organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-2-(1,3-Benzo­thia­zol-2-yl)-3-(di­methyl­amino)­prop-2-ene­nitrile

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Sccience, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 7 December 2013; accepted 8 December 2013; online 14 December 2013)

The mol­ecular conformation of title compound, C12H11N3S, is almost planar [maximum deviation = 0.063 (2) Å]; an intra­molecular C—H⋯N hydrogen bond is noted. In the crystal, mol­ecules inter­act with each other via ππ stacking inter­actions between thia­zole rings [centroid–centroid distance = 3.7475 (9) Å] and methyl-H⋯π(C6) inter­actions, forming columns along the a axis.

Related literature

For various biological activities (e.g. anti-tumour, anti-inflammatory, anti-viral, etc.) of benzo­thia­zole compounds, see: Selvam et al. (2011[Selvam, T. P., Radhika, P., Janagaraj, S. & Kumar, A. S. (2011). Res. Biotech. 2, 50-57.]); Sanja & Cvetkovic (2011[Sanja, O. & Cvetkovic, D. D. P.-K. (2011). Chem. Ind. Chem. Eng. Q. 17, 9-15.]); Alang et al. (2010[Alang, G., Kaur, G., Kaur, R., Singh, A. & Tiwari, R. (2010). J. Young Pharmacists, 2, 394-398.]); Pal et al. (2011[Pal, N., Kumar, M. & Seth, G. (2011). Eur. J. Chem. 8, 1174-1189.]); Sharma et al. (2010[Sharma, N. K., Priyanka, M. S. & Jha, K. K. (2010). J. Pharm. Res. 3, 969-970.]); El-Shaaer et al. (1997[El-Shaaer, H. M., Abdel-Aziz, S. A., Allimony, H. A., Ali, U. F. & Abdel-Rahman, R. M. (1997). Pharmazie, 52, 285-289.]); Gupta & Raat (2010[Gupta, A. & Raat, S. (2010). J. Curr. Pharm. Res. 3, 13-23.]); Hutchinson et al. (2002[Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744-747.]); Gong et al. (2004[Gong, B., Hong, F., Kohm, C., Bonham, L. & Klin, P. (2004). Bioorg. Med. Chem. Lett. 14, 1455-1459.]); Hutchinson et al. (2003[Hutchinson, I., Bradshaw, T. D., Matthew, C. S., Stevens, M. F. G. & Westwell, A. D. (2003). Bioorg. Med. Chem. Lett. 13, 471-474.]); Geronikaki & Theophilidis (1992[Geronikaki, A. & Theophilidis, G. (1992). Eur. J. Med. Chem. 27, 709-716.]); Vicini et al. (1990[Vicini, P., Amoretti, L., Chiavarini, M. & Impicciatore, M. (1990). Il Farmaco, 45, 933-943.]); Das et al. (2003[Das, J. J., Moquin, R. V., Liu, C., Doweyko, A. M., Defex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L., Barrish, J. C. & Wityak, J. (2003). Bioorg. Med. Chem. Lett. 13, 2587-2590.]); Klose et al. (1983[Klose, N., Niedbolla, K., Schwartz, K. & Bottcher, I. (1983). Arch. Pharm. 316, 941-951.]); Satsangi et al. (1983[Satsangi, R. K., Zaidi, S. M. & Misra, V. C. (1983). Pharmazie, 38, 341-342.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3S

  • Mr = 229.31

  • Monoclinic, P 21 /c

  • a = 7.3785 (2) Å

  • b = 20.1801 (4) Å

  • c = 8.2706 (2) Å

  • β = 112.947 (4)°

  • V = 1134.03 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.32 mm−1

  • T = 293 K

  • 0.26 × 0.20 × 0.09 mm

Data collection
  • Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2013[Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.584, Tmax = 0.818

  • 4062 measured reflections

  • 2195 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.05

  • 2195 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1 0.93 2.44 2.851 (2) 106
C10—H10ACg1i 0.96 2.77 3.549 (2) 138
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2013[Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It is well known that the thiazolyl group is of great importance in biological systems. In recent years, there has been considerable interest in the synthesis of substituted benzothiazolyl compounds due to their pharmacological properties such as anti-fungal (Selvam et al., 2011; Sanja & Cvetkovic, 2011), anti-viral (Alang et al., 2010; Pal et al., 2011), anti-bacterial (Sharma et al., 2010; El-Shaaer et al., 1997), analgesic (Gupta & Raat, 2010), anti-tumour (Hutchinson et al., 2002) and anti-tuberculosis (Gong et al., 2004; Hutchinson et al., 2003) activities. Moreover, such compounds have been also found to have a potent local anaesthetic activity (Geronikaki & Theophilidis, 1992; Vicini et al., 1990). Anti-inflammatory, analgesic, and anti-pyretic activities for some thiazolyl and benzothiazolyl derivatives are also known (Das et al., 2003; Klose et al., 1983; Satsangi et al., 1983). Based on the above and following to our ongoing studies in synthesis of bio-active heterocyclic compounds the title compound has been prepared as a precursor for further study.

As shown in Fig. 1, title compound (I) has an almost planar conformation for non-hydrogen atoms with a maximum deviation of -0.063 (2) Å for C6.

The crystal structure is stabilized by π-π stacking interactions [Cg1···Cg1(1 - x, 1 - y, 1 - z) = 3.7475 (9) Å; where Cg1 is a centroid of the five-membered (S1/N1/C1/C2/C7) thiazole ring of the 1,3-benzothiazole ring system] between the centroids of thiazole rings of the adjacent molecules. The crystal structure has no classical hydrogen bonds. Figs. 2 show the molecular packing of (I) viewed along the a direction.

Related literature top

For various biological activities (e.g. anti-tumour, anti-inflammatory, anti-viral, etc.) of benzothiazole compounds, see: Selvam et al. (2011); Sanja & Cvetkovic (2011); Alang et al. (2010); Pal et al. (2011); Sharma et al. (2010); El-Shaaer et al. (1997); Gupta & Raat (2010); Hutchinson et al. (2002); Gong et al. (2004); Hutchinson et al. (2003); Geronikaki & Theophilidis (1992); Vicini et al. (1990); Das et al. (2003); Klose et al. (1983); Satsangi et al. (1983).

Experimental top

A mixture of 1,3-benzothiazol-2-ylacetnitrile (174 mg, 1 mmol) and dimethylformamide-dimethylacetal (119 mg, 1 mmol) were taken in acetic acid (10 ml). The reaction mixture was refluxed and monitored by TLC until completion after 8 h. The reaction mixture was allowed to cool at ambient temperature and poured into ice water. The solid product was collected by filtration and recrystallized from ethanol to afford the title compound in 88% yield. Single crystals suitable for X-ray analysis were grown up on slow evaporation of ethanolic solution of the title compound at room temperature over three days. M.pt: 441–443 K.

Refinement top

All H-atoms were refined using a riding model with C—H = 0.93 Å and Uiso=1.2eq (C) for aromatic-H atoms, and C—H = 0.96 Å and Uiso = 1.5Ueq (C) for methyl-H atoms.

Structure description top

It is well known that the thiazolyl group is of great importance in biological systems. In recent years, there has been considerable interest in the synthesis of substituted benzothiazolyl compounds due to their pharmacological properties such as anti-fungal (Selvam et al., 2011; Sanja & Cvetkovic, 2011), anti-viral (Alang et al., 2010; Pal et al., 2011), anti-bacterial (Sharma et al., 2010; El-Shaaer et al., 1997), analgesic (Gupta & Raat, 2010), anti-tumour (Hutchinson et al., 2002) and anti-tuberculosis (Gong et al., 2004; Hutchinson et al., 2003) activities. Moreover, such compounds have been also found to have a potent local anaesthetic activity (Geronikaki & Theophilidis, 1992; Vicini et al., 1990). Anti-inflammatory, analgesic, and anti-pyretic activities for some thiazolyl and benzothiazolyl derivatives are also known (Das et al., 2003; Klose et al., 1983; Satsangi et al., 1983). Based on the above and following to our ongoing studies in synthesis of bio-active heterocyclic compounds the title compound has been prepared as a precursor for further study.

As shown in Fig. 1, title compound (I) has an almost planar conformation for non-hydrogen atoms with a maximum deviation of -0.063 (2) Å for C6.

The crystal structure is stabilized by π-π stacking interactions [Cg1···Cg1(1 - x, 1 - y, 1 - z) = 3.7475 (9) Å; where Cg1 is a centroid of the five-membered (S1/N1/C1/C2/C7) thiazole ring of the 1,3-benzothiazole ring system] between the centroids of thiazole rings of the adjacent molecules. The crystal structure has no classical hydrogen bonds. Figs. 2 show the molecular packing of (I) viewed along the a direction.

For various biological activities (e.g. anti-tumour, anti-inflammatory, anti-viral, etc.) of benzothiazole compounds, see: Selvam et al. (2011); Sanja & Cvetkovic (2011); Alang et al. (2010); Pal et al. (2011); Sharma et al. (2010); El-Shaaer et al. (1997); Gupta & Raat (2010); Hutchinson et al. (2002); Gong et al. (2004); Hutchinson et al. (2003); Geronikaki & Theophilidis (1992); Vicini et al. (1990); Das et al. (2003); Klose et al. (1983); Satsangi et al. (1983).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2013); cell refinement: CrysAlis PRO (Oxford Diffraction, 2013); data reduction: CrysAlis PRO (Oxford Diffraction, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound viewing along the a axis. All H atoms are omitted for clarity.
(2E)-2-(1,3-Benzothiazol-2-yl)-3-(dimethylamino)prop-2-enenitrile top
Crystal data top
C12H11N3SF(000) = 480
Mr = 229.31Dx = 1.343 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 1971 reflections
a = 7.3785 (2) Åθ = 4.4–72.7°
b = 20.1801 (4) ŵ = 2.32 mm1
c = 8.2706 (2) ÅT = 293 K
β = 112.947 (4)°Block, purple
V = 1134.03 (6) Å30.26 × 0.20 × 0.09 mm
Z = 4
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2195 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1971 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
ω scansθmax = 72.7°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2013)
h = 79
Tmin = 0.584, Tmax = 0.818k = 1625
4062 measured reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.1211P]
where P = (Fo2 + 2Fc2)/3
2195 reflections(Δ/σ)max = 0.002
147 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H11N3SV = 1134.03 (6) Å3
Mr = 229.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.3785 (2) ŵ = 2.32 mm1
b = 20.1801 (4) ÅT = 293 K
c = 8.2706 (2) Å0.26 × 0.20 × 0.09 mm
β = 112.947 (4)°
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2195 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2013)
1971 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.818Rint = 0.016
4062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2195 reflectionsΔρmin = 0.26 e Å3
147 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11365 (6)0.50492 (2)0.23607 (5)0.0475 (1)
N10.24456 (18)0.46002 (6)0.55620 (16)0.0427 (4)
N20.3152 (3)0.66200 (8)0.3024 (2)0.0704 (6)
N30.5370 (2)0.62896 (8)0.81666 (18)0.0544 (4)
C10.0527 (2)0.42447 (7)0.26748 (18)0.0417 (4)
C20.1371 (2)0.40931 (7)0.44773 (19)0.0403 (4)
C30.1078 (2)0.34624 (8)0.5022 (2)0.0491 (5)
C40.0040 (3)0.30080 (8)0.3794 (2)0.0518 (5)
C50.0886 (2)0.31692 (9)0.2020 (2)0.0516 (5)
C60.0608 (2)0.37875 (9)0.1440 (2)0.0501 (5)
C70.2450 (2)0.51233 (7)0.46445 (18)0.0388 (4)
C80.3437 (2)0.57454 (7)0.53589 (19)0.0411 (4)
C90.4385 (2)0.57944 (8)0.7160 (2)0.0459 (5)
C100.5596 (3)0.69358 (10)0.7510 (3)0.0643 (6)
C110.6221 (4)0.62098 (14)1.0073 (3)0.0817 (8)
C120.3318 (2)0.62455 (8)0.4120 (2)0.0491 (5)
H30.163400.334900.620500.0590*
H40.023200.258700.415700.0620*
H50.164800.285700.121500.0620*
H60.116700.389500.025300.0600*
H90.432100.541400.777000.0550*
H10A0.626400.689100.672500.0960*
H10B0.635100.721600.847500.0960*
H10C0.432200.712900.689200.0960*
H11A0.606700.575901.036600.1230*
H11B0.556000.649901.058900.1230*
H11C0.759500.632001.051800.1230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0628 (3)0.0411 (2)0.0349 (2)0.0012 (2)0.0150 (2)0.0049 (1)
N10.0501 (7)0.0382 (6)0.0408 (6)0.0023 (5)0.0188 (5)0.0008 (5)
N20.0975 (13)0.0468 (8)0.0584 (9)0.0053 (8)0.0213 (8)0.0088 (7)
N30.0544 (7)0.0575 (8)0.0464 (7)0.0001 (6)0.0144 (6)0.0116 (6)
C10.0489 (7)0.0408 (7)0.0378 (7)0.0023 (6)0.0194 (6)0.0037 (6)
C20.0457 (7)0.0413 (7)0.0365 (7)0.0036 (6)0.0189 (6)0.0014 (5)
C30.0618 (9)0.0453 (8)0.0428 (8)0.0007 (7)0.0231 (7)0.0065 (6)
C40.0642 (9)0.0417 (8)0.0567 (9)0.0033 (7)0.0315 (7)0.0019 (7)
C50.0575 (9)0.0502 (8)0.0518 (9)0.0093 (7)0.0263 (7)0.0104 (7)
C60.0576 (9)0.0546 (9)0.0377 (7)0.0041 (7)0.0180 (6)0.0027 (6)
C70.0443 (7)0.0394 (7)0.0336 (7)0.0066 (5)0.0162 (6)0.0018 (5)
C80.0457 (7)0.0369 (7)0.0412 (7)0.0041 (6)0.0175 (6)0.0008 (6)
C90.0486 (8)0.0454 (8)0.0432 (8)0.0039 (6)0.0173 (6)0.0026 (6)
C100.0652 (10)0.0537 (10)0.0699 (11)0.0082 (8)0.0219 (9)0.0178 (9)
C110.0848 (15)0.0984 (17)0.0464 (10)0.0053 (13)0.0087 (9)0.0160 (11)
C120.0570 (9)0.0379 (7)0.0485 (8)0.0002 (6)0.0165 (7)0.0029 (6)
Geometric parameters (Å, º) top
S1—C11.7311 (15)C7—C81.456 (2)
S1—C71.7612 (14)C8—C91.380 (2)
N1—C21.3878 (19)C8—C121.416 (2)
N1—C71.3008 (19)C3—H30.9300
N2—C121.150 (2)C4—H40.9300
N3—C91.322 (2)C5—H50.9300
N3—C101.447 (3)C6—H60.9300
N3—C111.461 (3)C9—H90.9300
C1—C21.407 (2)C10—H10A0.9600
C1—C61.389 (2)C10—H10B0.9600
C2—C31.395 (2)C10—H10C0.9600
C3—C41.378 (2)C11—H11A0.9600
C4—C51.391 (2)C11—H11B0.9600
C5—C61.381 (3)C11—H11C0.9600
C1—S1—C789.15 (7)C2—C3—H3120.00
C2—N1—C7110.61 (12)C4—C3—H3120.00
C9—N3—C10124.08 (15)C3—C4—H4120.00
C9—N3—C11119.72 (17)C5—C4—H4119.00
C10—N3—C11116.13 (18)C4—C5—H5120.00
S1—C1—C2109.23 (10)C6—C5—H5120.00
S1—C1—C6129.06 (12)C1—C6—H6121.00
C2—C1—C6121.71 (14)C5—C6—H6121.00
N1—C2—C1115.46 (13)N3—C9—H9114.00
N1—C2—C3125.84 (13)C8—C9—H9115.00
C1—C2—C3118.70 (13)N3—C10—H10A109.00
C2—C3—C4119.52 (14)N3—C10—H10B109.00
C3—C4—C5121.02 (16)N3—C10—H10C109.00
C4—C5—C6120.77 (15)H10A—C10—H10B109.00
C1—C6—C5118.27 (14)H10A—C10—H10C109.00
S1—C7—N1115.55 (11)H10B—C10—H10C110.00
S1—C7—C8119.17 (10)N3—C11—H11A109.00
N1—C7—C8125.28 (13)N3—C11—H11B109.00
C7—C8—C9117.55 (13)N3—C11—H11C109.00
C7—C8—C12116.15 (13)H11A—C11—H11B109.00
C9—C8—C12126.30 (14)H11A—C11—H11C110.00
N3—C9—C8131.03 (15)H11B—C11—H11C109.00
N2—C12—C8175.21 (17)
C7—S1—C1—C20.33 (12)S1—C1—C2—N10.48 (18)
C7—S1—C1—C6179.26 (16)S1—C1—C2—C3179.33 (12)
C1—S1—C7—C8179.85 (13)N1—C2—C3—C4179.54 (17)
C1—S1—C7—N10.14 (13)C1—C2—C3—C40.7 (2)
C2—N1—C7—C8179.91 (15)C2—C3—C4—C50.2 (3)
C7—N1—C2—C3179.41 (16)C3—C4—C5—C60.8 (3)
C2—N1—C7—S10.10 (19)C4—C5—C6—C10.4 (3)
C7—N1—C2—C10.4 (2)S1—C7—C8—C122.3 (2)
C11—N3—C9—C8179.2 (2)N1—C7—C8—C92.6 (2)
C10—N3—C9—C82.5 (3)S1—C7—C8—C9177.44 (12)
C6—C1—C2—C31.1 (2)N1—C7—C8—C12177.71 (15)
C6—C1—C2—N1179.15 (15)C12—C8—C9—N30.5 (3)
S1—C1—C6—C5179.96 (13)C7—C8—C9—N3179.24 (17)
C2—C1—C6—C50.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···N10.932.442.851 (2)106
C10—H10A···Cg1i0.962.773.549 (2)138
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···N10.932.442.851 (2)106
C10—H10A···Cg1i0.962.773.549 (2)138
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Manchester Metropolitan University, Erciyes University and Cardiff University for supporting this study.

