3) | C5B—C4B—C3B | 107.7 (3) |
C2A—C3A—C8A | 127.1 (3) | C5B—C4B—C9B | 126.3 (3) |
C4A—C3A—C8A | 125.5 (3) | C3B—C4B—C9B | 125.9 (3) |
C2A—C3A—Rh1A | 70.88 (17) | C5B—C4B—Rh1B | 70.96 (16) |
C4A—C3A—Rh1A | 70.09 (17) | C3B—C4B—Rh1B | 70.12 (16) |
C8A—C3A—Rh1A | 125.2 (2) | C9B—C4B—Rh1B | 127.2 (2) |
C5A—C4A—C3A | 108.2 (3) | C4B—C5B—C1B | 108.3 (3) |
C5A—C4A—C9A | 126.5 (3) | C4B—C5B—C10B | 125.2 (3) |
C3A—C4A—C9A | 125.3 (3) | C1B—C5B—C10B | 126.5 (3) |
C5A—C4A—Rh1A | 71.25 (16) | C4B—C5B—Rh1B | 69.91 (17) |
C3A—C4A—Rh1A | 70.13 (16) | C1B—C5B—Rh1B | 69.44 (16) |
C9A—C4A—Rh1A | 125.1 (2) | C10B—C5B—Rh1B | 126.2 (2) |
C4A—C5A—C1A | 108.0 (3) | C1B—C6B—H6BA | 109.5 |
C4A—C5A—C10A | 126.1 (3) | C1B—C6B—H6BB | 109.5 |
C1A—C5A—C10A | 125.9 (3) | H6BA—C6B—H6BB | 109.5 |
C4A—C5A—Rh1A | 69.83 (16) | C1B—C6B—H6BC | 109.5 |
C1A—C5A—Rh1A | 69.42 (15) | H6BA—C6B—H6BC | 109.5 |
C10A—C5A—Rh1A | 126.6 (2) | H6BB—C6B—H6BC | 109.5 |
C1A—C6A—H6AA | 109.5 | C2B—C7B—H7BA | 109.5 |
C1A—C6A—H6AB | 109.5 | C2B—C7B—H7BB | 109.5 |
H6AA—C6A—H6AB | 109.5 | H7BA—C7B—H7BB | 109.5 |
C1A—C6A—H6AC | 109.5 | C2B—C7B—H7BC | 109.5 |
H6AA—C6A—H6AC | 109.5 | H7BA—C7B—H7BC | 109.5 |
H6AB—C6A—H6AC | 109.5 | H7BB—C7B—H7BC | 109.5 |
C2A—C7A—H7AA | 109.5 | C3B—C8B—H8BA | 109.5 |
C2A—C7A—H7AB | 109.5 | C3B—C8B—H8BB | 109.5 |
H7AA—C7A—H7AB | 109.5 | H8BA—C8B—H8BB | 109.5 |
C2A—C7A—H7AC | 109.5 | C3B—C8B—H8BC | 109.5 |
H7AA—C7A—H7AC | 109.5 | H8BA—C8B—H8BC | 109.5 |
H7AB—C7A—H7AC | 109.5 | H8BB—C8B—H8BC | 109.5 |
C3A—C8A—H8AA | 109.5 | C4B—C9B—H9BA | 109.5 |
C3A—C8A—H8AB | 109.5 | C4B—C9B—H9BB | 109.5 |
H8AA—C8A—H8AB | 109.5 | H9BA—C9B—H9BB | 109.5 |
C3A—C8A—H8AC | 109.5 | C4B—C9B—H9BC | 109.5 |
H8AA—C8A—H8AC | 109.5 | H9BA—C9B—H9BC | 109.5 |
H8AB—C8A—H8AC | 109.5 | H9BB—C9B—H9BC | 109.5 |
C4A—C9A—H9AA | 109.5 | C5B—C10B—H10D | 109.5 |
C4A—C9A—H9AB | 109.5 | C5B—C10B—H10E | 109.5 |
H9AA—C9A—H9AB | 109.5 | H10D—C10B—H10E | 109.5 |
C4A—C9A—H9AC | 109.5 | C5B—C10B—H10F | 109.5 |
H9AA—C9A—H9AC | 109.5 | H10D—C10B—H10F | 109.5 |
H9AB—C9A—H9AC | 109.5 | H10E—C10B—H10F | 109.5 |
C5A—C10A—H10A | 109.5 | F6—P1—F2 | 90.85 (15) |
C5A—C10A—H10B | 109.5 | F6—P1—F3 | 89.65 (15) |
H10A—C10A—H10B | 109.5 | F2—P1—F3 | 90.74 (14) |
C5A—C10A—H10C | 109.5 | F6—P1—F1 | 91.30 (15) |
H10A—C10A—H10C | 109.5 | F2—P1—F1 | 89.88 (15) |
H10B—C10A—H10C | 109.5 | F3—P1—F1 | 178.86 (16) |
Rh1A—Cl1—Rh1B | 82.26 (3) | F6—P1—F5 | 179.7 (2) |
Rh1A—Cl2—Rh1B | 81.99 (3) | F2—P1—F5 | 89.10 (14) |
Rh1B—Cl3—Rh1A | 80.78 (4) | F3—P1—F5 | 90.11 (13) |
C1B—Rh1B—C4B | 66.30 (12) | F1—P1—F5 | 88.95 (13) |
C1B—Rh1B—C3B | 66.24 (12) | F6—P1—F4 | 89.88 (15) |
C4B—Rh1B—C3B | 39.79 (12) | F2—P1—F4 | 179.11 (16) |
C1B—Rh1B—C5B | 39.35 (11) | F3—P1—F4 | 88.76 (12) |
C4B—Rh1B—C5B | 39.13 (12) | F1—P1—F4 | 90.60 (13) |
C3B—Rh1B—C5B | 65.93 (12) | F5—P1—F4 | 90.17 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8A—H8AB···F3i | 0.96 | 2.53 | 3.244 (5) | 131 |
C10A—H10A···F1ii | 0.96 | 2.43 | 3.328 (4) | 156 |
C6B—H6BB···F1 | 0.96 | 2.49 | 3.152 (5) | 126 |
Symmetry codes: (i) x−1, y+1, z; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8A—H8AB···F3i | 0.96 | 2.53 | 3.244 (5) | 131 |
C10A—H10A···F1ii | 0.96 | 2.43 | 3.328 (4) | 156 |
C6B—H6BB···F1 | 0.96 | 2.49 | 3.152 (5) | 126 |
Symmetry codes: (i) x−1, y+1, z; (ii) −x+1, −y+1, −z. |
Acknowledgements
We acknowledge support from the Australian Research Council (ARC DP130103514) and are grateful for Australian Synchrotron for MX2 beamline access.
References
Ara, I., Berenguer, J. R., Eguizabal, E., Fornies, J., Lalinde, E. & Martin, A. (2001). Eur. J. Inorg. Chem. pp. 1631–1640. CrossRef Google Scholar
Becerra, A., Contreras, R., Carmona, D., Lahoz, F. J. & García-Orduña, P. (2013). Dalton Trans. 42, 11640–11651. Web of Science CSD CrossRef CAS PubMed Google Scholar
Booth, B. L., Haszeldine, R. N. & Hill, M. (1969). J. Chem. Soc. A, pp. 1299–1303. CrossRef Web of Science Google Scholar
Brewster, T. P., Miller, A. J. M., Heinekey, D. M. & Goldberg, K. I. (2013). J. Am. Chem. Soc. 135, 16022–16025. Web of Science CrossRef CAS PubMed Google Scholar
CrystalMaker (2013). CrystalMaker. CrystalMaker Software Ltd, Oxford, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gupta, G., Garci, A., Murray, B. S., Dyson, P. J., Fabre, G., Trouillas, P., Giannini, F., Furrer, J., Süss-Fink, G. & Therrien, B. (2013). Dalton Trans. 42, 15457–15463. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kang, J. W., Moseley, K. & Maitlis, P. M. (1969). J. Am. Chem. Soc. 91, 5970–5977. CrossRef CAS Web of Science Google Scholar
Koelle, U. (1990). J. Electroanal. Chem. 292, 217–229. CrossRef CAS Web of Science Google Scholar
Liu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m509–m510. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406. Web of Science CrossRef CAS IUCr Journals Google Scholar
McSkimming, A., Bhadbhade, M. M. & Colbran, S. B. (2013). Angew. Chem. Int. Ed. 52, 3411–3416. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Umakoshi, K., Murata, K. & Yamashita, S. (1991). Inorg. Chim. Acta, 190, 185–191. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, S., Wan, B. & Li, X. (2013). Org. Lett. 15, 3706–3709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yu, X., Yu, S., Xiao, J., Wan, B. & Li, X. (2013). J. Org. Chem. 78, 5444–5452. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.