metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri-μ-chlorido-bis­­[(η5-penta­methyl­cyclo­penta­dien­yl)rhodium(III)] hexa­fluorido­phosphate from synchrotron radiation

aSchool of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia, and bMark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
*Correspondence e-mail: s.colbran@unsw.edu.au

(Received 27 November 2013; accepted 29 November 2013; online 11 December 2013)

In the title complex salt, [{(η5-C5Me5)Rh}2(μ-Cl)3]PF6, the dinuclear, single-charged cation is formed by the cojoining of two classic (η5-C5Me5)RhCl3 `piano-stool' units by bridging of the three choride ligand `legs'. The crystal structure shows several close H⋯F contacts between the hexa­fluorido­phosphate counter-ions and the C5Me5 ligands.

Related literature

Complexes of the (η5-C5Me5)RhIII group, modified by innumerable co-ligands, exhibit a diverse and very useful chemistry, particularly as homogeneous catalysts, see, for example: McSkimming et al. (2013[McSkimming, A., Bhadbhade, M. M. & Colbran, S. B. (2013). Angew. Chem. Int. Ed. 52, 3411-3416.]); Brewster et al. (2013[Brewster, T. P., Miller, A. J. M., Heinekey, D. M. & Goldberg, K. I. (2013). J. Am. Chem. Soc. 135, 16022-16025.]); Yu, Wan & Li (2013[Yu, S., Wan, B. & Li, X. (2013). Org. Lett. 15, 3706-3709.]); Yu, Yu, Xiao, et al. (2013[Yu, X., Yu, S., Xiao, J., Wan, B. & Li, X. (2013). J. Org. Chem. 78, 5444-5452.]), Becerra et al. (2013[Becerra, A., Contreras, R., Carmona, D., Lahoz, F. J. & García-Orduña, P. (2013). Dalton Trans. 42, 11640-11651.]); Gupta et al. (2013[Gupta, G., Garci, A., Murray, B. S., Dyson, P. J., Fabre, G., Trouillas, P., Giannini, F., Furrer, J., Süss-Fink, G. & Therrien, B. (2013). Dalton Trans. 42, 15457-15463.]). The title complex salt, [{(η5-C5Me5)Rh}2(μ-Cl)3][PF6], is a commonly encountered impurity produced in reactions of the much-used RhIII precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969[Kang, J. W., Moseley, K. & Maitlis, P. M. (1969). J. Am. Chem. Soc. 91, 5970-5977.]; Booth et al., 1969[Booth, B. L., Haszeldine, R. N. & Hill, M. (1969). J. Chem. Soc. A, pp. 1299-1303.]). [{(η5-C5Me5)Rh}2(μ-Cl)3][PF6] was first reported by Koelle (1990[Koelle, U. (1990). J. Electroanal. Chem. 292, 217-229.]), and often (co-)crystallizes with or instead of the desired product of a reaction employing [(η5-C5Me5)RhCl2]2 and anion meta­thesis with a simple [PF6] salt. Several crystal structures of the [{(η5-C5Me5)Rh}2(μ-Cl)3]+ cation with other counter-ions have been reported, including salts with [PtCl5(CH3CONH2)] and [PtCl6]2− (Umakoshi et al., 1991[Umakoshi, K., Murata, K. & Yamashita, S. (1991). Inorg. Chim. Acta, 190, 185-191.]), [{(C6F5)2Pd(μ-Cl)}2]2− (Ara et al., 2001[Ara, I., Berenguer, J. R., Eguizabal, E., Fornies, J., Lalinde, E. & Martin, A. (2001). Eur. J. Inorg. Chem. pp. 1631-1640.]), and BF4 (Liu et al., 2004[Liu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m509-m510.]) anions.

[Scheme 1]

Experimental

Crystal data
  • [Rh2(C10H15)2Cl3]PF6

  • Mr = 727.58

  • Triclinic, [P \overline 1]

  • a = 8.0970 (16) Å

  • b = 12.604 (3) Å

  • c = 14.441 (3) Å

  • α = 64.28 (3)°

  • β = 82.42 (3)°

  • γ = 86.70 (3)°

  • V = 1316.1 (6) Å3

  • Z = 2

  • Synchrotron radiation

  • λ = 0.71073 Å

  • μ = 1.67 mm−1

  • T = 100 K

  • 0.02 × 0.02 × 0.01 mm

Data collection
  • 3-BM1 Australian Synchrotron diffractometer

  • 15787 measured reflections

  • 4158 independent reflections

  • 4064 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.060

  • S = 1.09

  • 4158 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8A—H8AB⋯F3i 0.96 2.53 3.244 (5) 131
C10A—H10A⋯F1ii 0.96 2.43 3.328 (4) 156
C6B—H6BB⋯F1 0.96 2.49 3.152 (5) 126
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y+1, -z.

Data collection: BLU-ICE (McPhillips et al., 2002[McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401-406.]); cell refinement: XDS (Kabsch, 1993[Kabsch, W. (1993). J. Appl. Cryst. 26, 795-800.]); data reduction: XDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2013[CrystalMaker (2013). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

Precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969 and Booth et al., 1969) was dissolved in methanol and treated with a saturated aqueous solution of K[PF6]. The orange precipitate was collected, and was recrystallized from acetone–methanol overnight at 4 °C to afford the thin orange crystalline needles of [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] that were used for this X-ray crystal structure determination.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were geometrically placed (C—H = 0.96 Å) and refined as riding with Uiso(H) = 1.25Ueq(C).

Results and discussion top

Fig. 1 presents a view of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation and the [PF6]- anion. In the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation, the two independent RhIII ions each exhibit pseudo-o­cta­hedral geometry with a C5Me5 group occupying three coordination sites and three bridging chlorido ligands the other three. The Rh–centroid (C5) distances are 2.12 and 2.15 Å and the mean Rh–Cl(bridge) bond length is 2.455 Å. The intra­molecular Rh–Rh distance is 3.21 Å, consistent with the absence of a metal–metal bond as predicted by the 18-electron rule, and the mean Rh–Cl–Rh angle is noticeably acute at 82°.

Fig. 2 presents a 'ball-and-stick view' of the packing of the ions in the crystal structure. The hexafluoridophosphate counterions lie in layers parallel to the b-axis that inter­leave between layers of the cations. There are close C—H···F contacts, Table 1, between the [PF6]- ions and the methyl groups of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cations.

Related literature top

Complexes of the (η5-C5Me5)RhIII group, modified by innumerable co-ligands, exhibit a diverse and very useful chemistry, particularly as homogeneous catalysts, see, for example: McSkimming et al. (2013); Brewster et al. (2013), Yu, Wan & Li (2013), Yu, Yu, Xiao, et al. (2013), Becerra et al. (2013); Gupta et al. (2013). The title complex salt, [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6], is a commonly encountered impurity produced in reactions of the much-used RhIII precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969; Booth et al., 1969). [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] was first reported by Koelle (1990), and often (co-)crystallizes with or instead of the desired product of a reaction employing [(η5-C5Me5)RhCl2]2 and anion metathesis with a simple [PF6]- salt. The unit-cell parameters for [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] are not available and, therefore, we report its crystal structure herein. Several crystal structures of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation with other counter-ions have been reported, including salts with [PtCl5(CH3CONH2)]- and [PtCl6]2- (Umakoshi et al., 1991), [{(C6F5)2Pd(µ-Cl)}2]2- (Ara et al., 2001), and BF4- (Liu et al., 2004) anions.

Structure description top

Fig. 1 presents a view of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation and the [PF6]- anion. In the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation, the two independent RhIII ions each exhibit pseudo-o­cta­hedral geometry with a C5Me5 group occupying three coordination sites and three bridging chlorido ligands the other three. The Rh–centroid (C5) distances are 2.12 and 2.15 Å and the mean Rh–Cl(bridge) bond length is 2.455 Å. The intra­molecular Rh–Rh distance is 3.21 Å, consistent with the absence of a metal–metal bond as predicted by the 18-electron rule, and the mean Rh–Cl–Rh angle is noticeably acute at 82°.

Fig. 2 presents a 'ball-and-stick view' of the packing of the ions in the crystal structure. The hexafluoridophosphate counterions lie in layers parallel to the b-axis that inter­leave between layers of the cations. There are close C—H···F contacts, Table 1, between the [PF6]- ions and the methyl groups of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cations.

Complexes of the (η5-C5Me5)RhIII group, modified by innumerable co-ligands, exhibit a diverse and very useful chemistry, particularly as homogeneous catalysts, see, for example: McSkimming et al. (2013); Brewster et al. (2013), Yu, Wan & Li (2013), Yu, Yu, Xiao, et al. (2013), Becerra et al. (2013); Gupta et al. (2013). The title complex salt, [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6], is a commonly encountered impurity produced in reactions of the much-used RhIII precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969; Booth et al., 1969). [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] was first reported by Koelle (1990), and often (co-)crystallizes with or instead of the desired product of a reaction employing [(η5-C5Me5)RhCl2]2 and anion metathesis with a simple [PF6]- salt. The unit-cell parameters for [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] are not available and, therefore, we report its crystal structure herein. Several crystal structures of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation with other counter-ions have been reported, including salts with [PtCl5(CH3CONH2)]- and [PtCl6]2- (Umakoshi et al., 1991), [{(C6F5)2Pd(µ-Cl)}2]2- (Ara et al., 2001), and BF4- (Liu et al., 2004) anions.

Synthesis and crystallization top

Precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969 and Booth et al., 1969) was dissolved in methanol and treated with a saturated aqueous solution of K[PF6]. The orange precipitate was collected, and was recrystallized from acetone–methanol overnight at 4 °C to afford the thin orange crystalline needles of [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] that were used for this X-ray crystal structure determination.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were geometrically placed (C—H = 0.96 Å) and refined as riding with Uiso(H) = 1.25Ueq(C).

Computing details top

Data collection: BLU-ICE (McPhillips et al., 2002); cell refinement: XDS (Kabsch, 1993); data reduction: XDS (Kabsch, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and OLEX-2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2013); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] showing 50% displacement ellipsoids at 100 K and the atom labelling scheme.
[Figure 2] Fig. 2. View of the crystal structure of [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] illustrating the segregation of cations and anions into interleaved layers packed parallel to the b-axis and with the shorter H···F cation-anion contacts highlighted by dashed lines.
Tri-µ-chlorido-bis[(η5-pentamethylcyclopentadienyl)rhodium(III)] hexafluoridophosphate top
Crystal data top
[Rh2(C10H15)2Cl3]PF6Z = 2
Mr = 727.58F(000) = 720
Triclinic, P1Dx = 1.836 Mg m3
a = 8.0970 (16) ÅSynchrotron radiation, λ = 0.71073 Å
b = 12.604 (3) ÅCell parameters from 9980 reflections
c = 14.441 (3) Åθ = 2.5–22.5°
α = 64.28 (3)°µ = 1.67 mm1
β = 82.42 (3)°T = 100 K
γ = 86.70 (3)°Plate, yellow
V = 1316.1 (6) Å30.02 × 0.02 × 0.01 mm
Data collection top
3-BM1 Australian Synchrotron
diffractometer
4064 reflections with I > 2σ(I)
Radiation source: Synchrotron BMRint = 0.021
Si<111> monochromatorθmax = 25.0°, θmin = 1.8°
Phi Scan scansh = 99
15787 measured reflectionsk = 1414
4158 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.018P)2 + 3.0381P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4158 reflectionsΔρmax = 1.03 e Å3
299 parametersΔρmin = 0.57 e Å3
Crystal data top
[Rh2(C10H15)2Cl3]PF6γ = 86.70 (3)°
Mr = 727.58V = 1316.1 (6) Å3
Triclinic, P1Z = 2
a = 8.0970 (16) ÅSynchrotron radiation, λ = 0.71073 Å
b = 12.604 (3) ŵ = 1.67 mm1
c = 14.441 (3) ÅT = 100 K
α = 64.28 (3)°0.02 × 0.02 × 0.01 mm
β = 82.42 (3)°
Data collection top
3-BM1 Australian Synchrotron
diffractometer
4064 reflections with I > 2σ(I)
15787 measured reflectionsRint = 0.021
4158 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.09Δρmax = 1.03 e Å3
4158 reflectionsΔρmin = 0.57 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 is against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2; conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh1A0.10004 (3)0.61463 (2)0.24284 (2)0.01511 (8)
C1A0.1288 (4)0.7995 (2)0.1858 (2)0.0193 (6)
C2A0.0856 (4)0.7501 (2)0.2954 (2)0.0204 (6)
C3A0.0722 (4)0.6920 (2)0.3203 (3)0.0216 (6)
C4A0.1288 (4)0.7091 (2)0.2238 (2)0.0205 (6)
C5A0.0069 (4)0.7767 (2)0.1414 (2)0.0195 (6)
C6A0.2816 (4)0.8692 (3)0.1264 (3)0.0270 (7)
H6AA0.37260.84140.16750.041*
H6AB0.26160.95090.11020.041*
H6AC0.30890.86020.06350.041*
C7A0.1867 (4)0.7580 (3)0.3717 (3)0.0290 (7)
H7AA0.16210.69180.43760.044*
H7AB0.15990.82960.37860.044*
H7AC0.30300.75760.34780.044*
C8A0.1641 (4)0.6277 (3)0.4248 (3)0.0288 (7)
H8AA0.21670.55960.42830.043*
H8AB0.24730.67840.43800.043*
H8AC0.08770.60350.47580.043*
C9A0.2884 (4)0.6647 (3)0.2138 (3)0.0283 (7)
H9AA0.27740.65440.15120.043*
H9AB0.37540.72050.21160.043*
H9AC0.31550.59060.27210.043*
C10A0.0175 (4)0.8173 (3)0.0292 (3)0.0258 (7)
H10A0.09270.82430.00690.039*
H10B0.07200.89250.00250.039*
H10C0.08000.76130.01930.039*
Cl10.34572 (8)0.51534 (6)0.32353 (6)0.02165 (16)
Cl20.21608 (12)0.55011 (7)0.11061 (6)0.0337 (2)
Cl30.00889 (8)0.40972 (6)0.32708 (6)0.02133 (16)
Rh1B0.27583 (3)0.37186 (2)0.26318 (2)0.01627 (8)
C1B0.5043 (4)0.2970 (2)0.2305 (2)0.0200 (6)
C2B0.4541 (4)0.2404 (2)0.3399 (2)0.0208 (6)
C3B0.2944 (4)0.1876 (2)0.3568 (3)0.0230 (6)
C4B0.2479 (4)0.2083 (2)0.2568 (3)0.0226 (6)
C5B0.3795 (4)0.2738 (2)0.1797 (2)0.0212 (6)
C6B0.6637 (4)0.3625 (3)0.1790 (3)0.0250 (7)
H6BA0.64650.42360.11220.038*
H6BB0.74760.30910.17100.038*
H6BC0.69950.39680.22080.038*
C7B0.5525 (4)0.2373 (3)0.4214 (3)0.0254 (7)
H7BA0.61120.31030.39670.038*
H7BB0.63090.17350.43730.038*
H7BC0.47850.22600.48260.038*
C8B0.1955 (4)0.1180 (3)0.4585 (3)0.0305 (7)
H8BA0.22700.14000.50950.046*
H8BB0.21660.03560.47910.046*
H8BC0.07900.13360.45230.046*
C9B0.0951 (4)0.1628 (3)0.2385 (3)0.0310 (7)
H9BA0.00700.15530.29250.046*
H9BB0.11830.08730.23860.046*
H9BC0.06180.21670.17280.046*
C10B0.3836 (4)0.3111 (3)0.0667 (3)0.0273 (7)
H10D0.27560.33940.04600.041*
H10E0.41370.24510.05130.041*
H10F0.46420.37270.02970.041*
P10.65562 (9)0.00832 (6)0.23670 (6)0.02081 (17)
F10.6989 (3)0.12409 (17)0.1566 (2)0.0543 (7)
F20.6292 (4)0.0304 (2)0.32864 (19)0.0580 (8)
F30.6095 (3)0.14070 (16)0.31547 (17)0.0444 (6)
F40.6793 (3)0.04801 (18)0.14494 (16)0.0435 (5)
F50.4642 (2)0.01935 (18)0.2209 (2)0.0425 (5)
F60.8456 (3)0.0364 (2)0.2528 (3)0.0699 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh1A0.01543 (12)0.01295 (12)0.01698 (14)0.00227 (8)0.00149 (9)0.00688 (9)
C1A0.0213 (14)0.0129 (13)0.0248 (17)0.0034 (11)0.0064 (13)0.0084 (11)
C2A0.0217 (14)0.0168 (13)0.0266 (17)0.0056 (11)0.0052 (13)0.0129 (12)
C3A0.0227 (14)0.0176 (14)0.0253 (18)0.0061 (11)0.0002 (13)0.0113 (12)
C4A0.0182 (14)0.0162 (13)0.0274 (18)0.0059 (11)0.0025 (13)0.0105 (12)
C5A0.0202 (14)0.0122 (12)0.0249 (17)0.0029 (10)0.0050 (13)0.0067 (11)
C6A0.0234 (15)0.0205 (15)0.0341 (19)0.0017 (12)0.0068 (14)0.0078 (13)
C7A0.0357 (17)0.0268 (16)0.0307 (19)0.0050 (13)0.0125 (15)0.0163 (14)
C8A0.0305 (16)0.0269 (16)0.0252 (19)0.0057 (13)0.0045 (15)0.0106 (14)
C9A0.0197 (15)0.0236 (15)0.043 (2)0.0006 (12)0.0042 (14)0.0151 (14)
C10A0.0277 (16)0.0245 (15)0.0255 (18)0.0022 (12)0.0082 (14)0.0098 (13)
Cl10.0140 (3)0.0187 (3)0.0367 (4)0.0013 (2)0.0064 (3)0.0153 (3)
Cl20.0535 (5)0.0247 (4)0.0181 (4)0.0177 (3)0.0013 (4)0.0077 (3)
Cl30.0147 (3)0.0172 (3)0.0337 (4)0.0003 (2)0.0044 (3)0.0121 (3)
Rh1B0.01803 (12)0.01362 (12)0.01822 (14)0.00375 (8)0.00374 (9)0.00785 (9)
C1B0.0216 (14)0.0185 (13)0.0239 (17)0.0078 (11)0.0064 (13)0.0127 (12)
C2B0.0217 (14)0.0150 (13)0.0265 (18)0.0089 (11)0.0085 (13)0.0093 (12)
C3B0.0273 (15)0.0141 (13)0.0277 (18)0.0060 (11)0.0076 (14)0.0086 (12)
C4B0.0249 (15)0.0163 (13)0.0303 (18)0.0043 (11)0.0066 (14)0.0131 (12)
C5B0.0227 (14)0.0179 (14)0.0278 (18)0.0072 (11)0.0071 (13)0.0141 (12)
C6B0.0224 (15)0.0253 (15)0.0315 (19)0.0044 (12)0.0046 (14)0.0162 (14)
C7B0.0280 (16)0.0258 (15)0.0238 (18)0.0053 (12)0.0089 (14)0.0110 (13)
C8B0.0335 (17)0.0220 (15)0.0293 (19)0.0002 (13)0.0017 (15)0.0054 (13)
C9B0.0277 (16)0.0284 (16)0.043 (2)0.0001 (13)0.0100 (16)0.0198 (15)
C10B0.0297 (16)0.0304 (16)0.0290 (19)0.0074 (13)0.0097 (15)0.0187 (14)
P10.0211 (4)0.0157 (4)0.0277 (5)0.0025 (3)0.0044 (3)0.0112 (3)
F10.0556 (14)0.0169 (10)0.0746 (19)0.0048 (9)0.0307 (13)0.0151 (10)
F20.100 (2)0.0476 (13)0.0488 (15)0.0435 (14)0.0434 (15)0.0372 (12)
F30.0634 (14)0.0196 (9)0.0375 (13)0.0082 (9)0.0102 (11)0.0058 (9)
F40.0713 (15)0.0319 (11)0.0294 (12)0.0141 (10)0.0040 (11)0.0174 (9)
F50.0265 (10)0.0384 (11)0.0757 (17)0.0103 (8)0.0171 (11)0.0348 (11)
F60.0297 (11)0.0550 (14)0.163 (3)0.0194 (10)0.0407 (15)0.0760 (18)
Geometric parameters (Å, º) top
Rh1A—C1A2.123 (3)Rh1B—C1B2.119 (3)
Rh1A—C4A2.126 (3)Rh1B—C4B2.129 (3)
Rh1A—C3A2.127 (3)Rh1B—C3B2.129 (3)
Rh1A—C2A2.140 (3)Rh1B—C5B2.142 (3)
Rh1A—C5A2.145 (3)Rh1B—C2B2.147 (3)
Rh1A—Cl12.4372 (11)C1B—C2B1.434 (5)
Rh1A—Cl22.4448 (10)C1B—C5B1.435 (4)
Rh1A—Cl32.4860 (11)C1B—C6B1.496 (4)
C1A—C2A1.428 (5)C2B—C3B1.433 (4)
C1A—C5A1.443 (4)C2B—C7B1.491 (4)
C1A—C6A1.493 (4)C3B—C4B1.449 (4)
C2A—C3A1.434 (4)C3B—C8B1.490 (5)
C2A—C7A1.496 (4)C4B—C5B1.430 (5)
C3A—C4A1.447 (4)C4B—C9B1.492 (4)
C3A—C8A1.483 (5)C5B—C10B1.486 (5)
C4A—C5A1.423 (4)C6B—H6BA0.9600
C4A—C9A1.485 (4)C6B—H6BB0.9600
C5A—C10A1.485 (4)C6B—H6BC0.9600
C6A—H6AA0.9600C7B—H7BA0.9600
C6A—H6AB0.9600C7B—H7BB0.9600
C6A—H6AC0.9600C7B—H7BC0.9600
C7A—H7AA0.9600C8B—H8BA0.9600
C7A—H7AB0.9600C8B—H8BB0.9600
C7A—H7AC0.9600C8B—H8BC0.9600
C8A—H8AA0.9600C9B—H9BA0.9600
C8A—H8AB0.9600C9B—H9BB0.9600
C8A—H8AC0.9600C9B—H9BC0.9600
C9A—H9AA0.9600C10B—H10D0.9600
C9A—H9AB0.9600C10B—H10E0.9600
C9A—H9AC0.9600C10B—H10F0.9600
C10A—H10A0.9600P1—F61.583 (2)
C10A—H10B0.9600P1—F21.589 (2)
C10A—H10C0.9600P1—F31.590 (2)
Cl1—Rh1B2.4426 (9)P1—F11.591 (2)
Cl2—Rh1B2.4485 (13)P1—F51.593 (2)
Cl3—Rh1B2.4675 (10)P1—F41.594 (2)
C1A—Rh1A—C4A66.16 (11)C1B—Rh1B—C2B39.27 (12)
C1A—Rh1A—C3A66.24 (12)C4B—Rh1B—C2B65.99 (11)
C4A—Rh1A—C3A39.78 (12)C3B—Rh1B—C2B39.15 (12)
C1A—Rh1A—C2A39.13 (12)C5B—Rh1B—C2B65.51 (11)
C4A—Rh1A—C2A65.91 (11)C1B—Rh1B—Cl1106.37 (8)
C3A—Rh1A—C2A39.26 (12)C4B—Rh1B—Cl1160.83 (9)
C1A—Rh1A—C5A39.53 (11)C3B—Rh1B—Cl1121.24 (9)
C4A—Rh1A—C5A38.91 (12)C5B—Rh1B—Cl1142.82 (8)
C3A—Rh1A—C5A65.94 (12)C2B—Rh1B—Cl196.84 (8)
C2A—Rh1A—C5A65.55 (11)C1B—Rh1B—Cl2109.99 (9)
C1A—Rh1A—Cl1109.38 (8)C4B—Rh1B—Cl2116.63 (9)
C4A—Rh1A—Cl1158.78 (9)C3B—Rh1B—Cl2156.37 (9)
C3A—Rh1A—Cl1119.00 (9)C5B—Rh1B—Cl295.96 (9)
C2A—Rh1A—Cl197.15 (8)C2B—Rh1B—Cl2147.91 (9)
C5A—Rh1A—Cl1146.87 (8)Cl1—Rh1B—Cl282.39 (3)
C1A—Rh1A—Cl2110.16 (9)C1B—Rh1B—Cl3166.37 (8)
C4A—Rh1A—Cl2118.62 (9)C4B—Rh1B—Cl3102.35 (9)
C3A—Rh1A—Cl2158.36 (9)C3B—Rh1B—Cl3100.28 (10)
C2A—Rh1A—Cl2147.40 (9)C5B—Rh1B—Cl3134.81 (8)
C5A—Rh1A—Cl297.28 (9)C2B—Rh1B—Cl3130.39 (9)
Cl1—Rh1A—Cl282.58 (3)Cl1—Rh1B—Cl381.93 (3)
C1A—Rh1A—Cl3164.71 (8)Cl2—Rh1B—Cl381.46 (5)
C4A—Rh1A—Cl399.66 (9)C2B—C1B—C5B108.0 (3)
C3A—Rh1A—Cl399.37 (9)C2B—C1B—C6B125.8 (3)
C2A—Rh1A—Cl3131.24 (9)C5B—C1B—C6B126.1 (3)
C5A—Rh1A—Cl3131.26 (8)C2B—C1B—Rh1B71.41 (16)
Cl1—Rh1A—Cl381.65 (4)C5B—C1B—Rh1B71.21 (16)
Cl2—Rh1A—Cl381.16 (4)C6B—C1B—Rh1B125.8 (2)
C2A—C1A—C5A107.8 (3)C3B—C2B—C1B108.2 (3)
C2A—C1A—C6A126.4 (3)C3B—C2B—C7B126.3 (3)
C5A—C1A—C6A125.7 (3)C1B—C2B—C7B125.6 (3)
C2A—C1A—Rh1A71.08 (16)C3B—C2B—Rh1B69.76 (16)
C5A—C1A—Rh1A71.05 (15)C1B—C2B—Rh1B69.32 (15)
C6A—C1A—Rh1A126.3 (2)C7B—C2B—Rh1B126.7 (2)
C1A—C2A—C3A108.5 (3)C2B—C3B—C4B107.8 (3)
C1A—C2A—C7A126.0 (3)C2B—C3B—C8B126.9 (3)
C3A—C2A—C7A125.5 (3)C4B—C3B—C8B125.2 (3)
C1A—C2A—Rh1A69.79 (16)C2B—C3B—Rh1B71.09 (16)
C3A—C2A—Rh1A69.86 (16)C4B—C3B—Rh1B70.09 (16)
C7A—C2A—Rh1A126.5 (2)C8B—C3B—Rh1B126.6 (2)
C2A—C3A—C4A107.4 (3)C5B—C4B—C3B107.7 (3)
C2A—C3A—C8A127.1 (3)C5B—C4B—C9B126.3 (3)
C4A—C3A—C8A125.5 (3)C3B—C4B—C9B125.9 (3)
C2A—C3A—Rh1A70.88 (17)C5B—C4B—Rh1B70.96 (16)
C4A—C3A—Rh1A70.09 (17)C3B—C4B—Rh1B70.12 (16)
C8A—C3A—Rh1A125.2 (2)C9B—C4B—Rh1B127.2 (2)
C5A—C4A—C3A108.2 (3)C4B—C5B—C1B108.3 (3)
C5A—C4A—C9A126.5 (3)C4B—C5B—C10B125.2 (3)
C3A—C4A—C9A125.3 (3)C1B—C5B—C10B126.5 (3)
C5A—C4A—Rh1A71.25 (16)C4B—C5B—Rh1B69.91 (17)
C3A—C4A—Rh1A70.13 (16)C1B—C5B—Rh1B69.44 (16)
C9A—C4A—Rh1A125.1 (2)C10B—C5B—Rh1B126.2 (2)
C4A—C5A—C1A108.0 (3)C1B—C6B—H6BA109.5
C4A—C5A—C10A126.1 (3)C1B—C6B—H6BB109.5
C1A—C5A—C10A125.9 (3)H6BA—C6B—H6BB109.5
C4A—C5A—Rh1A69.83 (16)C1B—C6B—H6BC109.5
C1A—C5A—Rh1A69.42 (15)H6BA—C6B—H6BC109.5
C10A—C5A—Rh1A126.6 (2)H6BB—C6B—H6BC109.5
C1A—C6A—H6AA109.5C2B—C7B—H7BA109.5
C1A—C6A—H6AB109.5C2B—C7B—H7BB109.5
H6AA—C6A—H6AB109.5H7BA—C7B—H7BB109.5
C1A—C6A—H6AC109.5C2B—C7B—H7BC109.5
H6AA—C6A—H6AC109.5H7BA—C7B—H7BC109.5
H6AB—C6A—H6AC109.5H7BB—C7B—H7BC109.5
C2A—C7A—H7AA109.5C3B—C8B—H8BA109.5
C2A—C7A—H7AB109.5C3B—C8B—H8BB109.5
H7AA—C7A—H7AB109.5H8BA—C8B—H8BB109.5
C2A—C7A—H7AC109.5C3B—C8B—H8BC109.5
H7AA—C7A—H7AC109.5H8BA—C8B—H8BC109.5
H7AB—C7A—H7AC109.5H8BB—C8B—H8BC109.5
C3A—C8A—H8AA109.5C4B—C9B—H9BA109.5
C3A—C8A—H8AB109.5C4B—C9B—H9BB109.5
H8AA—C8A—H8AB109.5H9BA—C9B—H9BB109.5
C3A—C8A—H8AC109.5C4B—C9B—H9BC109.5
H8AA—C8A—H8AC109.5H9BA—C9B—H9BC109.5
H8AB—C8A—H8AC109.5H9BB—C9B—H9BC109.5
C4A—C9A—H9AA109.5C5B—C10B—H10D109.5
C4A—C9A—H9AB109.5C5B—C10B—H10E109.5
H9AA—C9A—H9AB109.5H10D—C10B—H10E109.5
C4A—C9A—H9AC109.5C5B—C10B—H10F109.5
H9AA—C9A—H9AC109.5H10D—C10B—H10F109.5
H9AB—C9A—H9AC109.5H10E—C10B—H10F109.5
C5A—C10A—H10A109.5F6—P1—F290.85 (15)
C5A—C10A—H10B109.5F6—P1—F389.65 (15)
H10A—C10A—H10B109.5F2—P1—F390.74 (14)
C5A—C10A—H10C109.5F6—P1—F191.30 (15)
H10A—C10A—H10C109.5F2—P1—F189.88 (15)
H10B—C10A—H10C109.5F3—P1—F1178.86 (16)
Rh1A—Cl1—Rh1B82.26 (3)F6—P1—F5179.7 (2)
Rh1A—Cl2—Rh1B81.99 (3)F2—P1—F589.10 (14)
Rh1B—Cl3—Rh1A80.78 (4)F3—P1—F590.11 (13)
C1B—Rh1B—C4B66.30 (12)F1—P1—F588.95 (13)
C1B—Rh1B—C3B66.24 (12)F6—P1—F489.88 (15)
C4B—Rh1B—C3B39.79 (12)F2—P1—F4179.11 (16)
C1B—Rh1B—C5B39.35 (11)F3—P1—F488.76 (12)
C4B—Rh1B—C5B39.13 (12)F1—P1—F490.60 (13)
C3B—Rh1B—C5B65.93 (12)F5—P1—F490.17 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8AB···F3i0.962.533.244 (5)131
C10A—H10A···F1ii0.962.433.328 (4)156
C6B—H6BB···F10.962.493.152 (5)126
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8AB···F3i0.962.533.244 (5)131
C10A—H10A···F1ii0.962.433.328 (4)156
C6B—H6BB···F10.962.493.152 (5)126
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z.
 

Acknowledgements

We acknowledge support from the Australian Research Council (ARC DP130103514) and are grateful for Australian Synchrotron for MX2 beamline access.

References

First citationAra, I., Berenguer, J. R., Eguizabal, E., Fornies, J., Lalinde, E. & Martin, A. (2001). Eur. J. Inorg. Chem. pp. 1631–1640.  CrossRef Google Scholar
First citationBecerra, A., Contreras, R., Carmona, D., Lahoz, F. J. & García-Orduña, P. (2013). Dalton Trans. 42, 11640–11651.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBooth, B. L., Haszeldine, R. N. & Hill, M. (1969). J. Chem. Soc. A, pp. 1299–1303.  CrossRef Web of Science Google Scholar
First citationBrewster, T. P., Miller, A. J. M., Heinekey, D. M. & Goldberg, K. I. (2013). J. Am. Chem. Soc. 135, 16022–16025.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCrystalMaker (2013). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGupta, G., Garci, A., Murray, B. S., Dyson, P. J., Fabre, G., Trouillas, P., Giannini, F., Furrer, J., Süss-Fink, G. & Therrien, B. (2013). Dalton Trans. 42, 15457–15463.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKabsch, W. (1993). J. Appl. Cryst. 26, 795–800.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKang, J. W., Moseley, K. & Maitlis, P. M. (1969). J. Am. Chem. Soc. 91, 5970–5977.  CrossRef CAS Web of Science Google Scholar
First citationKoelle, U. (1990). J. Electroanal. Chem. 292, 217–229.  CrossRef CAS Web of Science Google Scholar
First citationLiu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m509–m510.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcSkimming, A., Bhadbhade, M. M. & Colbran, S. B. (2013). Angew. Chem. Int. Ed. 52, 3411–3416.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUmakoshi, K., Murata, K. & Yamashita, S. (1991). Inorg. Chim. Acta, 190, 185–191.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, S., Wan, B. & Li, X. (2013). Org. Lett. 15, 3706–3709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYu, X., Yu, S., Xiao, J., Wan, B. & Li, X. (2013). J. Org. Chem. 78, 5444–5452.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds