organic compounds
2-Isopropyl-5-methylcyclohexyl quinoline-2-carboxylate
aDepartment of Chemistry, Yuvaraja's College, Mysore 570 005, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cP.P.S.F.T. Department, Central Food Technplogy Research institute, Mysore 570 005, India
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C20H25NO2, the cyclohexyl ring adopts a slightly disordered chair conformation. The dihedral angle between the mean planes of the quinoline ring and the carboxylate group is 22.2 (6)°. In the crystal, weak C—H⋯N interactions make chains along [010].
CCDC reference: 975532
Related literature
For heterocycles in natural products, see: Morimoto et al. (1991); Michael (1997). For heterocycles in fragrances and dyes, see: Padwa et al. (1999). For heterocycles in biologically active compounds, see: Markees et al. (1970); Campbell et al.(1988). For quinoline used as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011). For related structures, see: Fazal et al. (2012, 2013a,b,c); Butcher et al. (2007); Jing & Qin (2008); Jasinski et al. (2010). For puckering parameters, see Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 975532
https://doi.org/10.1107/S1600536813033060/tk5278sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813033060/tk5278Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813033060/tk5278Isup3.cml
The title compound was prepared by the following procedure: To a mixture of 1.73 g (10 mmol) of quinaldic acid and 1.56 g (10 mmole) of 2-isopropyl-5-methylcyclohexanol in a round-bottomed flask fitted with a reflux condenser with a drying tube is added phosphorous oxychloride (0.150 g, 10 mmol). The mixture is heated with occasional swirling, and temperature is maintained at 348-353 K. At the end of 8 h the reaction mixture is poured in to a solution of sodium bicarbonate (2 g) in water (25 mL). The precipitated ester is collected on a filter and washed with water. The yield of crude, air dried 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate is isolated in 1.71 to 1.85 g (65-70 %) yield. X-ray quality crystals were obtained by recrystallization from absolute ethanol by slow evaporation (M.pt: 414-416 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95–1.00 Å, and with Uiso(H) = 1.2–1.5Ueq(C). Two reflections, i.e. (1 0 1) and (0 0 2), were removed from the final cycles of
owing to poor agreement.Quinoline-2 carboxylic acid derivatives are a class of important materials as anti-tuberculosis agents, as fluorescent reagents, hydrophobic field-detection reagents, visualisation reagents, fluorescent labelled peptide probes and as antihyperglycemics. Quinoline derivatives represent a major class of heterocycles and are found in natural products (Morimoto et al., 1991; Michael, 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline
such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Quinoline as a privileged scaffold in cancer drug discovery is published (Solomon & Lee, 2011). The crystal structures of 4-methylphenyl quinoline-2-carboxylate (Fazal et al., 2012), 4-chloro-3-methylphenyl quinoline-2- carboxylate (Fazal et al., 2013a), 4-chlorophenyl quinoline- 2-carboxylate (Fazal et al., 2013b), 3,4-dimethylphenyl quinoline-2-carboxylate (Fazal et al., 2013c), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and methyl quinoline-2-carboxylate (Jing & Qin, 2008) as well as the synthesis, crystal structures and theoretical studies of four derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have been reported. In view of the importance of quinolines, this paper reports the of the title compound, (I), C20H25NO2.In the title compound, (I), Fig. 1, the cyclohexyl ring adopts a slightly disordered chair conformation (puckering parameters for C11–C16: Q, θ, and φ = 0.593 (2)Å, 4.32 (19)° and 308 (2)°, respectively (Cremer & Pople, 1975). The dihedral angle between the mean planes of the quinoline ring and the carboxylate group (C2/C1/O1/O2) is 22.2 (6)°. In the crystal, weak C7—H7···N1 intermolecular interactions make chains along [0 1 0] and influence the crystal packing (Fig. 2 & Table 1).
For heterocycles in natural products, see: Morimoto et al. (1991); Michael (1997). For heterocycles in fragrances and dyes, see: Padwa et al. (1999). For heterocycles in biologically active compounds, see: Markees et al. (1970); Campbell et al.(1988). For quinoline
used as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011). For related structures, see: Fazal et al. (2012, 2013a,b,c); Butcher et al. (2007); Jing & Qin (2008); Jasinski et al. (2010). For puckering parameters, see Cremer & Pople (1975).Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C20H25NO2 | Dx = 1.198 Mg m−3 |
Mr = 311.41 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 6294 reflections |
a = 9.31412 (17) Å | θ = 4.7–72.3° |
b = 11.9669 (2) Å | µ = 0.60 mm−1 |
c = 15.4894 (3) Å | T = 173 K |
V = 1726.47 (6) Å3 | Irregular, colourless |
Z = 4 | 0.38 × 0.32 × 0.24 mm |
F(000) = 672 |
Agilent Gemini EOS diffractometer | 3389 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 3281 reflections with I > 2σ(I) |
Detector resolution: 16.0416 pixels mm-1 | Rint = 0.037 |
ω scans | θmax = 72.4°, θmin = 4.7° |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012). | h = −11→5 |
Tmin = 0.921, Tmax = 1.000 | k = −14→14 |
11010 measured reflections | l = −19→18 |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0661P)2 + 0.1484P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.037 | (Δ/σ)max < 0.001 |
wR(F2) = 0.098 | Δρmax = 0.20 e Å−3 |
S = 1.04 | Δρmin = −0.17 e Å−3 |
3389 reflections | Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
212 parameters | Extinction coefficient: 0.0093 (10) |
0 restraints | Absolute structure: Flack (1983); 1372 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (13) |
Hydrogen site location: inferred from neighbouring sites |
C20H25NO2 | V = 1726.47 (6) Å3 |
Mr = 311.41 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 9.31412 (17) Å | µ = 0.60 mm−1 |
b = 11.9669 (2) Å | T = 173 K |
c = 15.4894 (3) Å | 0.38 × 0.32 × 0.24 mm |
Agilent Gemini EOS diffractometer | 3389 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012). | 3281 reflections with I > 2σ(I) |
Tmin = 0.921, Tmax = 1.000 | Rint = 0.037 |
11010 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.098 | Δρmax = 0.20 e Å−3 |
S = 1.04 | Δρmin = −0.17 e Å−3 |
3389 reflections | Absolute structure: Flack (1983); 1372 Friedel pairs |
212 parameters | Absolute structure parameter: −0.01 (13) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.92164 (17) | 0.54532 (12) | 0.51535 (10) | 0.0408 (4) | |
O2 | 0.79892 (13) | 0.64179 (10) | 0.41465 (8) | 0.0261 (3) | |
N1 | 0.70130 (16) | 0.45417 (11) | 0.34655 (9) | 0.0230 (3) | |
C1 | 0.83460 (19) | 0.55000 (15) | 0.45755 (11) | 0.0253 (4) | |
C2 | 0.75365 (19) | 0.44942 (14) | 0.42566 (11) | 0.0240 (4) | |
C3 | 0.7426 (2) | 0.35518 (16) | 0.48000 (11) | 0.0295 (4) | |
H3 | 0.7848 | 0.3554 | 0.5358 | 0.035* | |
C4 | 0.6697 (2) | 0.26358 (15) | 0.45059 (12) | 0.0311 (4) | |
H4 | 0.6592 | 0.1997 | 0.4864 | 0.037* | |
C5 | 0.6104 (2) | 0.26440 (14) | 0.36683 (12) | 0.0262 (4) | |
C6 | 0.5318 (2) | 0.17400 (15) | 0.33109 (14) | 0.0327 (4) | |
H6 | 0.5171 | 0.1083 | 0.3643 | 0.039* | |
C7 | 0.4772 (2) | 0.18048 (17) | 0.24958 (15) | 0.0348 (4) | |
H7 | 0.4233 | 0.1199 | 0.2268 | 0.042* | |
C8 | 0.5004 (2) | 0.27692 (16) | 0.19885 (13) | 0.0314 (4) | |
H8 | 0.4633 | 0.2800 | 0.1418 | 0.038* | |
C9 | 0.5755 (2) | 0.36578 (15) | 0.23068 (12) | 0.0283 (4) | |
H9 | 0.5908 | 0.4299 | 0.1957 | 0.034* | |
C10 | 0.63087 (19) | 0.36241 (14) | 0.31610 (11) | 0.0235 (4) | |
C11 | 0.88592 (18) | 0.74196 (14) | 0.42860 (11) | 0.0243 (4) | |
H11 | 0.9840 | 0.7195 | 0.4483 | 0.029* | |
C12 | 0.8164 (2) | 0.81503 (14) | 0.49708 (12) | 0.0265 (4) | |
H12A | 0.8105 | 0.7732 | 0.5521 | 0.032* | |
H12B | 0.7174 | 0.8342 | 0.4790 | 0.032* | |
C13 | 0.9028 (2) | 0.92258 (15) | 0.51090 (12) | 0.0290 (4) | |
H13 | 0.9993 | 0.9015 | 0.5340 | 0.035* | |
C14 | 0.9247 (2) | 0.98221 (15) | 0.42454 (14) | 0.0345 (5) | |
H14A | 0.8310 | 1.0098 | 0.4033 | 0.041* | |
H14B | 0.9880 | 1.0477 | 0.4334 | 0.041* | |
C15 | 0.9910 (2) | 0.90594 (16) | 0.35660 (13) | 0.0329 (4) | |
H15A | 1.0879 | 0.8826 | 0.3756 | 0.039* | |
H15B | 1.0012 | 0.9474 | 0.3016 | 0.039* | |
C16 | 0.89728 (19) | 0.80190 (15) | 0.34186 (12) | 0.0259 (4) | |
H16 | 0.7988 | 0.8290 | 0.3269 | 0.031* | |
C17 | 0.9465 (2) | 0.72518 (16) | 0.26757 (12) | 0.0301 (4) | |
H17 | 0.8757 | 0.6626 | 0.2637 | 0.036* | |
C18 | 1.0935 (2) | 0.67304 (19) | 0.28311 (15) | 0.0397 (5) | |
H18A | 1.1647 | 0.7323 | 0.2919 | 0.060* | |
H18B | 1.1208 | 0.6280 | 0.2329 | 0.060* | |
H18C | 1.0896 | 0.6253 | 0.3345 | 0.060* | |
C19 | 0.9430 (3) | 0.7870 (2) | 0.18104 (14) | 0.0469 (6) | |
H19A | 0.8472 | 0.8188 | 0.1719 | 0.070* | |
H19B | 0.9652 | 0.7347 | 0.1343 | 0.070* | |
H19C | 1.0143 | 0.8472 | 0.1816 | 0.070* | |
C20 | 0.8303 (2) | 0.99877 (17) | 0.57671 (14) | 0.0370 (5) | |
H20A | 0.7301 | 1.0109 | 0.5600 | 0.056* | |
H20B | 0.8806 | 1.0706 | 0.5786 | 0.056* | |
H20C | 0.8337 | 0.9637 | 0.6338 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0551 (9) | 0.0303 (7) | 0.0368 (8) | −0.0097 (7) | −0.0205 (7) | 0.0059 (6) |
O2 | 0.0273 (6) | 0.0196 (6) | 0.0312 (6) | −0.0035 (5) | −0.0044 (5) | 0.0018 (5) |
N1 | 0.0272 (7) | 0.0183 (6) | 0.0235 (7) | 0.0013 (6) | −0.0003 (6) | 0.0007 (5) |
C1 | 0.0306 (8) | 0.0225 (8) | 0.0228 (8) | −0.0003 (7) | 0.0004 (7) | 0.0008 (7) |
C2 | 0.0267 (8) | 0.0217 (8) | 0.0237 (8) | 0.0019 (7) | 0.0013 (7) | −0.0004 (7) |
C3 | 0.0405 (10) | 0.0248 (8) | 0.0232 (8) | −0.0003 (8) | −0.0017 (7) | 0.0021 (7) |
C4 | 0.0448 (10) | 0.0211 (8) | 0.0273 (9) | −0.0001 (7) | 0.0038 (8) | 0.0053 (7) |
C5 | 0.0297 (8) | 0.0194 (8) | 0.0294 (9) | 0.0005 (7) | 0.0053 (7) | −0.0012 (7) |
C6 | 0.0376 (10) | 0.0214 (8) | 0.0393 (11) | −0.0050 (7) | 0.0048 (8) | −0.0029 (7) |
C7 | 0.0328 (10) | 0.0288 (9) | 0.0428 (11) | −0.0054 (8) | −0.0005 (9) | −0.0104 (8) |
C8 | 0.0302 (9) | 0.0325 (9) | 0.0316 (9) | 0.0036 (8) | −0.0051 (8) | −0.0078 (8) |
C9 | 0.0306 (9) | 0.0252 (9) | 0.0291 (9) | 0.0040 (7) | −0.0020 (7) | −0.0011 (7) |
C10 | 0.0255 (8) | 0.0198 (8) | 0.0252 (8) | 0.0031 (7) | 0.0020 (6) | −0.0012 (6) |
C11 | 0.0242 (7) | 0.0205 (8) | 0.0281 (8) | −0.0043 (7) | −0.0026 (6) | 0.0017 (7) |
C12 | 0.0289 (9) | 0.0229 (8) | 0.0279 (8) | −0.0052 (7) | −0.0006 (7) | 0.0008 (7) |
C13 | 0.0316 (8) | 0.0241 (9) | 0.0314 (9) | −0.0045 (7) | −0.0045 (7) | −0.0022 (7) |
C14 | 0.0427 (11) | 0.0218 (8) | 0.0389 (11) | −0.0087 (8) | 0.0009 (8) | 0.0010 (8) |
C15 | 0.0386 (10) | 0.0253 (9) | 0.0348 (10) | −0.0102 (8) | 0.0036 (8) | 0.0030 (8) |
C16 | 0.0269 (8) | 0.0235 (8) | 0.0273 (9) | −0.0033 (7) | −0.0013 (7) | 0.0025 (7) |
C17 | 0.0331 (9) | 0.0310 (9) | 0.0263 (9) | −0.0042 (8) | −0.0006 (7) | −0.0004 (8) |
C18 | 0.0362 (11) | 0.0439 (12) | 0.0389 (11) | 0.0035 (9) | 0.0041 (9) | −0.0063 (9) |
C19 | 0.0619 (14) | 0.0501 (13) | 0.0286 (11) | −0.0001 (12) | 0.0011 (10) | 0.0018 (9) |
C20 | 0.0443 (11) | 0.0285 (10) | 0.0382 (10) | −0.0051 (8) | −0.0013 (9) | −0.0066 (8) |
O1—C1 | 1.209 (2) | C12—H12B | 0.9900 |
O2—C1 | 1.326 (2) | C12—C13 | 1.533 (2) |
O2—C11 | 1.4630 (19) | C13—H13 | 1.0000 |
N1—C2 | 1.320 (2) | C13—C14 | 1.530 (3) |
N1—C10 | 1.363 (2) | C13—C20 | 1.525 (3) |
C1—C2 | 1.504 (2) | C14—H14A | 0.9900 |
C2—C3 | 1.411 (2) | C14—H14B | 0.9900 |
C3—H3 | 0.9500 | C14—C15 | 1.524 (3) |
C3—C4 | 1.367 (3) | C15—H15A | 0.9900 |
C4—H4 | 0.9500 | C15—H15B | 0.9900 |
C4—C5 | 1.410 (3) | C15—C16 | 1.537 (2) |
C5—C6 | 1.419 (3) | C16—H16 | 1.0000 |
C5—C10 | 1.425 (2) | C16—C17 | 1.542 (3) |
C6—H6 | 0.9500 | C17—H17 | 1.0000 |
C6—C7 | 1.363 (3) | C17—C18 | 1.524 (3) |
C7—H7 | 0.9500 | C17—C19 | 1.531 (3) |
C7—C8 | 1.413 (3) | C18—H18A | 0.9800 |
C8—H8 | 0.9500 | C18—H18B | 0.9800 |
C8—C9 | 1.365 (3) | C18—H18C | 0.9800 |
C9—H9 | 0.9500 | C19—H19A | 0.9800 |
C9—C10 | 1.420 (2) | C19—H19B | 0.9800 |
C11—H11 | 1.0000 | C19—H19C | 0.9800 |
C11—C12 | 1.520 (2) | C20—H20A | 0.9800 |
C11—C16 | 1.527 (2) | C20—H20B | 0.9800 |
C12—H12A | 0.9900 | C20—H20C | 0.9800 |
C1—O2—C11 | 117.76 (13) | C14—C13—H13 | 108.1 |
C2—N1—C10 | 117.66 (15) | C20—C13—C12 | 111.29 (16) |
O1—C1—O2 | 125.27 (16) | C20—C13—H13 | 108.1 |
O1—C1—C2 | 122.85 (16) | C20—C13—C14 | 111.39 (16) |
O2—C1—C2 | 111.88 (14) | C13—C14—H14A | 109.2 |
N1—C2—C1 | 117.11 (15) | C13—C14—H14B | 109.2 |
N1—C2—C3 | 124.13 (16) | H14A—C14—H14B | 107.9 |
C3—C2—C1 | 118.72 (15) | C15—C14—C13 | 112.25 (16) |
C2—C3—H3 | 120.7 | C15—C14—H14A | 109.2 |
C4—C3—C2 | 118.59 (16) | C15—C14—H14B | 109.2 |
C4—C3—H3 | 120.7 | C14—C15—H15A | 109.4 |
C3—C4—H4 | 120.2 | C14—C15—H15B | 109.4 |
C3—C4—C5 | 119.69 (16) | C14—C15—C16 | 110.97 (16) |
C5—C4—H4 | 120.2 | H15A—C15—H15B | 108.0 |
C4—C5—C6 | 123.76 (17) | C16—C15—H15A | 109.4 |
C4—C5—C10 | 117.45 (16) | C16—C15—H15B | 109.4 |
C6—C5—C10 | 118.79 (17) | C11—C16—C15 | 106.80 (14) |
C5—C6—H6 | 119.7 | C11—C16—H16 | 107.0 |
C7—C6—C5 | 120.70 (18) | C11—C16—C17 | 113.43 (15) |
C7—C6—H6 | 119.7 | C15—C16—H16 | 107.0 |
C6—C7—H7 | 119.9 | C15—C16—C17 | 115.11 (15) |
C6—C7—C8 | 120.29 (18) | C17—C16—H16 | 107.0 |
C8—C7—H7 | 119.9 | C16—C17—H17 | 107.2 |
C7—C8—H8 | 119.5 | C18—C17—C16 | 113.14 (16) |
C9—C8—C7 | 120.93 (18) | C18—C17—H17 | 107.2 |
C9—C8—H8 | 119.5 | C18—C17—C19 | 110.80 (18) |
C8—C9—H9 | 120.0 | C19—C17—C16 | 111.05 (17) |
C8—C9—C10 | 120.01 (18) | C19—C17—H17 | 107.2 |
C10—C9—H9 | 120.0 | C17—C18—H18A | 109.5 |
N1—C10—C5 | 122.45 (15) | C17—C18—H18B | 109.5 |
N1—C10—C9 | 118.30 (16) | C17—C18—H18C | 109.5 |
C9—C10—C5 | 119.25 (16) | H18A—C18—H18B | 109.5 |
O2—C11—H11 | 109.3 | H18A—C18—H18C | 109.5 |
O2—C11—C12 | 109.78 (14) | H18B—C18—H18C | 109.5 |
O2—C11—C16 | 107.05 (14) | C17—C19—H19A | 109.5 |
C12—C11—H11 | 109.3 | C17—C19—H19B | 109.5 |
C12—C11—C16 | 111.93 (14) | C17—C19—H19C | 109.5 |
C16—C11—H11 | 109.3 | H19A—C19—H19B | 109.5 |
C11—C12—H12A | 109.5 | H19A—C19—H19C | 109.5 |
C11—C12—H12B | 109.5 | H19B—C19—H19C | 109.5 |
C11—C12—C13 | 110.90 (15) | C13—C20—H20A | 109.5 |
H12A—C12—H12B | 108.0 | C13—C20—H20B | 109.5 |
C13—C12—H12A | 109.5 | C13—C20—H20C | 109.5 |
C13—C12—H12B | 109.5 | H20A—C20—H20B | 109.5 |
C12—C13—H13 | 108.1 | H20A—C20—H20C | 109.5 |
C14—C13—C12 | 109.86 (15) | H20B—C20—H20C | 109.5 |
O1—C1—C2—N1 | −157.29 (18) | C7—C8—C9—C10 | −0.4 (3) |
O1—C1—C2—C3 | 20.5 (3) | C8—C9—C10—N1 | −177.92 (16) |
O2—C1—C2—N1 | 22.5 (2) | C8—C9—C10—C5 | 1.7 (3) |
O2—C1—C2—C3 | −159.75 (16) | C10—N1—C2—C1 | 178.36 (15) |
O2—C11—C12—C13 | −178.14 (13) | C10—N1—C2—C3 | 0.7 (2) |
O2—C11—C16—C15 | −179.03 (13) | C10—C5—C6—C7 | 0.3 (3) |
O2—C11—C16—C17 | −51.15 (19) | C11—O2—C1—O1 | 9.8 (3) |
N1—C2—C3—C4 | −1.9 (3) | C11—O2—C1—C2 | −169.94 (14) |
C1—O2—C11—C12 | −95.24 (17) | C11—C12—C13—C14 | 53.7 (2) |
C1—O2—C11—C16 | 143.06 (15) | C11—C12—C13—C20 | 177.55 (16) |
C1—C2—C3—C4 | −179.55 (17) | C11—C16—C17—C18 | −59.7 (2) |
C2—N1—C10—C5 | 1.1 (2) | C11—C16—C17—C19 | 174.94 (17) |
C2—N1—C10—C9 | −179.21 (16) | C12—C11—C16—C15 | 60.63 (18) |
C2—C3—C4—C5 | 1.3 (3) | C12—C11—C16—C17 | −171.49 (14) |
C3—C4—C5—C6 | −179.24 (18) | C12—C13—C14—C15 | −53.7 (2) |
C3—C4—C5—C10 | 0.4 (3) | C13—C14—C15—C16 | 57.9 (2) |
C4—C5—C6—C7 | 179.92 (19) | C14—C15—C16—C11 | −59.2 (2) |
C4—C5—C10—N1 | −1.7 (3) | C14—C15—C16—C17 | 173.92 (16) |
C4—C5—C10—C9 | 178.65 (17) | C15—C16—C17—C18 | 63.7 (2) |
C5—C6—C7—C8 | 1.1 (3) | C15—C16—C17—C19 | −61.6 (2) |
C6—C5—C10—N1 | 177.98 (16) | C16—C11—C12—C13 | −59.40 (19) |
C6—C5—C10—C9 | −1.7 (2) | C20—C13—C14—C15 | −177.47 (17) |
C6—C7—C8—C9 | −1.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N1i | 0.95 | 2.56 | 3.509 (2) | 174 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···N1i | 0.95 | 2.56 | 3.509 (2) | 174 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Acknowledgements
EF thanks CFTRI, Mysore, and Yuvaraja's College, UOM, for providing research facilities, and is grateful to Mr J. R. Manjunatha, PPSFT, CFTRI, for recording NMR spectra. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603. Web of Science CSD CrossRef IUCr Journals Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035. CrossRef CAS PubMed Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231–o3232. CSD CrossRef CAS IUCr Journals Google Scholar
Fazal, E., Kaur, M., Sudha, B. S., Nagarajan, S. & Jasinski, J. P. (2013a). Acta Cryst. E69, o1842–o1843. CSD CrossRef CAS IUCr Journals Google Scholar
Fazal, E., Kaur, M., Sudha, B. S., Nagarajan, S. & Jasinski, J. P. (2013b). Acta Cryst. E69, o1841. CSD CrossRef IUCr Journals Google Scholar
Fazal, E., Kaur, M., Sudha, B. S., Nagarajan, S. & Jasinski, J. P. (2013c). Acta Cryst. E69, o1853–o1854. CSD CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181. Web of Science CSD CrossRef CAS Google Scholar
Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35–36. CAS Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608. CrossRef CAS Web of Science Google Scholar
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203. CrossRef Google Scholar
Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607. Web of Science CrossRef PubMed CAS Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273–279. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488–1508. Web of Science CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline-2 carboxylic acid derivatives are a class of important materials as anti-tuberculosis agents, as fluorescent reagents, hydrophobic field-detection reagents, visualisation reagents, fluorescent labelled peptide probes and as antihyperglycemics. Quinoline derivatives represent a major class of heterocycles and are found in natural products (Morimoto et al., 1991; Michael, 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Quinoline as a privileged scaffold in cancer drug discovery is published (Solomon & Lee, 2011). The crystal structures of 4-methylphenyl quinoline-2-carboxylate (Fazal et al., 2012), 4-chloro-3-methylphenyl quinoline-2- carboxylate (Fazal et al., 2013a), 4-chlorophenyl quinoline- 2-carboxylate (Fazal et al., 2013b), 3,4-dimethylphenyl quinoline-2-carboxylate (Fazal et al., 2013c), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and methyl quinoline-2-carboxylate (Jing & Qin, 2008) as well as the synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have been reported. In view of the importance of quinolines, this paper reports the crystal structure of the title compound, (I), C20H25NO2.
In the title compound, (I), Fig. 1, the cyclohexyl ring adopts a slightly disordered chair conformation (puckering parameters for C11–C16: Q, θ, and φ = 0.593 (2)Å, 4.32 (19)° and 308 (2)°, respectively (Cremer & Pople, 1975). The dihedral angle between the mean planes of the quinoline ring and the carboxylate group (C2/C1/O1/O2) is 22.2 (6)°. In the crystal, weak C7—H7···N1 intermolecular interactions make chains along [0 1 0] and influence the crystal packing (Fig. 2 & Table 1).