References

First citationAlang, G., Kaur, G., Kaur, R., Singh, A. & Tiwari, R. (2010). J. Young Pharmacists, 2, 394–398.  CrossRef CAS Google Scholar
First citationDas, J. J., Moquin, R. V., Liu, C., Doweyko, A. M., Defex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L., Barrish, J. C. & Wityak, J. (2003). Bioorg. Med. Chem. Lett. 13, 2587–2590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Shaaer, H. M., Abdel-Aziz, S. A., Allimony, H. A., Ali, U. F. & Abdel-Rahman, R. M. (1997). Pharmazie, 52, 285–289.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeronikaki, A. & Theophilidis, G. (1992). Eur. J. Med. Chem. 27, 709–716.  CrossRef CAS Web of Science Google Scholar
First citationGong, B., Hong, F., Kohm, C., Bonham, L. & Klin, P. (2004). Bioorg. Med. Chem. Lett. 14, 1455–1459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGupta, A. & Raat, S. (2010). J. Curr. Pharm. Res. 3, 13-23.  Google Scholar
First citationHutchinson, I., Bradshaw, T. D., Matthew, C. S., Stevens, M. F. G. & Westwell, A. D. (2003). Bioorg. Med. Chem. Lett. 13, 471–474.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlose, N., Niedbolla, K., Schwartz, K. & Bottcher, I. (1983). Arch. Pharm. 316, 941–951.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPal, N., Kumar, M. & Seth, G. (2011). Eur. J. Chem. 8, 1174–1189.  CAS Google Scholar
First citationSanja, O. & Cvetkovic, D. D. P.-K. (2011). Chem. Ind. Chem. Eng. Q. 17, 9–15.  Google Scholar
First citationSatsangi, R. K., Zaidi, S. M. & Misra, V. C. (1983). Pharmazie, 38, 341–342.  CAS PubMed Web of Science Google Scholar
First citationSelvam, T. P., Radhika, P., Janagaraj, S. & Kumar, A. S. (2011). Res. Biotech. 2, 50-57.  Google Scholar
First citationSharma, N. K., Priyanka, M. S. & Jha, K. K. (2010). J. Pharm. Res. 3, 969–970.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicini, P., Amoretti, L., Chiavarini, M. & Impicciatore, M. (1990). Il Farmaco, 45, 933–943.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds