organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­propyl-5-methyl­cyclo­hexyl quinoline-2-carboxyl­ate

aDepartment of Chemistry, Yuvaraja's College, Mysore 570 005, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cP.P.S.F.T. Department, Central Food Technplogy Research institute, Mysore 570 005, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 6 December 2013; accepted 6 December 2013; online 11 December 2013)

In the title compound, C20H25NO2, the cyclo­hexyl ring adopts a slightly disordered chair conformation. The dihedral angle between the mean planes of the quinoline ring and the carboxyl­ate group is 22.2 (6)°. In the crystal, weak C—H⋯N inter­actions make chains along [010].

Related literature

For heterocycles in natural products, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]). For heterocycles in fragrances and dyes, see: Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]). For heterocycles in biologically active compounds, see: Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al.(1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]). For quinoline alkaloids used as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998[Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273-279.]). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011[Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488-1508.]). For related structures, see: Fazal et al. (2012[Fazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231-o3232.], 2013a[Fazal, E., Kaur, M., Sudha, B. S., Nagarajan, S. & Jasinski, J. P. (2013a). Acta Cryst. E69, o1842-o1843.],b[Fazal, E., Kaur, M., Sudha, B. S., Nagarajan, S. & Jasinski, J. P. (2013b). Acta Cryst. E69, o1841.],c[Fazal, E., Kaur, M., Sudha, B. S., Nagarajan, S. & Jasinski, J. P. (2013c). Acta Cryst. E69, o1853-o1854.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.]); Jing & Qin (2008[Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35-36.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172-181.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H25NO2

  • Mr = 311.41

  • Orthorhombic, P 21 21 21

  • a = 9.31412 (17) Å

  • b = 11.9669 (2) Å

  • c = 15.4894 (3) Å

  • V = 1726.47 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 173 K

  • 0.38 × 0.32 × 0.24 mm

Data collection
  • Agilent Gemini EOS diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]). Tmin = 0.921, Tmax = 1.000

  • 11010 measured reflections

  • 3389 independent reflections

  • 3281 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.04

  • 3389 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 1372 Friedel pairs

  • Absolute structure parameter: −0.01 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1i 0.95 2.56 3.509 (2) 174
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Quinoline-2 carboxylic acid derivatives are a class of important materials as anti-tuberculosis agents, as fluorescent reagents, hydrophobic field-detection reagents, visualisation reagents, fluorescent labelled peptide probes and as antihyperglycemics. Quinoline derivatives represent a major class of heterocycles and are found in natural products (Morimoto et al., 1991; Michael, 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Quinoline as a privileged scaffold in cancer drug discovery is published (Solomon & Lee, 2011). The crystal structures of 4-methylphenyl quinoline-2-carboxylate (Fazal et al., 2012), 4-chloro-3-methylphenyl quinoline-2- carboxylate (Fazal et al., 2013a), 4-chlorophenyl quinoline- 2-carboxylate (Fazal et al., 2013b), 3,4-dimethylphenyl quinoline-2-carboxylate (Fazal et al., 2013c), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and methyl quinoline-2-carboxylate (Jing & Qin, 2008) as well as the synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have been reported. In view of the importance of quinolines, this paper reports the crystal structure of the title compound, (I), C20H25NO2.

In the title compound, (I), Fig. 1, the cyclohexyl ring adopts a slightly disordered chair conformation (puckering parameters for C11–C16: Q, θ, and φ = 0.593 (2)Å, 4.32 (19)° and 308 (2)°, respectively (Cremer & Pople, 1975). The dihedral angle between the mean planes of the quinoline ring and the carboxylate group (C2/C1/O1/O2) is 22.2 (6)°. In the crystal, weak C7—H7···N1 intermolecular interactions make chains along [0 1 0] and influence the crystal packing (Fig. 2 & Table 1).

Related literature top

For heterocycles in natural products, see: Morimoto et al. (1991); Michael (1997). For heterocycles in fragrances and dyes, see: Padwa et al. (1999). For heterocycles in biologically active compounds, see: Markees et al. (1970); Campbell et al.(1988). For quinoline alkaloids used as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011). For related structures, see: Fazal et al. (2012, 2013a,b,c); Butcher et al. (2007); Jing & Qin (2008); Jasinski et al. (2010). For puckering parameters, see Cremer & Pople (1975).

Experimental top

The title compound was prepared by the following procedure: To a mixture of 1.73 g (10 mmol) of quinaldic acid and 1.56 g (10 mmole) of 2-isopropyl-5-methylcyclohexanol in a round-bottomed flask fitted with a reflux condenser with a drying tube is added phosphorous oxychloride (0.150 g, 10 mmol). The mixture is heated with occasional swirling, and temperature is maintained at 348-353 K. At the end of 8 h the reaction mixture is poured in to a solution of sodium bicarbonate (2 g) in water (25 mL). The precipitated ester is collected on a filter and washed with water. The yield of crude, air dried 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate is isolated in 1.71 to 1.85 g (65-70 %) yield. X-ray quality crystals were obtained by recrystallization from absolute ethanol by slow evaporation (M.pt: 414-416 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95–1.00 Å, and with Uiso(H) = 1.2–1.5Ueq(C). Two reflections, i.e. (1 0 1) and (0 0 2), were removed from the final cycles of refinement owing to poor agreement.

Structure description top

Quinoline-2 carboxylic acid derivatives are a class of important materials as anti-tuberculosis agents, as fluorescent reagents, hydrophobic field-detection reagents, visualisation reagents, fluorescent labelled peptide probes and as antihyperglycemics. Quinoline derivatives represent a major class of heterocycles and are found in natural products (Morimoto et al., 1991; Michael, 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Quinoline as a privileged scaffold in cancer drug discovery is published (Solomon & Lee, 2011). The crystal structures of 4-methylphenyl quinoline-2-carboxylate (Fazal et al., 2012), 4-chloro-3-methylphenyl quinoline-2- carboxylate (Fazal et al., 2013a), 4-chlorophenyl quinoline- 2-carboxylate (Fazal et al., 2013b), 3,4-dimethylphenyl quinoline-2-carboxylate (Fazal et al., 2013c), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and methyl quinoline-2-carboxylate (Jing & Qin, 2008) as well as the synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have been reported. In view of the importance of quinolines, this paper reports the crystal structure of the title compound, (I), C20H25NO2.

In the title compound, (I), Fig. 1, the cyclohexyl ring adopts a slightly disordered chair conformation (puckering parameters for C11–C16: Q, θ, and φ = 0.593 (2)Å, 4.32 (19)° and 308 (2)°, respectively (Cremer & Pople, 1975). The dihedral angle between the mean planes of the quinoline ring and the carboxylate group (C2/C1/O1/O2) is 22.2 (6)°. In the crystal, weak C7—H7···N1 intermolecular interactions make chains along [0 1 0] and influence the crystal packing (Fig. 2 & Table 1).

For heterocycles in natural products, see: Morimoto et al. (1991); Michael (1997). For heterocycles in fragrances and dyes, see: Padwa et al. (1999). For heterocycles in biologically active compounds, see: Markees et al. (1970); Campbell et al.(1988). For quinoline alkaloids used as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011). For related structures, see: Fazal et al. (2012, 2013a,b,c); Butcher et al. (2007); Jing & Qin (2008); Jasinski et al. (2010). For puckering parameters, see Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) showing the labeling scheme with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate weak C7—H7···N1 intermolecular interactions making chains along [0 1 0]. The remaining H atoms have been removed for clarity.
2-Isopropyl-5-methylcyclohexyl quinoline-2-carboxylate top
Crystal data top
C20H25NO2Dx = 1.198 Mg m3
Mr = 311.41Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 6294 reflections
a = 9.31412 (17) Åθ = 4.7–72.3°
b = 11.9669 (2) ŵ = 0.60 mm1
c = 15.4894 (3) ÅT = 173 K
V = 1726.47 (6) Å3Irregular, colourless
Z = 40.38 × 0.32 × 0.24 mm
F(000) = 672
Data collection top
Agilent Gemini EOS
diffractometer
3389 independent reflections
Radiation source: Enhance (Cu) X-ray Source3281 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.037
ω scansθmax = 72.4°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012).
h = 115
Tmin = 0.921, Tmax = 1.000k = 1414
11010 measured reflectionsl = 1918
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0661P)2 + 0.1484P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max < 0.001
wR(F2) = 0.098Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.17 e Å3
3389 reflectionsExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
212 parametersExtinction coefficient: 0.0093 (10)
0 restraintsAbsolute structure: Flack (1983); 1372 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (13)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
C20H25NO2V = 1726.47 (6) Å3
Mr = 311.41Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.31412 (17) ŵ = 0.60 mm1
b = 11.9669 (2) ÅT = 173 K
c = 15.4894 (3) Å0.38 × 0.32 × 0.24 mm
Data collection top
Agilent Gemini EOS
diffractometer
3389 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012).
3281 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 1.000Rint = 0.037
11010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.17 e Å3
3389 reflectionsAbsolute structure: Flack (1983); 1372 Friedel pairs
212 parametersAbsolute structure parameter: 0.01 (13)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92164 (17)0.54532 (12)0.51535 (10)0.0408 (4)
O20.79892 (13)0.64179 (10)0.41465 (8)0.0261 (3)
N10.70130 (16)0.45417 (11)0.34655 (9)0.0230 (3)
C10.83460 (19)0.55000 (15)0.45755 (11)0.0253 (4)
C20.75365 (19)0.44942 (14)0.42566 (11)0.0240 (4)
C30.7426 (2)0.35518 (16)0.48000 (11)0.0295 (4)
H30.78480.35540.53580.035*
C40.6697 (2)0.26358 (15)0.45059 (12)0.0311 (4)
H40.65920.19970.48640.037*
C50.6104 (2)0.26440 (14)0.36683 (12)0.0262 (4)
C60.5318 (2)0.17400 (15)0.33109 (14)0.0327 (4)
H60.51710.10830.36430.039*
C70.4772 (2)0.18048 (17)0.24958 (15)0.0348 (4)
H70.42330.11990.22680.042*
C80.5004 (2)0.27692 (16)0.19885 (13)0.0314 (4)
H80.46330.28000.14180.038*
C90.5755 (2)0.36578 (15)0.23068 (12)0.0283 (4)
H90.59080.42990.19570.034*
C100.63087 (19)0.36241 (14)0.31610 (11)0.0235 (4)
C110.88592 (18)0.74196 (14)0.42860 (11)0.0243 (4)
H110.98400.71950.44830.029*
C120.8164 (2)0.81503 (14)0.49708 (12)0.0265 (4)
H12A0.81050.77320.55210.032*
H12B0.71740.83420.47900.032*
C130.9028 (2)0.92258 (15)0.51090 (12)0.0290 (4)
H130.99930.90150.53400.035*
C140.9247 (2)0.98221 (15)0.42454 (14)0.0345 (5)
H14A0.83101.00980.40330.041*
H14B0.98801.04770.43340.041*
C150.9910 (2)0.90594 (16)0.35660 (13)0.0329 (4)
H15A1.08790.88260.37560.039*
H15B1.00120.94740.30160.039*
C160.89728 (19)0.80190 (15)0.34186 (12)0.0259 (4)
H160.79880.82900.32690.031*
C170.9465 (2)0.72518 (16)0.26757 (12)0.0301 (4)
H170.87570.66260.26370.036*
C181.0935 (2)0.67304 (19)0.28311 (15)0.0397 (5)
H18A1.16470.73230.29190.060*
H18B1.12080.62800.23290.060*
H18C1.08960.62530.33450.060*
C190.9430 (3)0.7870 (2)0.18104 (14)0.0469 (6)
H19A0.84720.81880.17190.070*
H19B0.96520.73470.13430.070*
H19C1.01430.84720.18160.070*
C200.8303 (2)0.99877 (17)0.57671 (14)0.0370 (5)
H20A0.73011.01090.56000.056*
H20B0.88061.07060.57860.056*
H20C0.83370.96370.63380.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0551 (9)0.0303 (7)0.0368 (8)0.0097 (7)0.0205 (7)0.0059 (6)
O20.0273 (6)0.0196 (6)0.0312 (6)0.0035 (5)0.0044 (5)0.0018 (5)
N10.0272 (7)0.0183 (6)0.0235 (7)0.0013 (6)0.0003 (6)0.0007 (5)
C10.0306 (8)0.0225 (8)0.0228 (8)0.0003 (7)0.0004 (7)0.0008 (7)
C20.0267 (8)0.0217 (8)0.0237 (8)0.0019 (7)0.0013 (7)0.0004 (7)
C30.0405 (10)0.0248 (8)0.0232 (8)0.0003 (8)0.0017 (7)0.0021 (7)
C40.0448 (10)0.0211 (8)0.0273 (9)0.0001 (7)0.0038 (8)0.0053 (7)
C50.0297 (8)0.0194 (8)0.0294 (9)0.0005 (7)0.0053 (7)0.0012 (7)
C60.0376 (10)0.0214 (8)0.0393 (11)0.0050 (7)0.0048 (8)0.0029 (7)
C70.0328 (10)0.0288 (9)0.0428 (11)0.0054 (8)0.0005 (9)0.0104 (8)
C80.0302 (9)0.0325 (9)0.0316 (9)0.0036 (8)0.0051 (8)0.0078 (8)
C90.0306 (9)0.0252 (9)0.0291 (9)0.0040 (7)0.0020 (7)0.0011 (7)
C100.0255 (8)0.0198 (8)0.0252 (8)0.0031 (7)0.0020 (6)0.0012 (6)
C110.0242 (7)0.0205 (8)0.0281 (8)0.0043 (7)0.0026 (6)0.0017 (7)
C120.0289 (9)0.0229 (8)0.0279 (8)0.0052 (7)0.0006 (7)0.0008 (7)
C130.0316 (8)0.0241 (9)0.0314 (9)0.0045 (7)0.0045 (7)0.0022 (7)
C140.0427 (11)0.0218 (8)0.0389 (11)0.0087 (8)0.0009 (8)0.0010 (8)
C150.0386 (10)0.0253 (9)0.0348 (10)0.0102 (8)0.0036 (8)0.0030 (8)
C160.0269 (8)0.0235 (8)0.0273 (9)0.0033 (7)0.0013 (7)0.0025 (7)
C170.0331 (9)0.0310 (9)0.0263 (9)0.0042 (8)0.0006 (7)0.0004 (8)
C180.0362 (11)0.0439 (12)0.0389 (11)0.0035 (9)0.0041 (9)0.0063 (9)
C190.0619 (14)0.0501 (13)0.0286 (11)0.0001 (12)0.0011 (10)0.0018 (9)
C200.0443 (11)0.0285 (10)0.0382 (10)0.0051 (8)0.0013 (9)0.0066 (8)
Geometric parameters (Å, º) top
O1—C11.209 (2)C12—H12B0.9900
O2—C11.326 (2)C12—C131.533 (2)
O2—C111.4630 (19)C13—H131.0000
N1—C21.320 (2)C13—C141.530 (3)
N1—C101.363 (2)C13—C201.525 (3)
C1—C21.504 (2)C14—H14A0.9900
C2—C31.411 (2)C14—H14B0.9900
C3—H30.9500C14—C151.524 (3)
C3—C41.367 (3)C15—H15A0.9900
C4—H40.9500C15—H15B0.9900
C4—C51.410 (3)C15—C161.537 (2)
C5—C61.419 (3)C16—H161.0000
C5—C101.425 (2)C16—C171.542 (3)
C6—H60.9500C17—H171.0000
C6—C71.363 (3)C17—C181.524 (3)
C7—H70.9500C17—C191.531 (3)
C7—C81.413 (3)C18—H18A0.9800
C8—H80.9500C18—H18B0.9800
C8—C91.365 (3)C18—H18C0.9800
C9—H90.9500C19—H19A0.9800
C9—C101.420 (2)C19—H19B0.9800
C11—H111.0000C19—H19C0.9800
C11—C121.520 (2)C20—H20A0.9800
C11—C161.527 (2)C20—H20B0.9800
C12—H12A0.9900C20—H20C0.9800
C1—O2—C11117.76 (13)C14—C13—H13108.1
C2—N1—C10117.66 (15)C20—C13—C12111.29 (16)
O1—C1—O2125.27 (16)C20—C13—H13108.1
O1—C1—C2122.85 (16)C20—C13—C14111.39 (16)
O2—C1—C2111.88 (14)C13—C14—H14A109.2
N1—C2—C1117.11 (15)C13—C14—H14B109.2
N1—C2—C3124.13 (16)H14A—C14—H14B107.9
C3—C2—C1118.72 (15)C15—C14—C13112.25 (16)
C2—C3—H3120.7C15—C14—H14A109.2
C4—C3—C2118.59 (16)C15—C14—H14B109.2
C4—C3—H3120.7C14—C15—H15A109.4
C3—C4—H4120.2C14—C15—H15B109.4
C3—C4—C5119.69 (16)C14—C15—C16110.97 (16)
C5—C4—H4120.2H15A—C15—H15B108.0
C4—C5—C6123.76 (17)C16—C15—H15A109.4
C4—C5—C10117.45 (16)C16—C15—H15B109.4
C6—C5—C10118.79 (17)C11—C16—C15106.80 (14)
C5—C6—H6119.7C11—C16—H16107.0
C7—C6—C5120.70 (18)C11—C16—C17113.43 (15)
C7—C6—H6119.7C15—C16—H16107.0
C6—C7—H7119.9C15—C16—C17115.11 (15)
C6—C7—C8120.29 (18)C17—C16—H16107.0
C8—C7—H7119.9C16—C17—H17107.2
C7—C8—H8119.5C18—C17—C16113.14 (16)
C9—C8—C7120.93 (18)C18—C17—H17107.2
C9—C8—H8119.5C18—C17—C19110.80 (18)
C8—C9—H9120.0C19—C17—C16111.05 (17)
C8—C9—C10120.01 (18)C19—C17—H17107.2
C10—C9—H9120.0C17—C18—H18A109.5
N1—C10—C5122.45 (15)C17—C18—H18B109.5
N1—C10—C9118.30 (16)C17—C18—H18C109.5
C9—C10—C5119.25 (16)H18A—C18—H18B109.5
O2—C11—H11109.3H18A—C18—H18C109.5
O2—C11—C12109.78 (14)H18B—C18—H18C109.5
O2—C11—C16107.05 (14)C17—C19—H19A109.5
C12—C11—H11109.3C17—C19—H19B109.5
C12—C11—C16111.93 (14)C17—C19—H19C109.5
C16—C11—H11109.3H19A—C19—H19B109.5
C11—C12—H12A109.5H19A—C19—H19C109.5
C11—C12—H12B109.5H19B—C19—H19C109.5
C11—C12—C13110.90 (15)C13—C20—H20A109.5
H12A—C12—H12B108.0C13—C20—H20B109.5
C13—C12—H12A109.5C13—C20—H20C109.5
C13—C12—H12B109.5H20A—C20—H20B109.5
C12—C13—H13108.1H20A—C20—H20C109.5
C14—C13—C12109.86 (15)H20B—C20—H20C109.5
O1—C1—C2—N1157.29 (18)C7—C8—C9—C100.4 (3)
O1—C1—C2—C320.5 (3)C8—C9—C10—N1177.92 (16)
O2—C1—C2—N122.5 (2)C8—C9—C10—C51.7 (3)
O2—C1—C2—C3159.75 (16)C10—N1—C2—C1178.36 (15)
O2—C11—C12—C13178.14 (13)C10—N1—C2—C30.7 (2)
O2—C11—C16—C15179.03 (13)C10—C5—C6—C70.3 (3)
O2—C11—C16—C1751.15 (19)C11—O2—C1—O19.8 (3)
N1—C2—C3—C41.9 (3)C11—O2—C1—C2169.94 (14)
C1—O2—C11—C1295.24 (17)C11—C12—C13—C1453.7 (2)
C1—O2—C11—C16143.06 (15)C11—C12—C13—C20177.55 (16)
C1—C2—C3—C4179.55 (17)C11—C16—C17—C1859.7 (2)
C2—N1—C10—C51.1 (2)C11—C16—C17—C19174.94 (17)
C2—N1—C10—C9179.21 (16)C12—C11—C16—C1560.63 (18)
C2—C3—C4—C51.3 (3)C12—C11—C16—C17171.49 (14)
C3—C4—C5—C6179.24 (18)C12—C13—C14—C1553.7 (2)
C3—C4—C5—C100.4 (3)C13—C14—C15—C1657.9 (2)
C4—C5—C6—C7179.92 (19)C14—C15—C16—C1159.2 (2)
C4—C5—C10—N11.7 (3)C14—C15—C16—C17173.92 (16)
C4—C5—C10—C9178.65 (17)C15—C16—C17—C1863.7 (2)
C5—C6—C7—C81.1 (3)C15—C16—C17—C1961.6 (2)
C6—C5—C10—N1177.98 (16)C16—C11—C12—C1359.40 (19)
C6—C5—C10—C91.7 (2)C20—C13—C14—C15177.47 (17)
C6—C7—C8—C91.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N1i0.952.563.509 (2)174
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N1i0.952.563.509 (2)174
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

EF thanks CFTRI, Mysore, and Yuvaraja's College, UOM, for providing research facilities, and is grateful to Mr J. R. Manjunatha, PPSFT, CFTRI, for recording NMR spectra. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231–o3232.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFazal, E., Kaur, M., Sudha, B. S., Nagarajan, S. & Jasinski, J. P. (2013a). Acta Cryst. E69, o1842–o1843.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFazal, E., Kaur, M., Sudha, B. S., Nagarajan, S. & Jasinski, J. P. (2013b). Acta Cryst. E69, o1841.  CSD CrossRef IUCr Journals Google Scholar
First citationFazal, E., Kaur, M., Sudha, B. S., Nagarajan, S. & Jasinski, J. P. (2013c). Acta Cryst. E69, o1853–o1854.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationJing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35–36.  CAS Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationPadwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRobert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273–279.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488–1508.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds